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STRUCTURE OF THE MALVENUTO-REUTENAUER

HOPF ALGEBRA OF PERMUTATIONS

MARCELO AGUIAR AND FRANK SOTTILE

Abstract. We analyze the structure of the Malvenuto-Reutenauer Hopf algebraSSym

of permutations in detail. We give explicit formulas for its antipode, prove that it is
a cofree coalgebra, determine its primitive elements and its coradical filtration, and
show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric
functions. In addition, we describe the structure constants of the multiplication as a
certain number of facets of the permutahedron. As a consequence we obtain a new
interpretation of the product of monomial quasi-symmetric functions in terms of the
facial structure of the cube. The Hopf algebra of Malvenuto and Reutenauer has a
linear basis indexed by permutations. Our results are obtained from a combinatorial
description of the Hopf algebraic structure with respect to a new basis for this algebra,
related to the original one via Möbius inversion on the weak order on the symmetric
groups. This is in analogy with the relationship between the monomial and funda-
mental bases of the algebra of quasi-symmetric functions. Our results reveal a close
relationship between the structure of the Malvenuto-Reutenauer Hopf algebra and the
weak order on the symmetric groups.
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Introduction

Malvenuto [22] introduced the Hopf algebra SSym of permutations, which has a lin-
ear basis {Fu | u ∈ Sn, n ≥ 0} indexed by permutations in all symmetric groups Sn.
The Hopf algebra SSym is non-commutative, non-cocommutative, self-dual, and graded.
Among its sub-, quotient-, and subquotient- Hopf algebras are many algebras central to
algebraic combinatorics. These include the algebra of symmetric functions [21, 33], Ges-
sel’s algebra QSym of quasi-symmetric functions [13], the algebra of non-commutative
symmetric functions [12], the Loday-Ronco algebra of planar binary trees [19], Stem-
bridge’s algebra of peaks [34], the Billera-Liu algebra of Eulerian enumeration [2], and
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others. The structure of these combinatorial Hopf algebras with respect to certain distin-
guished bases has been an important theme in algebraic combinatorics, with applications
to the combinatorial problems these algebras were created to study. Here, we obtain a
detailed understanding of the structure of SSym, both in algebraic and combinatorial
terms.

Our main tool is a new basis {Mu | u ∈ Sn, n ≥ 0} for SSym related to the original
basis by Möbius inversion on the weak order on the symmetric groups. These bases
{Mu} and {Fu} are analogous to the monomial basis and the fundamental basis of
QSym, which are related via Möbius inversion on their index sets, the Boolean posets
Qn. We refer to them as the monomial basis and the fundamental basis of SSym.

We give enumerative-combinatorial descriptions of the product, coproduct, and an-
tipode of SSym with respect to the monomial basis {Mu}. In Section 3, we show that
the coproduct is obtained by splitting a permutation at certain special positions that we
call global descents. Descents and global descents are left adjoint and right adjoint to
a natural map Qn → Sn. These results rely on some non-trivial properties of the weak
order developed in Section 2.

The product is studied in Section 4. The structure constants are non-negative in-
tegers with the following geometric-combinatorial description. The 1-skeleton of the
permutahedron Πn−1 is the Hasse diagram of the weak order on Sn. The facets of the
permutahedron are canonically isomorphic to products of lower dimensional permuta-
hedra. Say that a facet isomorphic to Πp−1 × Πq−1 has type (p, q). Given u ∈ Sp and
v ∈ Sq, such a facet has a distinguished vertex corresponding to (u, v) under the canon-
ical isomorphism. Then, for w ∈ Sp+q, the coefficient of Mw in Mu ·Mv is the number
of facets of the permutahedron Πp+q−1 of type (p, q) with the property that the distin-
guished vertex is below w (in the weak order) and closer to w than any other vertex in
the facet.

In Section 5 we find explicit formulas for the antipode with respect to both bases. The
structure constants with respect to the monomial basis have constant sign, as for QSym.
The situation is more complicated for the fundamental basis, which may explain why no
such explicit formulas were previously known.

Elucidating the elementary structure of SSym with respect to the monomial basis
reveals further algebraic structures ofSSym. In Section 6, we show thatSSym is a cofree
graded coalgebra. A consequence is that its coradical filtration (a filtration encapsulating
the complexity of iterated coproducts) is the algebraic counterpart of a filtration of the
symmetric groups by certain lower order ideals. In particular, we show that the space
of primitive elements is spanned by the set {Mu | u has no global descents}. Cofreenes
was shown by Poirier and Reutenauer [28] in dual form, through the introduction of a
different basis. The study of primitive elements was pursued from this point of view
by Duchamp, Hivert, and Thibon [8]. The generating function for the graded space of
primitive elements is

1−
1∑

n≥0 n! x
n
.

Comtet essentially studied the combinatorics of global descents [6, Exercise VI.14]. These
results add an algebraic perspective to the pure combinatorics he studied.

There is a well-known morphism of Hopf algebras SSym → QSym that maps one
fundamental basis onto the other, by associating to a permutation u its descent set
Des(u). In Section 7, we describe this map on the monomial bases and then derive a new
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geometric description for the product of monomial quasi-symmetric functions in which
the role of the permutahedron is played by the cube.

In Section 8 we show that SSym decomposes as a crossed product over QSym. This
construction from the theory of Hopf algebras is a generalization of the notion of group
extensions. We provide a combinatorial description for the Hopf kernel of the map
SSym → QSym, which is a subalgebra of SSym.

We study the self-duality of SSym in Section 9 and its enumerative consequences. For
instance, a result of Foata and Schützenberger [11] on the numbers

d(S,T) := #{w ∈ Sn | Des(w) = S, Des(w−1) = T}

follows directly from this self-duality and we obtain analogous results for the numbers

θ(u, v) := #{w ∈ Sn | w ≤ u, w−1 ≤ v} .

Most of the order-theoretic properties that underlie these algebraic results are presented
in Section 2. Central to these are the existence of two Galois connections (involving
descents and global descents) between the posets of permutations of [n] and of subsets of
[n−1], as well as the order properties of the decomposition of Sn into cosets of Sp×Sq.

We thank Swapneel Mahajan, who suggested a simplification to the proof of Theo-
rem 3.1, Nantel Bergeron, one of whose questions motivated the results of Section 8, and
the referees of an abridged version for helpful comments.

1. Basic definitions and results

We use only elementary properties of Hopf algebras, as given in the book [26]. Our
Hopf algebras H will be graded connected Hopf algebras over Q. Thus the Q-algebra
H is the direct sum

⊕
{Hn | n = 0, 1, . . .} of its homogeneous components Hn, with

H0 = Q, the product and coproduct respect the grading, and the counit is projection
onto H0.

Throughout, n is a non-negative integer and [n] denotes the set {1, 2, . . . , n}. A
composition α of n is a sequence α = (α1, . . . , αk) of positive integers with n = α1+α2+
· · · + αk. To a composition α of n, we associate the set I(α) := {α1, α1 + α2, . . . , α1 +
· · · + αk−1}. This gives a bijection between compositions of n and subsets of [n−1].
Compositions of n are partially ordered by refinement. The cover relations are of the
form

(α1, . . . , αi + αi+1, . . . , αk) ⋖ (α1, . . . , αk) .

Under the association α ↔ I(α), refinement corresponds to set inclusion, so we simply
identify the poset of compositions with the Boolean poset Qn of subsets of [n−1].

LetSn be the group of permutations of [n]. We use one-line notation for permutations,
writing u = (u1, u2, . . . , un) where ui = u(i). Sometimes we may omit the commas and
write u = u1 . . . un. A permutation u has a descent at a position p if up > up+1. An
inversion in a permutation u ∈ Sn is a pair of positions 1 ≤ i < j ≤ n with ui > uj.
The set of descents and inversions are denoted by Des(u) and Inv(u), respectively. The
length of a permutation u is ℓ(u) = #Inv(u).

Given p, q ≥ 0, we consider the product Sp ×Sq to be a subgroup of Sp+q, where Sp

permutes [p] and Sq permutes {p+1, . . . , p+q}. For u ∈ Sp and v ∈ Sq, write u× v for
the permutation in Sp+q corresponding to (u, v) ∈ Sp ×Sq under this embedding.

More generally, given a subset S = {p1 < · · · < pk} of [n−1], we have the (standard)
parabolic or Young subgroup

SS := Sp1 ×Sp2−p1 × · · · ×Sn−pk ⊆ Sn .
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The notation SS suppresses the dependence on n, which will either be understood or
will be made explicit when this is used.

Lastly, we use
∐

to denote disjoint union.

1.1. The Hopf algebra of permutations of Malvenuto and Reutenauer. Let
SSym be the graded vector space over Q with basis

∐
n≥0 Sn, graded by n. This vector

space has a graded Hopf algebra structure first considered in Malvenuto’s thesis [22,
§5.2] and in her work with Reutenauer [23]. (In [8], it is called the algebra of free quasi-
symmetric functions.) Write Fu for the basis element corresponding to u ∈ Sn for n > 0
and 1 for the basis element of degree 0.

The product of two basis elements is obtained by shuffling the corresponding permu-
tations, as in the following example.

F12 · F312 = F12534 + F15234 + F15324 + F15342 + F51234

+F51324 + F51342 + F53124 + F53142 + F53412 .

More precisely, for p, q > 0, set

S
(p,q) := {ζ ∈ Sp+q | ζ has at most one descent, at position p}

= {ζ ∈ Sp+q | ζ1 < · · · < ζp, ζp+1 < · · · < ζn} .

This is the collection of minimal (in length) representatives of left cosets of Sp ×Sq in
Sp+q. In the literature, they are sometimes referred to as (p, q)-shuffles, but sometimes
it is the inverses of these permutations that carry that name. We will refer to them
as Grassmannian permutations. With these definitions, we describe the product. For
u ∈ Sp and v ∈ Sq, set

(1.1) Fu · Fv =
∑

ζ∈S(p,q)

F(u×v)·ζ−1 .

This endows SSym with the structure of a graded algebra with unit 1.
The algebra SSym is also a graded coalgebra with coproduct given by all ways of

splitting a permutation. For a sequence (a1, . . . , ap) of distinct integers, let its standard
permutation† st(a1, . . . , ap) ∈ Sp be the permutation u defined by

(1.2) ui < uj ⇐⇒ ai < aj.

For instance, st(625) = 312. The coproduct ∆: SSym → SSym ⊗SSym is defined by

(1.3) ∆(Fu) =
n∑

p=0

Fst(u1, ..., up)⊗Fst(up+1, ..., un) ,

when u ∈ Sn. For instance, ∆(F42531) is

1⊗F42531 + F1⊗F2431 + F21⊗F321 + F213⊗F21 + F3142⊗F1 + F42531⊗1 .

SSym is a graded connected Hopf algebra [22, théorème 5.4].
We refer to the set {Fu} as the fundamental basis of SSym. The main goal of this

paper is to obtain a detailed description of the Hopf algebra structure of SSym. To this
end, the definition of a second basis for SSym (in § 1.3) will prove crucial.

This Hopf algebra SSym of Malvenuto and Reutenauer has been an object of recent
interest [7, 8, 16, 19, 20, 23, 27, 28, 29]. We remark that sometimes it is the dual Hopf
algebra that is considered. To compare results, one may use that SSym is self-dual

†Some authors call this flattening.
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under the map Fu 7→ F∗
u−1 , where F∗

u−1 is the element of the dual basis that is dual to
Fu−1 . We explore this further in Section 9.

1.2. The Hopf algebra of quasi-symmetric functions. Basic references for quasi-
symmetric functions are [29, 9.4] and [33, Section 7.19]; however, everything we need will
be reviewed here.

The algebra QSym of quasi-symmetric functions is a subalgebra of the algebra of
formal power series in countably many variables x1, x2, . . . . It has a basis of monomial

quasi-symmetric functions Mα indexed by compositions α = (α1, . . . , αk), where

Mα :=
∑

i1<···<ik

xα1
i1
xα2
i2

· · · xαk

ik
.

The product of these monomial functions is given by quasi-shuffles of their indices. A
quasi-shuffle of compositions α and β is a shuffle of the components of α and β, where
in addition we may replace any number of pairs of consecutive components (αi, βj) in
the shuffle by αi + βj . Then we have

(1.4) Mα ·Mβ =
∑

γ

Mγ ,

where the sum is over all quasi-shuffles γ of the compositions α and β. For instance,

(1.5) M(2) ·M(1,1) = M(1,1,2) +M(1,2,1) +M(2,1,1) +M(1,3) +M(3,1) .

The unit element is indexed by the empty composition 1 = M( ).
Let X and Y be two countable ordered sets and X

∐
Y its disjoint union, totally or-

dered by X < Y . Then ∆: f(X) 7→ f(X
∐

Y ) gives QSym the structure of a coalgebra.
In terms of the monomial quasi-symmetric functions, we have

(1.6) ∆
(
M(α1,...,αk)

)
=

k∑

p=0

M(α1,...,αp)⊗M(αp+1,...,αk) .

For instance, ∆(M(2,1)) = 1⊗M(2,1) +M(2)⊗M(1) +M(2,1)⊗1.
The algebra of quasi-symmetric functions was introduced by Gessel [13]. Its Hopf

algebra structure was introduced by Malvenuto [22, Section 4.1]. The description of the
product in terms of quasi-shuffles can be found in [15] and is equivalent to [10, Lemma
3.3]. A q-version of this construction appears in [36, Section 5] and [15].

The algebra QSym is a graded connected Hopf algebra whose component in degree n
is spanned by those Mα with α a composition of n. Malvenuto [22, corollaire 4.20] and
Ehrenborg [10, Proposition 3.4] independently gave an explicit formula for the antipode

(1.7) S(Mα) = (−1)c(α)
∑

β≤α

M
β̃
.

Here, c(α) is the number of components of α, and if β = (β1, β2, . . . , βt) then β̃ is β
written in reverse order (βt, . . . , β2, β1).

