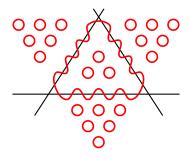
Non-Existence of Torically Maximal Hypersurfaces

Kristin Shaw

Technische Universität Berlin & The Fields Institute

CMS Winter Meeting

December 2016



Maximal curves in $\mathbb{R}P^2$

Let $F \in \mathbb{R}[x_0, x_1, x_2]$ be homogeneous s.t. $C := V(F) \subset \mathbb{C}P^2$ is smooth. Then $\mathbb{R}C := C \cap \mathbb{R}P^2$ is a disjoint union of embedded circles.

Some real curves of degree 4 in $\mathbb{R}P^2$

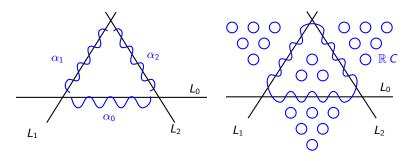
Theorem (Harnack 1876)

If F is homogeneous of degree d then

$$\dim H_0(\mathbb{R}C) \leq \frac{(d-1)(d-2)}{2} + 1.$$

Any curve obtaining this upper bound is called **maximal** or an *M*-curve.

Harnack's *M*-curve construction



A simple Harnack curve has 3 disjoint arcs $\alpha_0, \alpha_1, \alpha_2 \subset \mathbb{R}C$ such that

 $|\alpha_i \cap L_i| = d$ for i = 0, 1, 2, and lines $L_0, L_1, L_2 \subset \mathbb{C}P^2$.

Theorem (Mikhalkin 2000)

If $C \subset \mathbb{C}P^2$ is a simple Harnack curve then the topology of the triad $(\mathbb{R}P^2; \mathbb{R}C, \cup L_i)$ is unique.

Properties of simple Harnack curves

Theorem

A smooth curve $C \subset \mathbb{C}P^2$ a simple Harnack curve ifff:

- maximal in every affine chart (Mikhalkin 2000);
- ▶ The amoeba of ℝC has no inflection points (Mikhalkin 2000);
- The amoeba map is at most 2 : 1 (Mikhalkin-Rullgård 2001);
- ▶ The amoeba of C has maximal area (Mikhalkin-Rullgård 2001);
- ► The amoeba of RC has maximal curvature (Passare-Risler 2010);
- The log Gauß map $\gamma: C \to \mathbb{C}P^1$ is totally real (Passare-Risler 2010).

Torically maximal hypersurfaces in $(\mathbb{C}^*)^n$ were defined by Mikhalkin (2001).

No known examples when n > 2 except for hyperplanes!

The logarithmic Gauß map

Let $V \subset (\mathbb{C}^*)^n$ be defined by $F \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ with Newton polytope Δ .

Definition (Kapranov 1991)

The log Gauß map $\gamma: V \to \mathbb{C}P^{n-1}$ is

$$\gamma(z_1,\ldots,z_n)\mapsto [z_1\frac{\partial F}{\partial z_1}:\cdots:z_n\frac{\partial F}{\partial z_n}].$$

- The log Gauß map is the coordinatewise logarithm map composed with the usual Gauß map;
- A-discriminantal varieties characterised by log Gauß map (Kapranov 1991);
- The graph of the log Gauß map is the maximum likelihood variety X ⊂ (C*)ⁿ × CPⁿ⁻¹.

The log Gauß map extends to $\overline{V} \subset \mathsf{TV}(\Delta)$ where $\mathsf{TV}(\Delta)$ is toric variety of Δ .

Torically maximal hypersurfaces in $(\mathbb{C}^*)^n$

Definition

A map between real varieties $f : X \to Y$ is:

- ▶ totally real if $f^{-1}(y) \subset \mathbb{R}X$ for all $y \in \text{Im}(f) \cap \mathbb{R}Y$;
- generically totally real if f⁻¹(y) ⊂ ℝX for all y ∈ Im(f) ∩ ℝY outside of a codimension 1 subset.

Definition

Let $V \subset (\mathbb{C}^*)^n$ be a \mathbb{R} -hypersurface and \overline{V} be its closure in $\mathsf{TV}(\Delta)$,

- ▶ V is torically maximal if $\gamma : \overline{V} \to \mathbb{C}P^{n-1}$ is generically totally real;
- V is strongly torically maximal if $\gamma : \overline{V} \to \mathbb{C}P^{n-1}$ is totally real.

Non-existence of torically maximal hypersurfaces

Assume that $V \subset (\mathbb{C}^*)^n$, $\overline{V} \subset \mathsf{TV}(\Delta)$, and $\overline{V} \cap \mathsf{TV}(\Delta_i)$ are all non-singular.

Theorem 1 (BMRS)

If $n \ge 3$ and $V \subset (\mathbb{C}^*)^n$ is a torically maximal hypersurface such that $TV(\Delta) = \mathbb{C}P^n$ then \overline{V} is a hyperplane.

Theorem 2 (BMRS)

If $n \geq 3$ and $V \subset (\mathbb{C}^*)^n$ is a strongly torically maximal hypersurface then $\overline{V} \subset TV(\Delta)$ is a hyperplane in projective space.

Proof of Theorem 1

Theorem (BMRS)

If $V \subset (\mathbb{C}^*)^n$ is a hypersurface with $TV(\Delta) = \mathbb{C}P^n$ then the log Gauß map $\gamma : \overline{V} \to \mathbb{C}P^n$ has finite fibres.

Proof of Theorem 1 (n = 3).

If V is torically maximal \Rightarrow V strongly torically maximal \Rightarrow

 $\gamma : \mathbb{R}\overline{V} \to \mathbb{R}P^2$ is a covering map (Kummer-Shamovich 2015) \Rightarrow $\mathbb{R}\overline{V} = k(S^2) \sqcup I(\mathbb{R}P^2).$

 \forall coordinate hyperplane $H_i \subset \mathbb{C}P^3$, $\overline{V} \cap H_i$ is a deg *d* simple Harnack curve and

$$\deg(\gamma|_{\mathcal{O}_i}) = 3d - 2.$$

But deg $(\gamma|_{\mathcal{O}_i}) = 1$ or 2 since $\mathcal{O}_i \subset S^2$ or $\mathbb{R}P^2 \Rightarrow d = 1$ and \overline{V} must be a hyperplane.

Singular and half dimensional examples

Example If $F(z) = az_3^2 + z_3 + z_2 + z_1 + 1$ and $a \in (0, \frac{1}{4})$ then $\gamma : \overline{V} \to \mathbb{C}P^2$ is totally real.

What are the singular (strongly) torically maximal hypersurfaces?

Example

If $V = C_1 \times C_2 \subset (\mathbb{C}^*)^4$ where C_1, C_2 Harnack curves, then $\gamma : \overline{V} \to Gr(2, 4)$ is totally real and $\gamma(\overline{V}) = \mathbb{C}P^1 \times \mathbb{C}P^1$ has real structure $\mathbb{R}P^1 \times \mathbb{R}P^1$.

What are the (strongly) torically maximal varieties of arbitrary codimension?

Thank you!