# A Weyl character formula for Hessenberg varieties 

Hiraku Abe<br>McMaster University<br>/ Osaka City University Advanced Mathematical Institute<br>Joint work with<br>Naoki Fujita and Jeremy Lane

A special session on Combinatorial algebraic geometry CMS Sectional Meeting at Niagara Falls, 2016/12/5

## §0. Introduction

$\lambda$ : regular dominant weight of $T^{n} \subset G L_{n}(\mathbb{C})$

- $V_{\lambda}$ : irrep of $G L_{n}(\mathbb{C})$ with highest weight $\lambda$
- $P(\lambda) \subset \mathbb{R}^{n}:$ permutohedron assoc. to $\lambda$

Weyl character formula :

$$
\operatorname{char}\left(V_{\lambda}^{*}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{pos}}\left(1-e^{-w \alpha}\right)}
$$

The (formal) sum of weights appearing in $V_{\lambda}$

$$
S(P(\lambda)):=\sum_{\mu \in P(\lambda) \cap(L+\lambda)} e^{\mu}=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{simp}}\left(1-e^{-w \alpha}\right)}
$$

$$
\begin{aligned}
& \operatorname{char}\left(V_{\lambda}^{*}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{pos}}\left(1-e^{-w \alpha}\right)} \\
& S(P(\lambda))=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{simp}}\left(1-e^{-w \alpha}\right)}
\end{aligned}
$$

Goal of this talk:
Unify these two formulas.

The (full) flag variety (of type $A_{n-1}$ ) is the collection of complete flags of linear subspaces in $\mathbb{C}^{n}$ :

$$
F l\left(\mathbb{C}^{n}\right)=\left\{\left(\{0\} \subsetneq V_{1} \subsetneq V_{2} \subsetneq \cdots \subsetneq V_{n}=\mathbb{C}^{n}\right)\right\} .
$$

Hessenberg varieties are subvarieties of $F l\left(\mathbb{C}^{n}\right)$.
$S$ : regular semisimple $n \times n$ matrix / $\mathbb{C}$,
$h:[n] \rightarrow[n]$ a function satisfying the following for all $i$ :

- $h(i+1) \geq h(i)$
- $h(i) \geq i+1$

The (regular semisimple) Hessenberg variety (associated to $h$ ) is

$$
X(h):=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subset V_{h(i)} \text { for all } i\right\} .
$$

- non-singular, projective
- $T^{n} \curvearrowright F l\left(\mathbb{C}^{n}\right)$ preserves $X(h) \subset F l\left(\mathbb{C}^{n}\right)$

$$
\begin{aligned}
& X(h)=\left\{V_{\bullet} \in F l\left(\mathbb{C}^{n}\right) \mid S V_{i} \subset V_{h(i)} \text { for all } i\right\} \\
& \text { e.g. } h(i)=n(\forall i) \\
& \\
& \Longrightarrow X(h)=F l\left(\mathbb{C}^{n}\right) \\
& \qquad \begin{aligned}
h(i) & =i+1 \quad(\forall i) \\
& \Longrightarrow X(h)
\end{aligned} \\
& =\text { the toric variety assoc. to Permutohedron } \\
&
\end{aligned}
$$

For $h:[n] \rightarrow[n]$, define

$$
M_{h}:=\left\{e_{i}-e_{j} \in \mathbb{R}^{n} \mid i<j \leq h(i)\right\} \subset \Phi^{+}
$$

(a collection of postive roots of type $A_{n-1}$ )
e.g.

$$
h(i)=n \text { for all } i\left(X(h)=F l\left(\mathbb{C}^{n}\right)\right) \Longrightarrow M_{h}=\text { positive roots }
$$

$$
h(i)=i+1 \text { for all } i(X(h)=\text { Perm }) \Longrightarrow M_{h}=\text { simple roots }
$$

$\xi_{h}:=\sum_{\alpha \in M_{h}} \alpha:$ a weight of $T^{n}$
$\xi_{h}=\sum_{\alpha \in M_{h}} \alpha=\sum_{i=1}^{n-1}(-a(i)-b(i)+2) \varpi_{i}$
e.g. \(\left.h=(2,3,5,5,5) \quad \begin{array}{|l|l|l|l|l|}\hline \& \& \& \& <br>

\hline\end{array}\right)\)|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |

$$
a(1)=3-2=1, \quad a(2)=5-3=2, \ldots
$$

$$
b(1)=5-5=0, \quad b(2)=5-4=1, \ldots
$$

$\xi_{h}=\sum_{\alpha \in M_{h}} \alpha=\sum_{i=1}^{n-1}(-a(i)-b(i)+2) \varpi_{i} \quad: \quad$ a weight of $T^{n}$
$\lambda$ : a weight of $T^{n} \mapsto$ a line bundle $L_{\lambda}$ on $F l\left(\mathbb{C}^{n}\right)=G / B$

Proposition (A-Fujita-Lane)
Let $\lambda$ be a weight of $T^{n}$. If $\lambda+\xi_{h}$ is regular dominant, then

$$
\operatorname{char}_{T^{n}} H^{0}\left(X(h), L_{\lambda}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\Pi_{\alpha \in M_{h}}\left(1-e^{-w \alpha}\right)}
$$

- $X(h)=F l\left(\mathbb{C}^{n}\right) \Longrightarrow M_{h}=$ positive roots
- $X(h)=$ Perm $\Longrightarrow M_{h}=$ simple roots

Two extremal cases of this formula:

$$
\begin{aligned}
& \operatorname{char}_{T^{n}} H^{0}\left(F l\left(\mathbb{C}^{n}\right), L_{\lambda}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{pos}}\left(1-e^{-w \alpha}\right)} \\
& \operatorname{char}_{T^{n}} H^{0}\left(\operatorname{Perm}, L_{\lambda}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{simp}}\left(1-e^{-w \alpha}\right)}
\end{aligned}
$$

Two extremal cases of this formula:

$$
\begin{aligned}
& \operatorname{char}_{T^{n}} H^{0}\left(F l\left(\mathbb{C}^{n}\right), L_{\lambda}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{pos}}\left(1-e^{-w \alpha}\right)} \\
& \operatorname{char}_{T^{n}} H^{0}\left(\operatorname{Perm}, L_{\lambda}\right)=\sum_{w \in \mathfrak{S}_{n}} \frac{e^{w \lambda}}{\prod_{\alpha: \operatorname{simp}}\left(1-e^{-w \alpha}\right)}
\end{aligned}
$$

Thank you for your attention!