Gessel’s fundamental quasi-symmetric function Fα is defined by

Fα =
∑

α≤β

Mβ ,

By Möbius inversion, we have

Mα =
∑

α≤β

(−1)c(β)−c(α)Fβ .
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Thus the set {Fα} forms another basis of QSym.
It is sometimes advantageous to index these monomial and fundamental quasi-symmetric

functions by subsets of [n−1]. Accordingly, given a composition α of n with S = I(α),
we define

FS := Fα and MS := Mα .

The notation FS suppresses the dependence on n, which will be usually understood from
the context; otherwise it will be made explicit by writing FS,n.

In terms of power series,

(1.8) FS =
∑

i16i26···6in
p∈S⇒ip<ip+1

xi1xi2 · · · xin .

We mention that there is an analogous realization of the Malvenuto-Reutenauer Hopf
algebra as a subalgebra of an algebra of non-commutative power series, due to Duchamp,
Hivert, and Thibon. To this end, one defines

(1.9) Fu =
∑

i16i26···6in
p∈Des(u)⇒ip<ip+1

xi
u−1(1)

xi
u−1(2)

· · · xi
u−1(n)

.

This is discussed in [8, Section 3.1], in slightly different terms. In this realization, the
coproduct of SSym is induced by the ordinal sum of commuting alphabets [8, Prop.
3.4].

1.3. The monomial basis of the Malvenuto-Reutenauer Hopf algebra. The de-
scent set of a permutation u ∈ Sn is the subset of [n−1] recording the descents of u

(1.10) Des(u) := {p ∈ [n−1] | up > up+1} .

Thus Des(46512837) = {2, 3, 6}. Malvenuto [22, théorèmes 5.12, 5.13, and 5.18] shows
that there is a morphism of Hopf algebras

(1.11)
D : SSym −→ QSym

Fu 7−→ FDes(u)

(This is equivalent to Theorem 3.3 in [23].) This explains our name and notation for the
fundamental basis of SSym. This map extends to power series, where it is simply the
abelianization: there is a commutative diagram

SSym Â

Ä

//

D
²²
²²

k〈x1, x2, . . .〉

ab
²²
²²

QSym Â

Ä

// k[x1, x2, . . .]

This is evident from (1.8) and (1.9). It is easy to see, however, that D is not the
abelianization of SSym.

In analogy to the basis of monomial quasi-symmetric functions, we define a new mono-

mial basis {Mu} for the Malvenuto-Reutenauer Hopf algebra. For each n ≥ 0 and
u ∈ Sn, let

(1.12) Mu :=
∑

u≤v

µSn
(u, v) · Fv ,
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where u ≤ v in the weak order in Sn (described in Section 2) and µSn
is the Möbius

function of this partial order. By Möbius inversion,

(1.13) Fu :=
∑

u≤v

Mv ,

so these elements Mu indeed form a basis of SSym. For instance,

M4123 = F4123 −F4132 −F4213 + F4321 .

We will show that Mu maps either to MDes(u) or to 0 under the map D : SSym → QSym.

2. The weak order on the symmetric group

Let Inv(u) be the set of inversions of a permutation u ∈ Sn,

Inv(u) := {(i, j) ∈ [n]× [n] | i < j and ui > uj} .

The inversion set determines the permutation. Given u and v ∈ Sn, we write u ≤ v if
Inv(u) ⊆ Inv(v). This defines the left weak order on Sn. Figure 1 shows the (left) weak

3214 3142 2413 23414123 1432

3124 2143 1423 13422314

1324 1243

4213 4132 3412 24313241

4312 3421

1234

2134

4321

4231

Figure 1. The weak order on S4

order on S4. The weak order has another characterization

u ≤ v ⇐⇒ ∃w ∈ Sn such that v = wu and ℓ(v) = ℓ(w) + ℓ(u) ,

where ℓ(u) is the number of inversions of u. The cover relations u⋖v occur when w is an
adjacent transposition. Thus, u⋖ v precisely when v is obtained from u by transposing
a pair of consecutive values of u; a pair (ui, uj) such that i < j and uj = ui + 1. The
identity permutation 1n is the minimum element of Sn and ωn = (n, . . . , 2, 1) is the
maximum.

This weak order is a lattice [14], whose structure we describe. First, a set J is the
inversion set of a permutation in Sn if and only if both J and its complement Inv(ωn)−J
are transitively closed ((i, j) ∈ J and (j, k) ∈ J imply (i, k) ∈ J , and the same for its
complement). The join (least upper bound) of two permutations u and v ∈ Sn is the
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permutation u∨v whose inversion set is the transitive closure of the union of the inversion
sets of u and v

(2.1) {(i, j) | ∃ chain i = k0 < · · · < ks = j s.t. ∀r, (kr−1, kr) ∈ Inv(u) ∪ Inv(v)}.

Similarly, the meet (greatest lower bound) of u and v is the permutation u ∧ v whose
inversion set is

(2.2) {(i, j) | ∀ chains i = k0 < · · · < ks = j, ∃r s.t. (kr−1, kr) ∈ Inv(u) ∩ Inv(v)}.

The Möbius function of the weak order takes values in {−1, 0, 1}. Explicit descriptions
can be found in [3, Corollary 3] or [9, Theorem 1.2]. We will not need that description,
but will use several basic facts on the weak order that we develop here.

2.1. Grassmannian permutations and the weak order. In Section 1, we defined
S

(p,q) to be the set of minimal (in length) representatives of (left) cosets of Sp ×Sq in
the symmetric group Sp+q. Thus the map

λ : S
(p,q) ×Sp ×Sq −→ Sp+q

(ζ, u, v) 7−→ ζ · (u× v)

is a bijection. We leave the following description of the inverse to the reader.

Lemma 2.1. Let w ∈ Sp+q, and set ζ := w ·
(
st(w1, . . . , wp) × st(wp+1, . . . , wp+q)

)−1
.

Then ζ ∈ S
(p,q) and λ−1(w) = (ζ, st(w1, . . . , wp), st(wp+1, . . . , wp+q)).

We describe the order-theoretic properties of this decomposition into cosets.The first
step is to characterize the inversion sets of Grassmannian permutations. A subset J
of [p] × [q] is cornered if (h, k) ∈ J implies that (i, j) ∈ J whenever 1 ≤ i ≤ h and
1 ≤ j ≤ k. The reason for this definition is that a set I is the inversion set of a
Grassmannian permutation ζ ∈ S

(p,q) if and only if

(2.3)
(i) I ⊆ {1, . . . , p} × {p+1, . . . , p+q} , and

(ii) the shifted set {(p+1−i, j−p) | (i, j) ∈ I} ⊆ [p]× [q] is cornered .

Given an arbitrary subset J of [p] × [q], let cr(J) denote the smallest cornered subset
containing J . Denote the obvious action of (u, v) ∈ Sp ×Sq on a subset J of [p] × [q]
by (u, v)(J).

Lemma 2.2. Let J be a cornered subset of [p] × [q] and u ∈ Sp and v ∈ Sq any

permutations. Then

J ⊆ cr
(
(u, v)(J)

)
.

Proof. Let (i, j) ∈ J . The set {u(h) | 1 ≤ h ≤ i} has i elements. Hence there is a
number h such that 1 ≤ h ≤ i and u(h) ≥ i. Similarly there is number k such that
1 ≤ k ≤ j and v(k) ≥ j. Since J is cornered, (h, k) ∈ J . Hence (u(h), v(k)) ∈ (u, v)(J).
By construction, i ≤ u(h) and j ≤ v(k), so (i, j) ∈ cr ((u, v)(J)), as needed. ¤

Denote the diagonal action of w ∈ Sn on a subset I of [n] × [n] by w(I). Suppose
w = u×v ∈ Sp×Sq and I ⊆ {1, . . . , p}×{p+1, . . . , p+q}. Let J be the result of shifting
I, as in (2.3)(ii). It is easy to see that the result of shifting (u× v)(I) is (ũ, v)(J), where
ũ(i) = p+1−u(p+1−i).

Corollary 2.3. Let ζ and ζ ′ ∈ S
(p,q) be Grassmannian permutations, and u ∈ Sp and

v ∈ Sq be permutations. If (u× v) (Inv(ζ)) ⊆ Inv(ζ ′) then ζ ≤ ζ ′.
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Proof. We show that Inv(ζ) ⊆ Inv(ζ ′). Let J and J ′ be the corresponding shifted
sets. According to the previous discussion and the hypothesis, (ũ, v)(J) ⊆ J ′. Hence
cr((ũ, v)(J)) ⊆ J ′, since J ′ is cornered. By Lemma 2.2, J ⊆ cr ((ũ, v)(J)), so J ⊆ J ′.
This implies the inclusion of inversion sets, as needed. ¤

The following lemma is straightforward.

Lemma 2.4. Let ζ ∈ S
(p,q), u ∈ Sp, v ∈ Sq and w := ζ · (u × v) ∈ Sp+q. There is a

decomposition of Inv(w) into disjoint subsets

Inv(w) = Inv(u)
∐ (

(p, p) + Inv(v)
) ∐

(u−1 × v−1)
(
Inv(ζ)

)
.

We deduce some order-theoretic properties of the decomposition into left cosets. Define
ζp,q to be the permutation of maximal length in S

(p,q), so that

ζp,q := (q+1, q+2, . . . , q+p, 1, 2, . . . , q) .

Proposition 2.5. Let λ : S(p,q) ×Sp ×Sq → Sp+q be the bijection

λ(ζ, u, v) = ζ · (u× v) .

Then

(i) λ−1 is order preserving. That is,

ζ · (u× v) ≤ ζ ′ · (u′ × v′) =⇒ ζ ≤ ζ ′, u ≤ u′, and v ≤ v′ .

(ii) λ is order preserving when restricted to any of the following sets

{ζp,q} ×Sp ×Sq, {1p+q} ×Sp ×Sq, or S
(p,q) × {(u, v)} ,

for any u ∈ Sp, v ∈ Sq.

Proof. Let w = ζ ·(u×v) and w′ = ζ ′·(u′×v′). Suppose w ≤ w′, so that Inv(w) ⊆ Inv(w′).
By Lemma 2.4, we have Inv(u) ⊆ Inv(u′), Inv(v) ⊆ Inv(v′), and (u′′ × v′′) (Inv(ζ)) ⊆
Inv(ζ ′), where u′′ := u′u−1 and v′′ := v′v−1. Therefore, u ≤ u′, v ≤ v′, and by Corol-
lary 2.3, ζ ≤ ζ ′. This proves (i).

Statement (ii) follows by a similar application of Lemma 2.4, noting that Inv(ζp,q) =
{1, . . . , p} × {p + 1, . . . , n} and Inv(1p+q) = ∅ are invariant under any permutation in
Sp ×Sq. ¤

Since Grassmannian permutations in S
(p,q) are left coset representatives of Sp×Sq in

Sp+q, their inverses are right coset representatives. We discuss order-theoretic properties
of this decomposition into right cosets.

Given a subset J of [n]× [n], let

J̃ = {(j, i) | (i, j) ∈ J} .

We have the following key observation about the diagonal action of Sn on subsets of
[n]× [n].

Lemma 2.6. For any u ∈ Sn, we have u
(
Ĩnv(u)

)
= Inv(u−1).

Proof. Note that u−1(ui) = i. Thus Inv(u−1) = {uh < uk | h > k}. Then

u−1
(
Inv(u−1)

)
= {(h, k) | k < h and uk > uh} = Ĩnv(u) . ¤
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Proposition 2.7. Fix ζ ∈ S
(p,q) and consider the map ρζ : Sp ×Sq → Sp+q given by

ρζ(u, v) = (u× v) · ζ−1 .

Then ρζ is a convex embedding in the sense that

(a) ρζ is injective;

(b) ρζ is order-preserving: u ≤ u′ and v ≤ v′ ⇐⇒ ρζ(u, v) ≤ ρζ(u
′, v′);

(c) ρζ is convex: If ρζ(u, v) ≤ w ≤ ρζ(u
′, v′), for some u, u′ ∈ Sp and v, v′ ∈ Sq,

then there are u′′ ∈ Sp and v′′ ∈ Sq with w = ρζ(u
′′, v′′).

It follows that

(d) ρζ preserves meets and joins.

Proof. Assertion (a) is immediate. Set w := (u × v) · ζ−1 = ρζ(u, v). Then w−1 =
ζ · (u−1 × v−1). By Lemmas 2.4 and 2.6, we have

Inv(w) = w−1
( ˜Inv(w−1)

)

= ζ · (u−1 × v−1)
(

˜Inv(u−1) ∪
(
(p, p) + ˜Inv(v−1)

)
∪ (u× v)

(
Ĩnv(ζ)

))

= ζ
(
Inv(u) ∪

(
(p, p) + Inv(v)

)
∪ Ĩnv(ζ)

)
.

Assertion (b) follows from this and the characterization of the weak order in terms of
inversion sets.

For (c), decompose w = (u′′ × v′′) · ξ−1. By assumption,

ζ
(
Ĩnv(ζ)

)
⊆ ξ

(
Ĩnv(ξ)

)
⊆ ζ

(
Ĩnv(ζ)

)
.

Then ζ = ξ by Lemma 2.6, so w = ρζ(u
′′, v′′) as needed. ¤

2.2. Cosets of parabolic subgroups and the weak order. Write a subset S of [n−1]
as S = {p1 < · · · < pk}. In Section 1, we defined the parabolic subgroup

SS = Sp1 ×Sp2−p1 × · · · ×Sn−pk ⊆ Sn .

Let SS be the set of minimal (in length) representatives of left cosets of SS in Sn,

S
S = {ζ ∈ Sn | Des(ζ) ⊆ S} .

Grassmannian permutations are the special case S
(p,n−p) = S

{p}.
Let ζS be the permutation of maximal length in S

S,

(2.4) ζS := (n−p1+1, . . . , n, n−p2+1, . . . , n−p1, . . . , 1, . . . , n−pk) .

We record the following facts about these coset representatives.

Lemma 2.8. SS is an interval in the weak order of Sn. The minimum element is the

identity 1n and the maximum is ζS.

Our proofs rely upon the following basic fact. Suppose p, q are positive integers and T is
a subset of [p−1]. Define the subset S of [p+q−1] to be T∪{p}. Then (ζ, ζ ′) 7→ ζ ·(ζ ′×1q)
defines a bijection

(2.5) S
(p,q) ×S

T −→ S
S

The maximum elements are preserved under this map

(2.6) ζp,q · (ζT × 1q) = ζS .

The analog of Proposition 2.5 for this decomposition ofSn into left cosets ofSS follows
from Proposition 2.5 by induction using (2.5) and (2.6).
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Proposition 2.9. Suppose S is a subset of [n−1]. Let λ : SS×SS → Sn be the bijection

λ(ζ, u) = ζ · u .

Then λ−1 is order preserving, while λ is order preserving when restricted to any of the

following sets

{ζS} ×SS, {1n} ×SS, or S
S × {u}, for any u ∈ SS .

We state the analog of Proposition 2.7.

Proposition 2.10. Let S be a subset of [n−1]. Fix ζ ∈ S
S and consider the map

ρζ : SS → Sn given by

ρζ(u) = u · ζ−1 .

Then ρζ is a convex embedding. In particular, it preserves meets and joins.

2.3. Descents. Let Qn denote the Boolean poset of subsets of [n−1], which we identify
with the poset of compositions of n. We have the descent map Des : Sn → Qn given
by u 7→ Des(u), the descent set (1.10) of u. Let Z : Qn → Sn be the map defined by
S 7→ ζS, the maximum left coset representative of SS as in (2.4).

A Galois connection between posets P and Q is a pair (f, g) of order preserving maps
f : P → Q and g : Q → P such that for any x ∈ P and y ∈ Q,

(2.7) f(x) ≤ y ⇐⇒ x ≤ g(y) .

Proposition 2.11. The pair of maps (Des, Z) : Sn ⇄ Qn is a Galois connection.

Proof. We verify that

(a) Des : Sn → Qn is order preserving;
(b) Z : Qn → Sn is order preserving;
(c) Des ◦ Z = idQn

;
(d) Z(S) = max{u ∈ Sn | Des(u) = S}.

First of all, the map Des is order preserving simply because p is a descent of u if and
only if (p, p+1) ∈ Inv(u). This is (a). The remaining assertions follow immediately from

ζS = max{u ∈ Sn | Des(u) ⊆ S}

= max{u ∈ Sn | Des(u) = S} ,

which we know from Lemma 2.8.
Condition (2.7) follows formally. In fact, suppose T = Des(u) ⊆ S. Then by (d),

u ≤ Z(T), and by (b), Z(T) ≤ Z(S), so u ≤ Z(S). Conversely, suppose u ≤ Z(S). Then
by (a) and (c), Des(u) ⊆ Des(Z(S)) = S. ¤

321
¡ ❅

312 231

213 132
❅ ¡

123

Des
7−→

{1,2}
¡ ❅

{1} {2}

{1} {2}

❅ ¡
∅

{1,2}
¡ ❅

{1} {2}

❅ ¡
∅

Z
7−→

321
¡ ❅

312 231

❅❅ ¡¡
123

Figure 2. The Galois connection S3 ⇄ Q3
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This Galois connection is why the monomial basis of SSym is truly analogous to that
of QSym, and explains why we consider the weak order rather than any other order on
Sn. The connection between the monomial bases of these two algebras will be elucidated
in Theorem 7.3 using the previous result.

2.4. Global descents.

Definition 2.12. A permutation u ∈ Sn has a global descent at a position p ∈ [n−1] if

∀ i ≤ p and j ≥ p+1 , ui > uj .

Equivalently, if {u1, . . . , up} = {n, n−1, . . . , n−p+1}. Let GDes(u) ⊆ [n−1] be the set
of global descents of u. Note that GDes(u) ⊆ Des(u), but these are not equal in general.

In Section 2.3 we showed that the descent map Des : Sn → Qn is left adjoint to the
map Z : Qn → Sn, in the sense that the pair (Des, Z) forms a Galois connection, as in
Proposition 2.11. That is, for u ∈ Sn and S ∈ Qn,

(2.8) Des(u) ⊆ S ⇐⇒ u ≤ Z(S) = ζS .

The notion of global descents is a very natural companion of that of (ordinary) descents,
in that the map GDes: Sn → Qn is right adjoint to Z : Qn → Sn.

Proposition 2.13. The pair of maps (Z,GDes) : Qn ⇄ Sn is a Galois connection.

Proof. We already know that Z is order preserving. So is GDes, because p is a global
descent of a permutation u if and only if (i, j) ∈ Inv(u) for every i ≤ p, j ≥ p+1. It
remains to check that

(2.9) ζS ≤ u ⇐⇒ S ⊆ GDes(u) .

As in the proof of Proposition 2.11, this follows from

ζS = min{u ∈ Sn | GDes(u) ⊆ S}

= min{u ∈ Sn | GDes(u) = S} ,

which is clear from the definition of ζS. ¤

We turn to properties of the decomposition of Sn into left cosets of SS related to the
notion of global descents. Recall that S(p,q) is a set of representatives for the left cosets
of Sp ×Sq in Sp+q, and that ζp,q = (q+1, q+2, . . . , q+p, 1, 2, . . . , q).

Lemma 2.14. Suppose p, q are non-negative integers and let w ∈ Sp+q. Then

p ∈ GDes(w) ⇐⇒ w ≡ ζp,q mod Sp ×Sq ⇐⇒ w ≥ ζp,q .

Proof. First suppose that w ∈ Sp+q is in the same left coset of Sp ×Sq as is ζp,q. Thus,
there are permutations u ∈ Sp and v ∈ Sq such that

w = ζp,q · (u× v) .

If i ≤ p, then ui ∈ {1, . . . , p} and thus wi ∈ {q+1, . . . , q+ p}, so p is a global descent of
w as needed.

For the other direction, suppose p is a global descent of w and set

w := ζ−1
p,q · w = (p+1, p+2, . . . , p+q , 1, 2, . . . , p) · w .

Let 1 ≤ i ≤ p. By assumption, wi ∈ {q+1, . . . , q+p}. Hence wi ∈ {1, . . . , p}, which
means that w = u× v for some u ∈ Sp and v ∈ Sq, as needed.

Noting that ζp,q is a minimal coset representative and that the map λ−1 is order
preserving (Proposition 2.5(a)) proves the second equivalence. ¤
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For any subset S of [n−1], we have the left coset map λ : SS×SS → Sn of Section 2.2.
Given a permutation u ∈ Sn, consider its ‘projection’ uS to SS, which is defined to be
the second component of λ−1(u). That is, λ−1(u) = (ζ, uS) for some permutation ζ ∈ S

S.
If S = {p1 < p2 < · · · < pk}, then by Lemma 2.1,

(2.10) uS = st(u1, . . . , up1)× st(up1+1, . . . , up2)× · · · × st(upk+1, . . . , un) .

In particular, u∅ = u and u[n−1] = 1n. We relate this projection to the order and lattice
structure of Sn. For i < j, let [i, j) := {i, i+1, . . . , j−1}.

Lemma 2.15. For any u ∈ Sn and subset S of [n−1],

Inv(uS) = {(i, j) ∈ Inv(u) | [i, j) ∩ S = ∅} .

In particular, uS ≤ u.

Proof. Let i < j be integers in [n]. Suppose that there is an element p ∈ S with
i ≤ p < j. Since SS ⊆ Sp × Sn−p, we have uS ∈ Sp × Sn−p, and so uS(i) < uS(j).
Thus (i, j) 6∈ Inv(uS). Suppose now that that [i, j) ∩ S = ∅. Then there are consecutive
elements p and q of S such that p < i < j ≤ q. By (2.10),

uS(i) = p+ st(up+1, . . . , uq)(i) and uS(j) = p+ st(up+1, . . . , uq)(j) .

By (1.2), this implies that

uS(i) > uS(j) ⇐⇒ u(i) > u(j),

and thus (i, j) ∈ Inv(uS) ⇐⇒ (i, j) ∈ Inv(u). This completes the proof. ¤

Proposition 2.16. Let u, v ∈ Sn and S,T be subsets of [n−1]. Then

(i) If u ≤ v then uS ≤ vS and if T ⊆ S then uT ≥ uS.

(ii) uS ∧ vT = (u ∧ v)S∪T,
(iii) If S ⊆ GDes(v) and T ⊆ GDes(u), then uS ∨ vT = (u ∨ v)S∩T.

Proof. The first statement is an immediate consequence of Lemma 2.15. For the second,
we use (2.2) to show that Inv(uS ∧ vT) = Inv((u ∧ v)S∪T).

First, suppose (i, j) ∈ Inv((u ∧ v)S∪T). Then by Lemma 2.15 and (2.2), we have
[i, j) ∩

(
S ∪ T

)
= ∅, and given a chain i = k0 < · · · < ks = j, there is an index r such

that (kr−1, kr) ∈ Inv(u) ∩ Inv(v). Hence we also have [kr−1, kr) ∩
(
S ∪ T

)
= ∅, and thus

(kr−1, kr) ∈ Inv(uS) ∩ Inv(vT). Thus (i, j) ∈ Inv(uS ∧ vT).
We show the other inclusion. Let (i, j) ∈ Inv(uS ∧ vT). Considering the chain i < j,

we must have (i, j) ∈ Inv(uS)∩ Inv(vT). In particular, [i, j)∩
(
S∪T

)
= ∅. On the other

hand, for any chain i = k0 < · · · < ks = j there is an index r such that (kr−1, kr) ∈
Inv(uS) ∩ Inv(vT). Since this is a subset of Inv(u) ∩ Inv(v), we have (i, j) ∈ Inv(u ∧ v).
Together with [i, j) ∩ S ∪ T = ∅, we see that (i, j) ∈ Inv((u ∧ v)S∪T), proving the second
statement.

For the third statement, first note that statement (i) implies that uS ≤ (u ∨ v)S ≤
(u ∨ v)S∩T and similarly vT ≤ (u ∨ v)S∩T. Thus we have uS ∨ vT ≤ (u ∨ v)S∩T. To show
the other inequality, we need the assumptions on S and T. With those assumptions, we
show Inv((u ∨ v)S∩T) ⊆ Inv(uS ∨ vT).

Suppose that S ⊆ GDes(v) and T ⊆ GDes(u), so that S consists of global descents of v
and T consists of global descents of u. Let (i, j) ∈ Inv((u∨v)S∩T). Then, by Lemma 2.15
and (2.1), [i, j)∩S∩T = ∅ and there is a chain i = k0 < · · · < ks = j such that for every
r, (kr−1, kr) ∈ Inv(u) ∪ Inv(v). We refine this chain so that every pair of consecutive
elements belongs to Inv(uS) ∪ Inv(vT).
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If [kr−1, kr)∩ (S∪T) = ∅ then, by Lemma 2.15, (kr−1, kr) ∈ Inv(uS)∪ Inv(vT) and this
interval need not be refined. If however the intersection is not empty, then choose any
refinement

kr−1 = k
(r)
0 < k

(r)
1 < · · · < k(r)

sr
= kr ,

with the property that each interval [k
(r)
t−1, k

(r)
t ) contains exactly one element of S or T,

but not an element of both. This is possible because [i, j)∩S∩T = ∅. We claim that each

pair (k
(r)
t−1, k

(r)
t ) is in Inv(uS) ∪ Inv(vT). In fact, if [k

(r)
t−1, k

(r)
t ) contains an element p ∈ S,

then that is a global descent of v, so (k
(r)
t−1, k

(r)
t ) ∈ Inv(v). Thus (k

(r)
t−1, k

(r)
t ) ∈ Inv(vT),

since [k
(r)
t−1, k

(r)
t ) ∩ T = ∅ by our construction of the refinement. Similarly, if [k

(r)
t−1, k

(r)
t )

contains an element of T, then (k
(r)
t−1, k

(r)
t ) ∈ Inv(uS). We have thus constructed a chain

from i to j with the required property, which shows that (i, j) ∈ Inv(uS ∨ vT) and
completes the proof. ¤

We calculate the descents and global descents of some particular permutations. The
straightforward proof is left to the reader.

Lemma 2.17. Let u ∈ Sp and v ∈ Sq. Then

(i) Des(u× v) = Des(u) ∪
(
p+Des(v)

)
,

(ii) GDes(u× v) = ∅,

(iii) Des
(
ζp,q · (u× v)

)
= Des(u) ∪ {p} ∪

(
p+Des(v)

)
,

(iv) GDes
(
ζp,q · (u× v)

)
= GDes(u) ∪ {p} ∪

(
p+GDes(v)

)

More generally, let u(i) ∈ Spi, i = 1, . . . , k, S = {p1, p1+p2, . . . , p1+ · · ·+pk−1} ⊆ [n−1].
Then

(v) Des(u(1) × · · · × u(k)) =
k⋃

i=1

(
p1 + · · ·+ pi−1 +Des(u(i))

)
,

(vi) GDes(u(1) × · · · × u(k)) = ∅,

(vii) Des
(
ζS · (u(1) × · · · × u(k))

)
= S ∪

k⋃

i=1

(
p1 + · · ·+ pi−1 +Des(u(i))

)
,

(viii) GDes
(
ζS · (u(1) × · · · × u(k))

)
= S ∪

k⋃

i=1

(
p1 + · · ·+ pi−1 +GDes(u(i))

)
.

Lemma 2.18. Let u ∈ Sn and S ⊆ [n−1]. Then

S ⊆ GDes(u) ⇐⇒ u = ζSuS .

Proof. The reverse implication follows from Lemma 2.17 (viii). The other follows by
induction from Lemma 2.14 and (2.6). ¤

3. The coproduct of SSym

The coproduct of SSym (1.3) takes a simple form on the monomial basis. We derive
this formula using some results of Section 2. For a permutation u ∈ Sn, define GDes(u)
to be GDes(u) ∪ {0, n}.
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Theorem 3.1. Let u ∈ Sn. Then

(3.1) ∆(Mu) =
∑

p∈GDes(u)

Mst(u1,...,up)⊗Mst(up+1,...,un) .

Proof. Let ∆′ : SSym → SSym⊗SSym be the map whose action on the monomial basis
is defined by the sum (3.1). We show that ∆′ is the coproduct ∆, as defined by (1.3).
We use the following notation. For w ∈ Sn and 0 ≤ p ≤ n, let wp

(1) := st(w1, . . . , wp)

and wp

(2) := st(wp+1, . . . , wn). By virtue of Lemmas 2.1 and 2.14, we have

v = ζp,n−p · (v
p

(1) × vp(2)) ⇐⇒ p ∈ GDes(v) .

Therefore,

∆′(Fu) =
∑

u≤v

∆′(Mv) =
∑

u≤v

∑

p∈GDes(v)

Mv
p

(1)
⊗Mv

p

(2)

=
n∑

p=0

∑

u≤v

v=ζp,n−p·(v
p

(1)
×v

p

(2)
)

Mv
p

(1)
⊗Mv

p

(2)
=

n∑

p=0

∑

v1, v2

u≤ζp,n−p·(v1×v2)

Mv1
⊗Mv2 .

Write u = ζ · (up

(1) × up

(2)) for some ζ ∈ S
(p,n−p) which depends on p. By Proposition 2.5,

ζ · (up

(1) × up

(2)) ≤ ζp,n−p · (v1 × v2) ⇐⇒ up

(1) ≤ v1 and up

(2) ≤ v2 .

Therefore,

∆′(Fu) =
n∑

p=0

∑

v1 ,v2
u
p

(1)
≤v1 ,u

p

(2)
≤v2

Mv1
⊗Mv2 =

n∑

p=0

∑

u
p

(1)
≤v1

Mv1 ⊗
∑

u
p

(2)
≤v2

Mv2

=
n∑

p=0

Fu
p

(1)
⊗Fu

p

(2)
= ∆(Fu) .

¤

Remark 3.2. The action of the coproduct of SSym on the fundamental basis can also
be expressed in terms of the weak order. To see this, let u ∈ Sn and 0 ≤ p ≤ n and write
u = ζ · (up

(1) × up

(2)). By Proposition 2.5, up

(1) × up

(2) ≤ u ≤ ζp,n−p · (u
p

(1) × up

(2)). Moreover,

up

(1) and up

(2) are the only permutations in Sp and Sn−p with this property, again by

Proposition 2.5. Therefore, equation (1.3) is also described by ∆(Fu) =
∑

Fv⊗Fw,
where the sum is over all p from 0 to n and all permutations v ∈ Sp and w ∈ Sn−p

such that v × w ≤ u ≤ ζp,n−p · (v × w). This fact (in its dual form) is due to Loday and
Ronco [20, Theorem 4.1], who were the first to point out the relevance of the weak order
to the Hopf algebra structure of SSym.

4. The product of SSym

We give an explicit formula for the product of SSym in terms of its monomial basis
and a geometric interpretation for the structure constants. Remarkably, these are still
non-negative integers. For instance,

(4.1) M12 · M21 = M4312 +M4231 +M3421 +M4123 +M2341

+M1243 +M1423 +M1342 + 3M1432 + 2M2431 + 2M4132 .
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The structure constants count special ways of shuffling two permutations, according
to certain conditions involving the weak order. Specifically, for u ∈ Sp, v ∈ Sq and
w ∈ Sp+q, define Aw

u,v ⊆ S
(p,q) to be those ζ ∈ S

(p,q) satisfying

(4.2)
(i) (u× v) · ζ−1 ≤ w, and
(ii) if u ≤ u′ and v ≤ v′ satisfy (u′ × v′) · ζ−1 ≤ w,

then u = u′ and v = v′.

Set αw
u,v := #Aw

u,v. We will prove the following theorem.

Theorem 4.1. For any u ∈ Sp and v ∈ Sq, we have

(4.3) Mu · Mv =
∑

w∈Sp+q

αw
u,v Mw .

For instance, in (4.1) the coefficient of M2431 in M12 · M21 is 2 because among the
six permutations in S

(2,2),

1234, 1324, 1423, 2314, 2413, 3412 ,

only the first two satisfy conditions (i) and (ii) of (4.2). In fact, 2314, 2413 and 3412 do
not satisfy (i), while 1423 satisfies (i) but not (ii).

The structure constants αw
u,v admit a geometric-combinatorial description in terms of

the permutahedron. To derive it, recall the convex embeddings of Proposition 2.7.

ρζ : Sp ×Sq → Sp+q , ρζ(u, v) := (u× v) · ζ−1 .

Since ρζ preserves joins, we may further rewrite the definition (4.2) of Aw
u,v as

(4.4) Aw
u,v =

{
ζ ∈ S

(p,q) | (u, v) = max ρ−1
ζ [1, w]

}
,

where [w,w′] := {w′′ | w ≤ w′′ ≤ w′} denotes the interval between w and w′.
The vertices of the (n−1)-dimensional permutahedron can be indexed by the elements

of Sn so that its 1-skeleton is the Hasse diagram of the weak order (see Figure 1). Facets
of the permutahedron are products of two lower dimensional permutahedra, and the
image of ρζ is the set of vertices in a facet. Moreover, every facet arises in this way for a
unique triple (p, q, ζ) with p+q = n and ζ ∈ S

(p,q); see [24, Lemma 4.2], or [4, Exer. 2.9],
or [18, Prop. A.1]. Let us say that such a facet has type (p, q). Figure 3 displays the
image of ρ1324, a facet of the 3-permutahedron of type (2, 2), and the permutation 2431.

The description (4.4) of Aw
u,v (and hence of αw

u,v) can be interpreted as follows: Given
u ∈ Sp, v ∈ Sq, and w ∈ Sp+q, the structure constant αw

u,v counts the number of facets
of type (p, q) of the (p+q−1)-permutahedron such that the vertex ρζ(u, v) is below w
and it is the maximum vertex in that facet below w.

For instance, the facet ρ1324 contributes to the structure constant α2431
12,21 because the

vertex ρ1324(12, 21) = 1423 satisfies the required properties in relation to the vertex
w = 2431, as shown in Figure 3.

This description of the product of SSym has an analog for QSym that we present in
Section 7.
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2431

2413

2314 1423

1324ρ1324

Figure 3. The facet ρ1324 of type (2, 2) and w = 2431.

Proof of Theorem 4.1. Expand the product Mu ·Mv in the fundamental basis and then
use Formula (1.1) to obtain

Mu · Mv =
∑

u≤u′

v≤v′

µ(u, u′)µ(v, v′)Fu′ · Fv′

=
∑

ζ∈S(p,q)

∑

u≤u′

v≤v′

µ(u, u′)µ(v, v′)F(u′×v′)·ζ−1 .

Expressing this result in terms of the monomial basis and collecting like terms gives

Mu · Mv =
∑

ζ∈S(p,q)

∑

u≤u′, v≤v′

(u′×v′)·ζ−1≤w

µ(u, u′)µ(v, v′)Mw

=
∑

w

∑

u≤u′

v≤v′

µ(u, u′)µ(v, v′)βw
u′,v′Mw ,

where βw
u′,v′ is the number of permutations in the set

Bw
u′,v′ :=

{
ζ ∈ S

(p,q) | (u′ × v′) · ζ−1 ≤ w
}
.

The theorem will follow once we show that

αw
u,v =

∑

u≤u′, v≤v′

µ(u, u′)µ(v, v′)βw
u′,v′ ,

or equivalently, by Möbius inversion on Sp ×Sq,

βw
u,v =

∑

u≤u′, v≤v′

αw
u′,v′ .

We prove this last equality by showing that

Bw
u,v =

∐

u≤u′, v≤v′

Aw
u′,v′ ,

where the union is disjoint.
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To see this, first suppose ζ ∈ Aw
u,v ∩ Aw

u′,v′ . Then, by condition (i) of (4.2),

(u× v) · ζ−1 ≤ w and (u′ × v′) · ζ−1 ≤ w .

By Proposition 2.7.(d), (
(u ∨ u′)× (v ∨ v′)

)
· ζ−1 ≤ w .

But then, by condition (ii) of (4.2),

u = u ∨ u′ = u′ and v = v ∨ v′ = v′ ,

so the union is disjoint.
Next, suppose that ζ ∈ Aw

u′,v′ for some u ≤ u′ and v ≤ v′. Then, by condition (i)

of (4.2), (u′ × v′) · ζ−1 ≤ w. By Proposition 2.7.(c) we have, (u × v) · ζ−1 ≤ w, so
ζ ∈ Bw

u,v. This proves one inclusion.
For the other inclusion, suppose that ζ ∈ Bw

u,v. Define

(u, v) :=
∨

{(u′, v′) | u ≤ u′, v ≤ v′, and (u′ × v′) · ζ−1 ≤ w} .

Then ζ ∈ Aw
u,v: condition (i) is satisfied because ρζ preserves joins, and (ii) simply by

definition. This completes the proof. ¤

5. The antipode of SSym

Malvenuto left open the problem of an explicit formula for the antipode of SSym [22,
pp. 59–60]. We solve that problem, giving formulas that identify the coefficients of the
antipode in terms of both the fundamental and monomial basis in explicit combinatorial
terms.

We first review a general formula for the antipode of a connected Hopf algebra H, due
to Takeuchi [35, Lemma 14] (see also Milnor and Moore [25]). Let H be an arbitrary
bialgebra with structure maps: multiplication m : H⊗H → H, unit u : Q → H, comulti-
plication ∆: H → H⊗H, and counit ǫ : H → Q. Set m(1) = m, ∆(1) = ∆, and for any
k ≥ 2,

m(k) = m(m(k−1)⊗id) : H⊗k+1 → H, and

∆(k) = (∆(k−1)⊗id)∆ : H → H⊗k+1 .

These are the higher or iterated products and coproducts. We also set

m(−1) = u : Q → H,

∆(−1) = ǫ : H → Q, and

m(0) = ∆(0) = id : H → H .

If f : H → H is any linear map, the convolution powers of f are, for any k ≥ 0,

f ∗k = m(k−1)f⊗k∆(k−1) .

In particular, f ∗0 = uǫ and f ∗1 = f .
We set π := id − uǫ. If π is locally nilpotent with respect to convolution, then

id = uǫ+ π is invertible with respect to convolution, with inverse

(5.1) S =
∑

k≥0

(−π)∗k =
∑

k≥0

(−1)km(k−1)π⊗k∆(k−1) .

This is certainly the case if H is a graded connected bialgebra, in which case π annihi-
lates the component of degree 0 (and hence π∗k annihilates components of degree < k).
Thus (5.1) is a general formula for the antipode of a graded connected Hopf algebra.
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We will make use of this formula to find explicit formulas for the antipode of SSym.
The first task is to describe the higher products and coproducts explicitly. We begin
with the higher coproducts in terms of the fundamental and monomial bases.

Proposition 5.1. Let v ∈ Sn, n ≥ 0, and k ≥ 1. Then

(i) ∆(k)(Fv) =
∑

0≤p1≤···≤pk≤n

Fst(v1, ..., vp1 )
⊗ · · ·⊗Fst(vpk+1, ..., vn), and

(ii) ∆(k)(Mv) =
∑

0≤p1≤...≤pk≤n

pi∈GDes(v)

Mst(v1, ..., vp1 )
⊗ · · ·⊗Mst(vpk+1, ..., vn).

Proof. Both formulas follow by induction from the corresponding descriptions of the
coproduct, equations (1.3) and (3.1). ¤

We describe higher products in terms of minimal coset representatives SS of parabolic
subgroups, whose basic properties were discussed in Section 2.2. Recall that for a subset
S = {p1 < p2 < · · · < pk} of [n−1], we have S

S = {ζ ∈ Sn | Des(ζ) ⊆ S}. Analogously
to (4.2), given permutations v(1) ∈ Sp1 , v(2) ∈ Sp2−p1 , . . . , v(k+1) ∈ Sn−pk , define
Aw

v(1),v(2),...,v(k+1)
⊆ S

S to be those ζ ∈ S
S satisfying

(5.2)

(i)
(
v(1) × v(2) × · · · × v(k+1)

)
· ζ−1 ≤ w, and

(ii) if v(i) ≤ v′(i) ∀i and
(
v′(1) × v′(2) × · · · × v′(k+1)

)
· ζ−1 ≤ w,

then v(i) = v′(i), ∀i .

Set αw
v(1),v(2),...,v(k+1)

:= #Aw
v(1),v(2),...,v(k+1)

.

Proposition 5.2. Let S and v(1), . . . , v(k+1) be as in the preceding paragraph. Then

(i) Fv(1) · Fv(2) · · · Fv(k+1)
=

∑

ζ∈SS

F(v(1)×v(2)×···×v(k+1))·ζ−1 and

(ii) Mv(1) · Mv(2) · · ·Mv(k+1)
=

∑

w∈Sn

αw
v(1),v(2),...,v(k+1)

Mw ,

Proof. The first formula follows immediately by induction from (1.1) (the case k = 2),
using (2.5). The second formula can be deduced from (i) in the same way as in the proof
of Theorem 4.1. ¤

The structure constants for the iterated product admit a geometric description similar
to that of the product. The image of the map

ρζ : SS → Sn, (v(1) × · · · × v(k+1)) 7−→ (v(1) × · · · × v(k+1)) · ζ
−1 ,

consists of the vertices of a face of codimension k in the (n−1)-permutahedron, and every
such face arises in this way for a unique pair (S, ζ) with S ⊆ [n−1] having k elements
and ζ ∈ S

S. Let us say that such a face has type S. The structure constant αw
v(1),...,v(k+1)

counts the number of faces of type S with the property that the vertex ρζ(v(1), . . . , v(k+1))
is below w and it is the maximum vertex in its face below w.

We next determine the convolution powers of the projection π = id− uǫ. Recall that
for any subset S = {p1 < p2 < · · · < pk} ⊆ [n−1] and v ∈ Sn we have

vS := st(v1, . . . , vp1)× st(vp1+1, . . . , vp2)× · · · × st(vpk+1, . . . , vn) ∈ Sn ,

as given by (2.10). We slightly amend our notation in order to simplify some subse-
quent statements. For v, w ∈ Sn and S ⊆ [n−1], set AS(v, w) := Aw

v(1),...,v(k+1)
, where
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v(1), . . . , v(k+1) are the factors of vS in the definition above. Comparing with (5.2), we
see that AS(v, w) ⊆ S

S consists of those ζ ∈ S
S satisfying

(5.3)
(i) vSζ

−1 ≤ w, and

(ii) if v ≤ v′ and v′
S
ζ−1 ≤ w then v = v′

Similarly, we define αS(v, w) := #AS(v, w). If v(1), . . . , v(k+1) are the factors in the
definition of vS, then

(5.4) αS(v, w) = αw
v(1),...,v(k+1)

.

Let
(
[n−1]
k−1

)
be the collection of subsets of [n−1] of size k−1.

Proposition 5.3. Let n, k ≥ 1 and v ∈ Sn. Then

(i) π∗k(Fv) =
∑

w∈Sn

∑

S∈([n−1]
k−1 )

Des(w−1vS)⊆S

Fw, and

(ii) π∗k(Mv) =
∑

w∈Sn

∑

S∈(GDes(v)
k−1 )

αS(v, w)Mw.

Proof. By Proposition 5.1(i),

∆(k−1)(Fv) =
∑

0≤p1≤···≤pk−1≤n

Fst(v1,...,vp1 )
⊗Fst(vp1+1,...,vp2 )

⊗ · · ·⊗Fst(vpk−1+1,...,vn) .

Suppose that an equality pi = pi+1 occurs (where we define p0 = 0 and pk = n). The
corresponding permutation st(vpi+1, . . . , vpi+1

) is then simply the unique permutation in
S0, which indexes the element 1 ∈ ker(π). Therefore,

π∗k(Fv) = m(k−1)π⊗k∆(k−1)(Fv)

=
∑

0<p1<p2<···<pk−1<n

Fst(v1,...,vp1 )
· Fst(vp1+1,...,vp2 )

· · · Fst(vpk−1+1,...,vn)

=
∑

0<p1<p2<···<pk−1<n

∑

ζ∈S{p1,p2,...,pk−1}

F(st(u1,...,up1 )×···×st(upk−1+1,...,un))·ζ−1 ,

the last equality by the formula of Proposition 5.2(i) for the iterated product. Changing

the index of summation in the first sum to S ∈
(
[n−1]
k−1

)
and using the definition of vS gives

π∗k(Fv) =
∑

S∈([n−1]
k−1 )

∑

ζ∈SS

FvSζ−1 .

Again reindexing the sum and using that SS consists of permutations whose descent set
is a subset of S, we obtain

π∗k(Fv) =
∑

w∈Sn

∑

S∈([n−1]
k−1 )

w−1vS∈S
S

Fw =
∑

w∈Sn

∑

S∈([n−1]
k−1 )

Des(w−1vS)⊆S

Fw ,

establishing (i).
The second formula in terms of the monomial basis follows in exactly the same manner

from Propositions 5.1(ii) and 5.2(ii) for the higher coproducts and products in terms of
the monomial basis, using (5.4). ¤
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We derive explicit formulas for the antipode on both bases. The formula for the
fundamental basis is immediate from Proposition 5.3(i) and (5.1).

Theorem 5.4. For v, w ∈ Sn set

λ(v, w) := #{S ⊆ [n−1] | Des(w−1vS) ⊆ S and #S is odd}

−#{S ⊆ [n−1] | Des(w−1vS) ⊆ S and #S is even}.

Then

(5.5) S(Fv) =
∑

w∈Sn

λ(v, w)Fw .

The coefficients of the antipode on the fundamental basis may indeed be positive or
negative. For instance

S(F231) = F132 −F213 − 2F231 + F312 .

The coefficient of F312 is 1 because {1}, {2}, and {1, 2} are the subsets S of {1, 2} which
satisfy Des

(
(312)−1(231)S

)
⊆ S.

Our description of these coefficients is semi-combinatorial, in the sense that it involves
a difference of cardinalities of sets. On the monomial basis the situation is different. The
sign of the coefficients of S(Mv) only depends on the number of global descents of v.
We provide a fully combinatorial description of these coefficients. Let v, w ∈ Sn and
suppose S ⊆ GDes(v). Define CS(v, w) ⊆ S

S to be those ζ ∈ S
S satisfying

(5.6)
(i) vSζ

−1 ≤ w,
(ii) if v ≤ v′ and v′

S
ζ−1 ≤ w then v = v′, and

(iii) if Des(ζ) ⊆ R ⊆ S and vRζ
−1 ≤ w then R = S.

Set κ(v, w) := #CGDes(v)(v, w).

Theorem 5.5. For v, w ∈ Sn, we have

(5.7) S(Mv) = (−1)#GDes(v)+1
∑

w∈Sn

κ(v, w)Mw .

For instance,

S(M3412) = M1234 + 2M1324 +M1342 +M1423

+M2314 +M2413 +M3124 +M3142 +M3412 .

Consider the coefficient of M3412. In this case, S = GDes(3412) = {2}, so

S
S = {1234, 1324, 1423, 2314, 2413, 3412} .

Then 1234 satisfies (i) and (ii) of (5.6) but not (iii), 1324 satisfies (i) and (iii) but
not (ii), 1423, 2314 and 2413 do not satisfy (i), and 3412 is the only element of S{2}

that satisfies all three conditions of (5.6). Therefore CS(3412, 3412) = {3412} and the
coefficient is κ(3412, 3412) = 1.

Remark 5.6. The antipode of SSym has infinite order. In fact, one may verify by
induction that

S2m(M231) = M231 + 2m(M213 −M132) ∀ m ∈ Z .
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Proof of Theorem 5.5. By formula (5.1) and Proposition 5.3(ii), we have

S(Mv) =
∑

w∈Sn

∑

S⊆GDes(v)

(−1)#S+1αS(v, w)Mw .

For any T ⊆ GDes(v), define

(5.8) γT(v, w) :=
∑

S⊆T

(−1)#T\SαS(v, w) =
∑

S⊆T

µ(S,T)αS(v, w) ,

where µ(·, ·) is the Möbius function of the Boolean poset Qn. We then have

S(Mv) = (−1)#GDes(u)+1
∑

w∈Sn

γGDes(v)(v, w)Mw .

We complete the proof by showing that κ(v, w) = γGDes(v)(v, w), and more generally that
γS(v, w) = #CS(v, w), where CS(v, w) is defined in (5.6).

Möbius inversion using the definition (5.8) of γT(v, w) gives

αT(v, w) =
∑

S⊆T

γS(v, w) .

We prove this last equality by showing that

(5.9) AT(v, w) =
∐

S⊆T

CS(v, w) ,

where the union is disjoint. This implies that γS(v, w) = #CS(v, w), which will complete
the proof. We argue that this is a disjoint union in several steps.

Claim 1: If S ⊆ T ⊆ GDes(v) then AS(v, w) ⊆ AT(v, w).
Let ζ ∈ AS(v, w). First of all, ζ ∈ S

S ⊆ S
T, as S

S is the set of permutations with
descent set a subset of S. By condition (i) of (5.6), vSζ

−1 ≤ w. On the other hand,
Proposition 2.16(i) implies that uT ≤ uS and both permutations are elements of the
parabolic subgroup SS. Hence by Proposition 2.10, uTζ

−1 ≤ uSζ
−1. Thus uTζ

−1 ≤ w,
which establishes condition (i) of (5.6) for ζ to be in AT(v, w).

Now suppose that v ≤ v′ with v′
T
ζ−1 ≤ w. Since vSζ

−1 ≤ w, we deduce that

w ≥ (vSζ
−1) ∨ (v′

T
ζ−1) = (vS ∨ v′

T
)ζ−1 = (v ∨ v′)S∩Tζ

−1 = vSζ
−1 .

The first equality is because ρζ is a convex embedding and hence preserves joins by
Proposition 2.10, and the second follows from Proposition 2.16(iii) as S,T ⊆ GDes(v) ⊆
GDes(v′). Hence, by condition (ii) for AS(v, w), we have v = v′. This establishes (ii) for
ζ to be in AT(v, w) and completes the proof of Claim 1.

Claim 2: If S,T ⊆ GDes(v), then AS(v, w) ∩ AT(v, w) = AS∩T(v, w).
The inclusion AS∩T(v, w) ⊆ AS(v, w)∩AT(v, w) is a consequence of Claim 1. To prove

the converse, let ζ ∈ AS(v, w) ∩ AT(v, w). Note that ζ ∈ S
S ∩S

T, which equals SS∩T.
By condition (i) for ζ ∈ AS(v, w) and for ζ ∈ AT(v, w), we have vSζ

−1 ≤ w and
vTζ

−1 ≤ w. Therefore,

w ≥ (vSζ
−1) ∨ (vTζ

−1) = (vS ∨ vT)ζ
−1 = vS∩Tζ

−1 .

As before, this uses Proposition 2.16(iii), which applies as S,T ⊆ GDes(u). This proves
condition (i) of (5.6) for ζ to be in AS∩T(v, w).

Now suppose that v ≤ v′ with v′
S∩Tζ

−1 ≤ w. By Proposition 2.16(i), v′
S
≤ v′

S∩T.
Then by Proposition 2.10, v′

S
ζ−1 ≤ v′

S∩Tζ
−1. Thus v′

S
ζ−1 ≤ w and by condition (ii) for
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AS(v, w) we deduce that v = v′. This proves condition (ii) for ζ to be in AS∩T(v, w), and
establishes Claim 2.

We complete the proof by showing that for T ⊆ GDes(v) we have the decomposi-
tion (5.9) of AT(v, w) into disjoint subsets CS(v, w). Comparing the definitions (5.3)
and (5.6), we see that CS(v, w) ⊆ AS(v, w). Together with Claim 1 this implies that the
right hand side of (5.9) is contained in the left hand side.

We show the union is disjoint. Suppose there is a permutation ζ ∈ CS(v, w)∩CS′(v, w).
Then ζ ∈ AS(v, w)∩AS′(v, w) which equals AS∩S′(v, w), by Claim 2. Hence, by condition
(i) for ζ to be in AS∩S′(v, w), we have vS∩S′ζ

−1 ≤ w. But then, from condition (iii) for
CS(v, w) and for CS′(v, w), we deduce that S = S∩ S′ = S′, proving the union is disjoint.

We show that AT(v, w) is contained in the union of (5.9). Let ζ ∈ AT(v, w) and set

(5.10) S :=
⋂

{R | R ⊆ T, ζ ∈ AR(v, w)} .

By Claim 2,

AS(v, w) =
⋂

{AR(v, w) | R ⊆ T, ζ ∈ AR(v, w)} ,

so ζ ∈ AS(v, w). To show that ζ ∈ CS(v, w), we must verify condition (iii) of (5.6).
Suppose Des(ζ) ⊆ R ⊆ S and vRζ

−1 ≤ w. We need to show that S ⊆ R. By the
definition (5.10) of S, it suffices to show that ζ ∈ AR(v, w). By our assumption that
vRζ

−1 ≤ w, condition (i) for ζ to be in AR(v, w) holds. We show that condition (ii) also
holds. Suppose v ≤ v′ and v′

R
ζ−1 ≤ w. By Proposition 2.16(i) we have v′

S
≤ v′

R
, and

so by Proposition 2.10, v′
S
ζ−1 ≤ v′

R
ζ−1. Thus v′

S
ζ−1 ≤ w, and by condition (ii) for ζ to

be in AS(v, w), we have v = v′. This establishes condition (ii) for ζ to be in AR(v, w).
Thus, ζ ∈ AR(u, w), and as explained above, shows that (5.9) is a disjoint union and
completes the proof of the theorem. ¤

6. Cofreeness, primitive elements, and the coradical filtration of SSym

The monomial basis reveals the existence of a second coalgebra grading on SSym,
given by the number of global descents of the indexing permutations. We show that
with respect to this grading, SSym is a cofree graded coalgebra. We deduce an elegant
description of the coradical filtration: it corresponds to a filtration of the symmetric
groups by certain lower order ideals determined by the number of global descents. In
particular, the space of primitive elements is spanned by those Mu where u has no global
descents.

We review the notion of cofree graded coalgebras. Let V be a vector space and set

Q(V ) :=
⊕

k≥0

V ⊗k .

The space Q(V ), graded by k, becomes a graded coalgebra with the deconcatenation

coproduct

∆(v1⊗ . . .⊗vk) =
k∑

i=0

(v1⊗ · · ·⊗vi)⊗ (vi+1⊗ · · ·⊗vk) ,

and counit ǫ(v1⊗ · · ·⊗vk) = 0 for k ≥ 1. Q(V ) is connected, in the sense that the
component of degree 0 is identified with the base field via ǫ.

We call Q(V ) the cofree graded coalgebra cogenerated by V . The canonical projection
π : Q(V ) → V satisfies the following universal property. Given a graded coalgebra
C = ⊕k≥0C

k and a linear map ϕ : C → V where ϕ(Ck) = 0 when k 6= 1, there is a
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unique morphism of graded coalgebras ϕ̂ : C → Q(V ) such that the following diagram
commutes

C
ϕ̂

//❴❴❴❴❴❴❴

ϕ
ÃÃ❆

❆
❆
❆
❆
❆
❆
❆

Q(V )

π
||②②
②②
②②
②②

V

Explicitly, ϕ̂ is defined by

(6.1) ϕ̂|
Ck

= ϕ⊗k∆(k−1) .

In particular, ϕ̂|
C0 = ǫ, ϕ̂|

C1 = ϕ, and ϕ̂|
C2 = (ϕ⊗ϕ)∆.

We establish the cofreeness of SSym by first defining a second coalgebra grading. Let
S

0 := S0, and for k ≥ 1, let

S
k
n := {u ∈ Sn | u has exactly k−1 global descents}, and

S
k :=

∐

n≥0

S
k
n .

For instance,

S
1 = {1} ∪ {12} ∪ {123, 213, 132} ∪ {1234, 2134, 1324, 1243, 3124,

2314, 2143, 1423, 1342, 3214, 3142, 2413, 1432} ∪ · · ·

Let (SSym)k be the vector subspace of SSym spanned by {Mu | u ∈ S
k}.

Theorem 6.1. The decomposition SSym = ⊕k≥0(SSym)k is a coalgebra grading. More-

over, endowed with this grading, SSym is a cofree graded coalgebra.

Proof. Let u ∈ S
k
n and write GDes(u) = {p1 < . . . < pk−1}. By Theorem 3.1,

∆(Mu) = 1⊗Mu +
k−1∑

i=1

Mst(u1,...,upi
)⊗Mst(upi+1,...,un) +Mu⊗1 .

Since st(u1, . . . , upi) and st(upi+1, . . . , un) have i−1 and k−1−i global descents, we have

∆
(
(SSym)k

)
⊆

k⊕

i=0

(SSym)i⊗(SSym)k−i .

Thus SSym = ⊕k≥0(SSym)k is a graded coalgebra.
Let V = (SSym)1 and ϕ : SSym → V the projection associated to the grading.

Let ϕ̂ : SSym → Q(V ) be the morphism of graded coalgebras into the cofree graded
coalgebra on V . For u as above, Proposition 5.1 gives,

∆(k−1)(Mu) =
∑

0≤q1≤···≤qk−1≤n

qi∈GDes(u)

Mst(u1,...,uq1 )
⊗ · · ·⊗Mst(uqk−1+1,...,un) .

Among these chains 0 ≤ q1 ≤ · · · ≤ qk−1 ≤ n of global descents of u, there is the chain
0 < p1 < · · · < pk−1 < n. In any other chain there must be at least one equality, say
qi = qi+1. Then st(uqi+1, . . . , uqi+1

) is the empty permutation and the corresponding term
is just the identity 1, which is annihilated by ϕ. Therefore, by (6.1), ϕ̂ is given by

ϕ̂(Mu) = Mst(u1,...,up1 )
⊗ · · ·⊗Mst(upk−1+1,...,un) ∈ V ⊗k .
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Consider the map ψ : V ⊗k → (SSym)k that sends

Mv(1)
⊗ · · ·⊗Mv(k) 7→ MζT·(v(1)×···×v(k)) ,

where each v(i) ∈ Sqi and T = {q1, q1 + q2, . . . , q1 + · · ·+ qk−1} ⊆ [n−1].

Lemma 2.17 implies that GDes
(
ζT · (v(1)×· · ·×v(k))

)
= T, since each v(i) has no global

descents. Together with (2.10) this shows that ϕ̂ ◦ ψ = id .
On the other hand, letting S = GDes(u), Lemma 2.18 implies that

u = ζS ·
(
st(u1, . . . , up1)× · · · × st(upk−1+1, . . . , un)

)
.

This shows that ψ ◦ ϕ̂ = id . Thus ϕ̂ is an isomorphism of graded coalgebras. ¤

Remark 6.2. If V is finite dimensional then the graded dual of Q(V ) is simply the
(free) tensor algebra T (V ∗). More generally, suppose V = ⊕n≥1Vn is a graded vector
space for which each component Vn is finite dimensional. Then Q(V ) admits another
grading, for which the elements of Vn1

⊗ · · ·⊗Vnk
have degree n1 + · · ·+ nk (with respect

to the other grading, these elements have degree k). With respect to this new grading,
the homogeneous components are finite dimensional, and the graded dual of Q(V ) is the
tensor algebra on the graded dual of V (again a free algebra).

In our situation, SSym = Q(V ), with V graded by the size n of the indexing permuta-
tions u ∈ Sn. The corresponding grading on SSym is the original one, for which Mu has
degree n if u ∈ Sn. Its graded dual is therefore a free algebra. It is known that SSym is
self-dual with respect to this grading (see Section 9). It follows that SSym is also a free
algebra. This is a result of Poirier and Reutenauer [28] who construct a different set of
algebra generators, not directly related to the monomial basis. (See Remark 6.5.)

Let C be a graded connected coalgebra. The coradical C(0) of C is the 1-dimensional
component in degree 0 (identified with the base field via the counit). The primitive
elements of C are

P(C) := {x ∈ C | ∆(x) = x⊗1 + 1⊗x} .

Set C(1) := C(0) ⊕ P(C), the first level of the coradical filtration. More generally, the
k-th level of the coradical filtration is

C(k) :=
(
∆(k)

)−1
( ∑

i+j=k

C⊗i⊗C(0)⊗C⊗j
)
.

We have C(0) ⊆ C(1) ⊆ C(2) ⊆ · · · ⊆ C =
⋃

k≥0 C
(k), and

∆(C(k)) ⊆
∑

i+j=k

C(i)⊗C(j) .

Thus, the coradical filtration measures the complexity of iterated coproducts.
Suppose now that C is a cofree graded coalgebra Q(V ). Then the space of primitive

elements is just V , and the k-th level of the coradical filtration is ⊕k
i=0V

⊗i. These are
straightforward consequences of the definition of the deconcatenation coproduct.

Define

S
(k)
n :=

k∐

i=0

S
k
n and S

(k) :=
k∐

i=0

S
k .

In other words, S(0) = S0 and for k ≥ 1,

S
(k)
n = {u ∈ Sn | u has at most k−1 global descents} .
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In Proposition 2.13 we showed that GDes: Sn → Qn is order-preserving. Since Qn is

ranked by the cardinality of a subset, it follows that S
(k)
n is a lower order ideal of Sn,

with S
(k)
n ⊆ S

(k+1)
n . The coradical filtration corresponds precisely to this filtration of

the weak order on the symmetric groups by lower ideals.

Corollary 6.3. A linear basis for the k-th level of the coradical filtration of SSym is

{Mu | u ∈ S
(k)} .

In particular, a linear basis for the space of primitive elements is

{Mu | u has no global descents} .

Proof. This follows from the preceding discussion. ¤

The original grading of SSym = ⊕nQSn yields a grading on the subspace P (SSym)
of primitive elements and on each (SSym)k. Let G1(t) denote the Hilbert series of
the space of primitive elements, or equivalently, the generating function for the set of
permutations in Sn with no global descents,

G1(t) :=
∑

n≥1

dimQ

(
Pn(SSym)

)
tn .

More generally, let Gk(t) be the Hilbert series of (SSym)k, or equivalently, the gener-
ating function for permutations in Sn with exactly k − 1 global descents,

Gk(t) :=
∑

n≥k

dimQ

(
(SSym)kn

)
tn .

For instance,

G1(t) = t+ t2 + 3t3 + 13t4 + 71t5 + 461t6 + 3447t7 + · · ·

G2(t) = t2 + 2t3 + 7t4 + 32t5 + 177t6 + 1142t7 + · · ·

G3(t) = t3 + 3t4 + 12t5 + 58t6 + 327t7 + 2109t8 + · · ·

There are well-known relationships between the Hilbert series of a graded space V , its
powers V ⊗k and their sum Q(V ). In our case, these give the following formulas.

Corollary 6.4. We have

(i) dimQ

(
Pn(SSym)

)
= (−1)n−1

∣∣∣∣∣∣∣∣∣∣

1! 2! . . . . . . n!
1 1! . . . . . . (n−1)!
0 1 1! . . . (n−2)!
...

. . .
. . .

. . .
...

0 . . . 0 1 1!

∣∣∣∣∣∣∣∣∣∣

.

(ii) G1(t) = 1−
1∑

n≥0 n! t
n
.

(iii) Gk(t) =
(
G1(t)

)k
.

Remark 6.5. Formula (i) is analogous to a formula for ordinary descents in [32, Ex-
ample 2.2.4]. Formulas (ii) and (iii) in Corollary 6.4 are due to Lentin [17, Section 6.3],
see also Comtet [6, Exercise VI.14]. These references do not consider global descents,
but rather the problem of decomposing a permutation u ∈ Sn as a non-trivial prod-
uct u = v × w. This is equivalent to our study of global descents, as we may write
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u = v × w with v ∈ Sp exactly when n+1−p is a global descent of uωn. For instance,
u = 563241 has global descents {2, 5} and uω6 = 142365 = 1 × 312 × 21. See the
Encyclopedia of Integer Sequences [31] (A003319 and A059438) for additional references
in this connection.

Poirier and Reutenauer [28] showed that the elements of the dual basis {F∗
u} indexed

by the connected permutations freely generate (SSym)∗. Duchamp, Hivert, and Thibon
dualize the resulting linear basis, giving a different basis than we do for the space of
primitive elements [8, Prop. 3.6].

7. The descent map to quasi-symmetric functions

We study the effect of the morphism of Hopf algebras (1.11)

D : SSym → QSym, defined by Fu 7→ FDes(u)

on the monomial basis. Here, we use subsets S of [n−1] to index monomial and fun-
damental quasi-symmetric functions of degree n, as discussed at the end of Section 1.2.
Our main tool is the Galois connection Sn ⇄ Qn of Section 2.3.

When we have a Galois connection between posets P and Q given by a pair of maps
f : P → Q and g : Q → P as in (2.7), a classical theorem of Rota [30, Theorem 1] states
that the Möbius functions of P and Q are related by

∀ x ∈ P and w ∈ Q,
∑

y∈P
x≤y, f(y)=w

µP (x, y) =
∑

v∈Q
v≤w, g(v)=x

µQ(v, w) .

A conceptual proof of this simple but extremely useful result can be found in [1].

Definition 7.1. A permutation u ∈ Sn is closed if it is of the form u = ζT for some
T ∈ Qn.

Equivalently, in view of (2.8) and (2.9), u is closed if and only if Des(u) = GDes(u).
From Proposition 2.11, we deduce the following fact about the Möbius function of the

weak order.

Corollary 7.2. Let u ∈ Sn and S ∈ Qn. Then

(7.1)
∑

u≤v∈Sn

Des(v)=S

µSn
(u, v) =

{
µQn

(Des(u), S) if u is closed,

0 if not.

Proof. Rota’s formula says in this case that
∑

u≤v∈Sn

Des(v)=S

µSn
(u, v) =

∑

T⊆S∈Qn

ζT=u

µQn
(T, S) .

If u is not closed, then the index set on the right hand side is empty. If u is closed,
then the index set consists only of the set T = Des(u), by assertion (c) in the proof of
Proposition 2.11. ¤

While there are explicit formulas for the Möbius function of the weak order, it is
precisely the above result that allows us to obtain the description of the mapD : SSym →
QSym in terms of the monomial bases.
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Theorem 7.3. Let u ∈ Sn. Then

D(Mu) =

{
MGDes(u) if u is closed,

0 if not.

Proof. By definition, Mu =
∑

u≤v µSn
(u, v)Fv, hence

D(Mu) =
∑

u≤v

µSn
(u, v)FDes(v)

=
∑

S

( ∑

u≤v
Des(v)=S

µSn
(u, v)

)
FS

=

{∑
S
µQn

(Des(u), S)FS if u is closed

0 if not.

We complete the proof by noting that

MDes(u) =
∑

S

µQn
(Des(u), S)FS

by the definition of MDes(u), and that since u is closed, Des(u) = GDes(u). ¤

Malvenuto shows that D is a morphism of Hopf algebras by comparing the structures
on the fundamental bases of SSym and QSym. We do the same for the monomial bases
of SSym and QSym.

To compare the coproducts, first note that for any subsets S ⊆ [p− 1] and T ⊆ [q− 1],

ζS∪{p}∪T = ζp,q · (ζS × ζT) .

Therefore, if u ∈ Sn and p ∈ GDes(u), then

u is closed ⇐⇒ both st(u1, . . . , up) and st(up+1, . . . , un) are closed.

It follows that applying the map D : SSym → QSym to formula (3.1) gives the usual
formula (1.6) for the coproduct of monomial quasi-symmetric functions.

For instance, we compare formula (4.1) with (1.5). Since D(M21) = M(1,1) and
D(M12) = M(2), applying D to (4.1) results in (1.5). Indeed, the indices u in the
first row of (4.1) all are closed, while none in the second row are closed. It is easy to
verify that the five terms on the right in the first row in (4.1) map to the five terms on
the right in (1.5).

The situation is different for the products. The geometric description of the structure
constants of the product on the monomial basis of SSym (4.4) admits an analogue for
QSym, but this turns out to be very different from the known description in terms of
quasi-shuffles (1.4). We present this new description of the structure constants for the
product of monomial quasi-symmetric functions.

The role of the permutahedron is now played by the cube. Associating a subset
S of [n−1] to its characteristic function gives a bijection between subsets of [n−1] and
vertices of the (n−1)-dimensional cube [0, 1]n−1. Coordinatewise comparison corresponds
to subset inclusion, and the 1-skeleton of the cube becomes the Hasse diagram of the
Boolean poset Qn. In this way, we identify Qn with the vertices of the (n−1)-dimensional
cube.

For each Grassmannian permutation ζ ∈ S
(p,q), consider the map

rζ : Qp ×Qq → Qp+q , (S,T) 7→ Des((ζS × ζT) · ζ
−1) .
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We describe this map rζ in more detail. To that end, set

Consp(ζ) := {i ∈ [p+q−1] | ζ−1(i) + 1 = ζ−1(i+1) and ζ−1(i) 6= p} ,

and recall that the vertices in a face of the cube are an interval in the Boolean poset,
with every interval corresponding to a unique face.

Lemma 7.4. Let p, q be positive integers and ζ ∈ S
(p,q). The image of rζ is the face

[
Des(ζ−1), Des(ζ−1)

∐
Consp(ζ)

]
,

which is isomorphic to the Boolean poset of subsets of Consp(ζ).

Proof. This is an immediate consequence of an alternative (and direct) description of
rζ(S,T). For T ∈ Qq, set p+ T := {p+ t | t ∈ T}. Then, for (S,T) ∈ Qp ×Qq, we have

(7.2) rζ(S,T) = Des(ζ−1)
∐ (

Consp(ζ) ∩ ζ
(
S ∪ (p+ T)

))
.

Assuming this for a moment, we note that the association (S,T) 7→ ζ
(
S ∪ (p + T)

)
is a

bijection between Qp × Qq and subsets of {i | ζ−1(i) 6= p}. Intersecting with Consp(ζ)
we obtain a surjection onto subsets of Consp(ζ), which yields the desired description of
the image of rζ .

We prove (7.2). Let (S,T) ∈ Qp × Qq and set w := (ζS × ζT) · ζ
−1 so that Des(w) =

rζ(S,T). Note that Des(ζS × ζT) = S ∪ (p+ T) (this is a particular case of Lemma 2.17)
and if i ≤ p < j, then (ζS × ζT)(i) ≤ p < (ζS × ζT)(j).

Let i ∈ [n−1]. We consider whether or not i is a descent of w. First, suppose
i ∈ Des(ζ−1). Since the values 1, 2, . . . , p and p+1, p+2, . . . , p+q occur in order in the
permutation ζ−1 (because ζ ∈ S

(p,q)), we must have ζ−1(i) > p ≥ ζ−1(i+1) and so
w(i) > p ≥ w(i+ 1), thus i ∈ Des(w).

Now suppose that i is not a descent of ζ−1. If ζ−1(i) + 1 < ζ−1(i+1), then we must
have ζ−1(i) ≤ p < ζ−1(i+1), again because ζ ∈ S

(p,q). Hence w(i) ≤ p < w(i+ 1) and i
is not a descent of w. If instead we have ζ−1(i) + 1 = ζ−1(i+1), then there are two cases
to consider. If i = ζ−1(p), then this forces ζ to be 1p+q so w(i) = w(p) ≤ p < w(i+1),
and we conclude that i is not a descent of w. If i 6= ζ−1(p), then i ∈ Consp(ζ) and we
see that i is a descent of w exactly when ζ−1(i) ∈ S ∪ (p + T). This proves (7.2) and
completes the proof of the lemma. ¤

Unlike the case of the permutahedron, the image of rζ need not be a facet. Indeed,
by Lemma 7.4, the image of rζ is a facet only if #Consp(ζ) = p+ q − 2, and this occurs
only when ζ = 1p+q or ζ = ζp,q. Figure 4 displays the vertices of the 3-cube and Figure 5
shows which faces occur as the image rζ(Qp × Qq). Observe that while not all faces
occur as images of some rζ(Qp ×Qq), any face that does occur is the image of a unique
such map. This is the general case.

Lemma 7.5. A face of Qn is the image of Qp ×Qn−p under a map rζ for at most one

pair (ζ, p).

Proof. Suppose ζ ∈ S
(p,n−p) for some 0 < p < n. We will observe that the pair of sets

Des(ζ−1) and Consp(ζ) determines ζ and p uniquely by describing these sets.
Suppose first that ζ = 1n. Then Des(ζ−1) = ∅ and Consp(ζ) = [n−1]− {p}.
Suppose now that ζ ∈ S

(p,n−p) is not the identity permutation. Then ζ determines
p and Des(ζ−1) 6= ∅. Since the values 1, 2, . . . , p and p+1, . . . , n occur in order in ζ−1,
there exist numbers

0 ≤ b0 < a1 < b1 < · · · < ak < bk ≤ n
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{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{3} {2} {1}

∅

Figure 4. Vertices of the cube

r2341(3) r4123(1)
r3412(2)

r1234(1) r1234(3)
r1234(2)

(a)

r1342(3) r3124(1)
r2413(2)

r1243(3) r2134(1)
r1324(2)

r1423(2) r2314(2)

(b)

Figure 5. (a) The facets of the cube: r1234(Qp×Qq) and rζp,q(Qp×Qq) (=
rζp,q(p)). (b) The edges and vertices rζ(Qp×Qq), ζ 6= 1234, ζp,q.

such that the values in [p] occur in order in the intervals

[0, b0], [a1 + 1, b1], . . . , [ak + 1, bk] ,

and the values in {p+1, . . . , n} in the complementary set. Thus Des(ζ−1) = {a1, . . . , ak}
and Consp(ζ) = [n−1]− {b0, a1, b1, a2, . . . , ak, bk}.

It follows that ζ and p determine and are determined by the sets Des(ζ−1) and
Consp(ζ), which completes the proof of the lemma. ¤

Theorem 7.6. Suppose p, q are positive integers. Let S ⊆ [p−1], T ⊆ [q−1] and R ⊆
[p+q−1]. The coefficient of Mp+q,R in Mp,S ·Mq,T is

(7.3) #{ζ ∈ S
(p,q) | (S,T) = max r−1

ζ [∅,R]} .

In other words, this coefficient counts the number of faces of the cube of type (p, q) with
the property that the vertex rζ(S,T) is below R and it is the maximal vertex in the the

face rζ(Qp ×Qq) below R.

Proof. By Theorem 7.3, Mp,S · Mq,T = D(MζS · MζT). We expand the product using
Theorem 4.1, and then apply the map D and Theorem 7.3 to obtain

Mp,S ·Mq,T = D(MζS · MζT) = D
( ∑

w∈Sp+q

αw
ζS,ζT

Mw

)
=

∑

R∈Qp+q

αζR
ζS,ζT

Mp+q,R .
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According to (4.4),

αζR
ζS,ζT

= #{ζ ∈ S
(p,q) | (ζS, ζT) = max ρ−1

ζ [1, ζR]} .

By Proposition 2.11, for any S, T, and R we have

Des
(
(ζS × ζT) · ζ

−1
)

⊆ R ⇐⇒ (ζS × ζT) · ζ
−1 ≤ ζR .

In other words,
rζ(S,T) ≤ R ⇐⇒ ρζ(ζS, ζT) ≤ ζR .

This implies that the structure constant αζR
ζS,ζT

is as stated. ¤

We give an example. Let p = 1, q = 3, S = ∅ and T = {1}. In terms of compositions,
we have M∅,1 = M(1), and M{1},3 = M(1,2). Equation (1.4) gives

M∅,1 ·M{1},3 = M(1) ·M(1,2) = 2M(1,1,2) +M(1,2,1) +M(2,2) +M(1,3)

= 2M{1,2},4 +M{1,3},4 +M{2},4 +M{1},4 .

On the other hand, (7.3) also predicts that the coefficient of M{1,2} is 2. Of the four
possible faces of type (1, 3), only two satisfy the required condition. One corresponds
to the shuffle 1234 (it is a facet) and the other to 2134 (it is an edge). They are shown
in Figure 6, together with the vertices r1234(∅, {1}) = {2}, r2134(∅, {1}) = {1}, and the
vertex {1, 2}.

r1234(Q1×Q3) r1234(∅, {1}) = {2}

r2134(Q1×Q3) {1, 2}

r2134(∅, {1}) = {1}

Figure 6. The faces r1234 and r2134 of type (1, 3), and the vertex {1, 2}

8. SSym is a crossed product over QSym

We obtain a decomposition of the algebra structure of SSym as a crossed product over
the Hopf algebra QSym. We refer the reader to [26, §7] for a review of this construction
in the general Hopf algebraic setting. Let us only say that the crossed product of a Hopf
algebra K with an algebra A with respect to a Hopf cocycle σ : K⊗K → A is a certain
algebra structure on the space A⊗K, denoted by A#σK.

Theorem 8.1. The map Z : QSym → SSym, MS 7→ MζS, is a morphism of coalgebras

and a right inverse to the morphism of Hopf algebras D : SSym → QSym.

Proof. This is immediate from Theorems 3.1 and 7.3. ¤

In this situation, an important theorem of Blattner, Cohen, and Montgomery [5] ap-
plies. Namely, suppose π : H → K is a morphism of Hopf algebras that admits a
coalgebra splitting (right inverse) γ : K → H. Then there is a crossed product decom-
position

H ∼= A#σK
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where A, a subalgebra of H, is the left Hopf kernel of π:

A = {h ∈ H |
∑

h1⊗π(h2) = h⊗1}

and the Hopf cocycle σ : K⊗K → A is

(8.1) σ(k, k′) =
∑

γ(k1)γ(k
′
1)Sγ(k2k

′
2) .

This result, as well as some generalizations, can be found in [26, §7]. Note that if π and
γ preserve gradings, then so does the rest of the structure.

Let A be the left Hopf kernel of D : SSym → QSym and An its n-th homogeneous
component. Once again the monomial basis of SSym proves useful in describing A.

Theorem 8.2. A basis for An is the set {Mu} where u runs over all permutations of n
that are not of the form

(∗) ∗ . . . ∗ 12 . . . n−k

for any k = 0, . . . , n− 1. In particular,

dimAn = n!−
n−1∑

k=0

k! .

Proof. By the theorem of Blattner, Cohen, and Montgomery, SSym ∼= A#σQSym,
in particular SSym ∼= A⊗QSym as vector spaces. The generating functions for the
dimensions of these algebras are therefore related by

∞∑

n≥0

n!tn =
∑

n≥0

ant
n ·

(
1 +

∑

n≥1

2n−1tn
)

=
∑

n≥0

ant
n ·

1

1−
∑

n≥1 t
n
.

It follows that an = n!−
∑n−1

k=0 k! as claimed.
Observe that an counts the permutations in Sn that are not of the form (∗). Since the

Mu are linearly independent, it suffices to show that if u is not of that form thenMu is in
the Hopf kernel. Now, for any u ∈ Sn and p ∈ GDes(u), we have that st(up+1, . . . , un) =
(up+1, . . . , un). Hence, if u is not of the form (∗), the same is true of st(up+1, . . . , un)
and therefore this permutation is not closed. It follows from Theorems 3.1 and 7.3 that
(id⊗D)∆(Mu) = Mu⊗1. ¤

Remark 8.3. These results were motivated by a question of Nantel Bergeron, who asked
(in dual form) if SSym is cofree as right comodule over QSym. This is an immediate
consequence of the crossed product decomposition.

Consider again the general situation of a morphism of Hopf algebras π : H → K with
a coalgebra splitting γ : K → H. This induces an exact sequence of Lie algebras

(8.2) 0 → P(H) ∩ A → P(H)
π
−→ P(K) → 0

with a linear splitting P(K)
γ
−→ P(H), where P(H) denotes the space of primitive elements

of H, viewed as a Lie algebra under the commutator bracket [h, h′] = hh′ − h′h.
The Hopf cocycle restricts to a linear map σ : P(K)⊗P(K) → P(H) ∩ A; in fact, for

primitive elements k and k′, (8.1) specializes to

(8.3) σ(k, k′) = Sγ(kk′)− γ(k′)γ(k)

and a direct calculation shows that this element of H is primitive. Moreover, the Lie
cocycle corresponding to (8.2) is the map σ̃ : P(K) ∧ P(K) → P(H) ∩ A given by

(8.4) σ̃(k, k′) = [γ(k), γ(k′)]− γ([k, k′]) = σ(k, k′)− σ(k′, k) .
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This map is a non-abelian Lie cocycle in the sense that the following conditions hold.
For k, k′ ∈ P(K) and a ∈ P(H) ∩ A,

k · (k′ · a)− k′ · (k · a) = [σ̃(k, k′), a] + [k, k′] · a

k · σ̃(k′, k′′)− k′ · σ̃(k, k′′) + k′′ · σ̃(k, k′) = σ̃([k, k′] , k′′)− σ̃([k, k′′] , k′) + σ̃([k′, k′′] , k)

where k · a = [γ(k), a].

Let us apply these considerations to the morphism SSym
D
−→ QSym and the coalgebra

splitting QSym
Z
−→ QSym. The structure constants of the Hopf cocycle σ do not have

constant sign. However, its restriction to primitive elements of QSym has non-negative
structure constants on the monomial bases. They turn out to be particular structure
constants of the product of SSym.

Recall that these structure constants αw
u,v are defined for u ∈ Sp, v ∈ Sq and w ∈ Sp+q

by the identity

Mu · Mv =
∑

w∈Sp+q

αw
u,vMw .

The combinatorial description of these constants showing their non-negativity is given
by (4.2).

Lemma 8.4. For p, q ≥ 1, and w ∈ Sp+q closed, we have αw
1p,1q = 0 except in the

following cases

α
1p+q

1p,1q = 1 , α
ζp,p
1p,1p = 2 and if p 6= q, then α

ζp,q
1p,1q = 1 .

Proof. Apply the map D to the product
∑

w∈Sp+q

αw
1p,1qMw = M1p · M1q ,

to obtain (using (1.4))
∑

w∈Sp+q

αw
1p,1qD(Mw) = M(p) ·M(q) = M(p,q) +M(q,p) +M(p+q) .

The result is immediate, asD(Mw) = 0 unless w is closed, and we haveD(Mζp,q) = M(p,q)

and D(M1p+q
) = M(p+q). ¤

We use this lemma to give a combinatorial description of σ and the Lie cocycle σ̃
on primitive elements. By (1.6), {M(n)}n≥1 is a linear basis for the space of primitive
elements of QSym. Thus P(QSym) is an abelian Lie algebra with each homogeneous
component of dimension 1. Recall that {Mu | u has no global descents} is a basis of
the primitive elements of SSym, and thus A∩P(SSym) has a basis given by those Mu

where u has no global descents and u is not an identity permutation, 1n.

Theorem 8.5. For any p, q ≥ 1,

σ(M(p),M(q)) =
∑

w 6=ζp,q , ζq,p, 1p+q

αw
1q ,1pMw

σ̃(M(p),M(q)) =
∑

w

(
αw
1q ,1p − αw

1p,1q

)
Mw .
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Proof. Since M(p) ·M(q) = M(p,q) +M(q,p) +M(p+q), (8.3) gives

σ(M(p),M(q)) = SZ(M(p,q) +M(q,p) +M(p+q))−Z(M(q)) · Z(M(p)

= S(Mζp,q +Mζq,p +M1p+q
)−M1q · M1p .

Using (5.1) and (3.1), we compute S(Mζp,q) = M1p · M1q − Mζp,q and S(M1p+q
) =

−M1p+q
. Therefore,

σ(M(p),M(q)) = M1p · M1q −Mζp,q −Mζq,p −M1p+q
.

The formula for σ(M(p),M(q)) follows by expanding the product and using Lemma 8.4.
The expression for σ̃ follows immediately from (8.4). ¤

9. Self-duality of SSym and applications

The Hopf algebra SSym is self-dual. This appears in [22, section 5.2], [23, Theorem
3.3], and [16]. We provide a proof below, for completeness. We investigate the com-
binatorial implications of this self-duality, particularly when expressed in terms of the
monomial basis. We explain how a result of Foata and Schützenberger on the numbers

d(S,T) = #{x ∈ Sn | Des(x) = S, Des(x−1) = T}

is a consequence of self-duality of SSym and obtain analogous results for the numbers

θ(u, v) := #{x ∈ Sn | x ≤ u, x−1 ≤ v} .

The Hopf algebra SSym is connected and graded with each homogeneous component
finite dimensional. We consider its graded dual (SSym)∗ whose homogeneous component
in degree n is the linear dual of the homogeneous component in degree n of SSym. Let
{F∗

u | u ∈ Sn, n ≥ 0} and {M∗
u | u ∈ Sn, n ≥ 0} be the bases of (SSym)∗ dual to

the fundamental and monomial bases of SSym, respectively. (SSym)∗ is another graded
connected Hopf algebra.

Theorem 9.1. The map

(9.1) Θ: (SSym)∗ → SSym , F∗
u 7→ Fu−1

is an isomorphism of Hopf algebras. On the monomial basis it is given by

(9.2) Θ(M∗
u) =

∑

v

θ(u, v)Mv .

Proof. Note that Θ∗ = Θ. Therefore, it suffices to show that Θ is a morphism of
coalgebras. We rewrite the product (1.1) of SSym. Let u ∈ Sp and v ∈ Sq. Then

Fu · Fv =
∑

w∈Sp+q

#{ζ ∈ S
(p,q) | (u× v) · ζ−1 = w}Fw .

Therefore the (dual) coproduct of (SSym)∗ is

∆(F∗
w) =

∑

p+q=n

∑

u∈Sp,v∈Sq

#{ζ ∈ S
(p,q) | (u× v) · ζ−1 = w} F∗

u
⊗F∗

v .

On the other hand, as observed in 3.2, the coproduct of SSym can be written as

∆(Fw) =
∑

p+q=n

∑

u∈Sp,v∈Sq

#{ζ ∈ S
(p,q) | ζ · (u× v) = w} Fu⊗Fv .

It follows that Θ is a morphism of coalgebras because

w = ζ · (u× v) ⇐⇒ w−1 = (u−1 × v−1) · ζ−1 .
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Since Fu =
∑

u≤x Mx, we have M∗
u =

∑
x≤u F

∗
x . Therefore,

Θ(M∗
u) =

∑

x≤u

Fx−1 =
∑

x≤u

∑

x−1≤v

Mv =
∑

v

θ(u, v)Mv . ¤

Formula (9.2) for the morphism Θ of Hopf algebras has combinatorial implications
which we develop. Recall that αw(u, v) and κ(u, w) denote the structure constants of
the product and antipode of SSym in terms of the monomial basis. These integers were
described in Theorems 4.1 and 5.5. Consider θ, αw, and κ to be matrices with rows and
columns indexed by elements of Sn.

Theorem 9.2. For any u ∈ Sp, v ∈ Sq, and w ∈ Sp+q, we have

(i) (θαwθ)(u, v) = θ(ζp,q·(u× v), w) ,
(ii) κtθ = θκ.

Proof. By Lemma 2.14, the coproduct of SSym (3.1) can be written as

∆(Mw) =
∑

p+q=n

∑

u∈Sp,v∈Sq

ζp,q ·(u×v)=w

Mu⊗Mv ,

Therefore, the dual product is

M∗
u · M

∗
v = M∗

ζp,q ·(u×v) .

Thus, the right hand side of (i) is the coefficient of Mw in Θ(M∗
u · M

∗
v). On the other

hand, since θ(u, v) = θ(v, u), we have

(θαwθ)(u, v) =
∑

x,y∈Sn

θ(u, x)αw(x, y)θ(y, v) =
∑

x,y∈Sn

θ(u, x)θ(v, y)αw(x, y) .

Thus the left hand side of (i) is the coefficient of Mw in Θ(M∗
u) · Θ(M∗

v). Since Θ is a
morphism of algebras, (i) holds.

The second formula directly expresses that Θ preserves antipodes, since the antipode
of (SSym)∗ is the dual of the antipode of SSym. ¤

One may view Theorem 9.2(i) as a recursion reducing the computation of θ(u, v) to the
case when u and v have no global descents, by virtue of Lemma 2.14. On the other hand,
since θ is an invertible matrix, this provides another semi-combinatorial description of
the structure constants αw(u, v).

One may also impose the condition that Θ preserves coproducts, but this leads again
to (i) of Theorem 9.2. On the other hand, the equivalent of (ii) of Theorem 9.2 for the
fundamental basis leads to the following non-trivial identity.

Proposition 9.3. For any u and v ∈ Sn,

#{S ⊆ [n−1] | Des(vuS) ⊆ S and #S is odd}

+#{S ⊆ [n−1] | Des(uvS) ⊆ S and #S is even}

= #{S ⊆ [n−1] | Des(vuS) ⊆ S and #S is even}

+#{S ⊆ [n−1] | Des(uvS) ⊆ S and #S is odd} .

Proof. The formula above is equivalent to

(9.3) λ(u, v−1) = λ(v, u−1) ,
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where λ(·, ·) is the structure constant for the antipode with respect to the fundamental
basis, as proven in Theorem 5.4. But (9.3) expresses that Θ preserves antipodes (on the
fundamental basis and its dual). ¤

We turn now to quasi-symmetric functions. The dual QSym∗ of QSym is the Hopf
algebra of non-commutative symmetric functions of Gelfand, et. al. [12]. It is the free as-
sociative algebra with generators {M∗

∅,n | n ≥ 0}. This statement is dual to formula (1.6)
for the coproduct of QSym.

Define numbers

b(S,T) := #{u ∈ Sn | Des(u) ⊆ S, Des(u−1) ⊆ T} ,

c(S,T) := #{u ∈ Sn | Des(u) ⊆ S, Des(u−1) ⊇ T} ,

d(S,T) := #{u ∈ Sn | Des(u) = S, Des(u−1) = T} .

Let Φ denote the composite

QSym∗ D∗

−−−→ (SSym)∗
Θ

−−→ SSym
D

−−→ QSym .

Proposition 9.4. The morphism Φ: QSym∗ → QSym sends

F ∗
S

7→
∑

T∈Qn

d(S,T)FT and M∗
S

7→
∑

T∈Qn

b(S,T)MT ,

for S ∈ Qn.

Proof. Since D(Fu) = FDes(u), the dual map satisfies D∗(F ∗
S
) =

∑
Des(u)=S

F∗
u . Also,

Theorem 7.3 dualizes to D∗(M∗
S
) = M∗

ζS
. The descriptions of the composite above follow

now from those for Θ in (9.1) and (9.2), plus that θ(ζS, ζT) = b(S,T), which in turn
follows from (2.8). ¤

We now use the fact that Φ: QSym∗ → QSym is a morphism of Hopf algebras. The
image of Φ is precisely the subalgebra of QSym consisting of symmetric functions. Since
QSym∗ is generated by {M∗

∅,n | n ≥ 0}, its image Φ(QSym∗) is generated by Φ(M∗
∅,n),

for n ≥ 0. Observe that b(∅,T) = 1 for every T ∈ Qn as 1n is the only permutation u in
Sn with Des(u) ⊆ ∅ and ∅ = Des(1−1

n ) ⊆ T. Thus

Φ(M∗
∅,n) =

∑

T∈Qn

MT = F∅,n .

Formula (1.8) shows that F∅,n is the complete homogeneous symmetric function of degree
n. These generate the algebra of symmetric functions [21, 33]. Thus, Φ is the abelian-

ization map from non-commutative to commutative symmetric functions. We will not
use this, but rather the explicit expression of Φ of Proposition 9.4.

Let aR(S,T) denote the structure constants of the product of QSym with respect to
its monomial basis. These integers are combinatorially described by (1.4) or (7.3). The
following analog of Theorem 9.2 provides a recursion for computing the numbers b(S,T)
in terms of the structure constants aR(S,T). We view aR and b as matrices with entries
indexed by subsets of [n−1].

Proposition 9.5. For any S ⊆ [p−1], T ⊆ [q−1], and R ⊆ [p+q−1],

(9.4) (baRb)(S,T) = b(S ∪ {p} ∪ (p+ T),R).
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Proof. The dual of the coproduct of QSym (1.6) is

M∗
S
·M∗

T
= M∗

S∪{p}∪(p+T) .

Thus, the right hand side of (9.4) is the coefficient of MR in Φ(M∗
S
·M∗

T
). On the other

hand, since b(S,T) = b(T, S), we have

(baRb)(S,T) =
∑

S′,T′

b(S, S′)aR(S′,T′)b(T′,T) =
∑

S′,T′

b(S, S′)b(T,T′)aR(S′,T′) .

Thus the left hand side of (9.4) is the coefficient of MR in Φ(M∗
S
) · Φ(M∗

T
). Since Φ is a

morphism of algebras, (9.4) holds. ¤

Expressing that Θ preserves the antipode in terms of the fundamental basis and its
dual gives a result of Foata and Schützenberger [11], which Gessel obtained in his original
work on quasi-symmetric functions by other means [13, Corollary 6] (Equation (iv) in
the following corollary). For S ⊆ [n−1], define

S
c = {i ∈ [n−1] | i /∈ S}

S̃ = {i ∈ [n−1] | n− i ∈ S} .

Corollary 9.6. For S,T ⊆ [n−1], the numbers d(S,T) satisfy

(i) d(S,T) = d(T, S) ,

(ii) d(S,T) = d(S̃, T̃) ,
(iii) d(S,T) = d(Sc,Tc) , and

(iv) d(S,T) = d(S̃,T).

Proof. The symmetry (i) follows by considering the bijection u 7→ u−1. Similarly, (ii)
follows by considering the bijection u 7→ ωnuω

−1
n , where ωn = (n, . . . 2, 1), as it is easy to

see that Des(ωnuω
−1
n ) = D̃es(u).

The antipode of QSym is [22, corollaire 4.20]

S(FT) = (−1)nF
T̃c .

Since Φ preserves antipodes, its explicit description in Proposition 9.4 implies that

d(S̃c,T) = d(S, T̃c). Together with (ii) this yields (iii).
Finally, to deduce (iv), consider the bijection u 7→ ωnu. Note that Des(ωnu) = Des(u)c.

Therefore

Des((ωnu)
−1) = Des(ωnωnu

−1ω−1
n ) = Des(ωnuω

−1
n )c = ˜Des(u−1)

c

.

This shows that d(S,T) = d(Sc, T̃c). Together with (ii) and (iii) this gives (iv). ¤

Expressing the preservation of the antipode under Φ in terms of monomial quasi-
symmetric functions and their duals gives further, similar results.

Proposition 9.7. The map SΦ = ΦS∗ : QSym∗ → QSym sends

M∗
S

7→ (−1)n
∑

R

c(S, R̃c)MR = (−1)n
∑

R

c(R, S̃c)MR .

Therefore,

c(S, R̃c) = c(R, S̃c) .
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Proof. We will show that SΦ(M∗
S
) = (−1)n

∑
R
c(S, R̃c)MR. One shows similarly that

ΦS∗(M∗
S
) = (−1)n

∑
R
c(R, S̃c)MR.

As mentioned in (1.7), the antipode of QSym is

S(MT) = (−1)#T+1
∑

R⊆T

M
R̃
.

Combining this with Proposition 9.4 shows that SΦ sends

M∗
S

7→
∑

T

b(S,T)(−1)#T+1
∑

R⊆T

M
R̃
.

Thus, we have to show that for each S and R,
∑

R⊆T

(−1)#T+1b(S,T) = (−1)nc(S,Rc) .

Now,
∑

R⊆T

(−1)#T+1b(S,T) =
∑

R⊆T

∑

T′⊆T

(−1)#T+1#{u | Des(u) ⊆ S, Des(u−1) = T
′}

=
∑

T′

#{u | Des(u) ⊆ S, Des(u−1) = T
′}

∑

R∪T′⊆T

(−1)#T+1

=
∑

T′:R∪T′=[n−1]

(−1)n#{u | Des(u) ⊆ S, Des(u−1) = T
′}

= (−1)n#{u | Des(u) ⊆ S, Des(u−1) ∪ R = [n−1]}

= (−1)n#{u | Des(u) ⊆ S, Des(u−1) ⊇ R
c}

= (−1)nc(S,Rc) .

¤

For completeness, we include the consequences on the numbers b and c that follow.
Note that these also follow directly from

b(S,T) =
∑

S′⊆S

T ′⊆T

d(S,T) and c(S,T) =
∑

S′⊆S

T ′⊇T

d(S,T) .

Corollary 9.8. For any S, T ⊆ [n−1],

(i) b(S,T) = b(T, S),

(ii) b(S,T) = b(S̃, T̃), and c(S,T) = c(S̃, T̃),
(iii) c(S,T) = c(Tc, Sc),

(iv) b(S,T) = b(S̃,T), and c(S,T) = c(S̃,T).
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[23] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the

Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967–982. MR 97d:05277
[24] R. James Milgram, Iterated loop spaces, Ann. of Math. (2) 84 (1966), 386–403. MR 34 #6767
[25] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81

(1965), 211–264. MR 30 #4259
[26] Susan Montgomery, Hopf algebras and their actions on rings, Published for the Conference Board

of the Mathematical Sciences, Washington, DC, 1993. MR 94i:16019
[27] Frédéric Patras and Christophe Reutenauer, Lie representations and an algebra containing

Solomon’s, J. Algebraic Combin. 16 (2002), no. 3, 301–314 (2003).
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