Galois groups of Schubert problems Work of Jordan from 1870 showed how Galois theory can be applied to enumerative geometry. Hermite earlier showed that the equivalence of Galois groups with geometric monodromy groups, and in 1979 Harris used this to study Galois groups of many enumerative problems. Vakil gave a geometric-combinatorial criterion that implies a Galois group contains the alternating group. With Brooks and Martin del Campo, we used Vakil's criterion to show that all Schubert problems involving lines have at least alternating Galois group. White and I have given a new proof of this based on 2-transitivity. My talk will describe this background and sketch a current project to systematically determine Galois groups of all Schubert problems of moderate size on all small classical flag manifolds, investigating at least several million problems. This will use supercomputers employing several overlapping methods, including combinatorial criteria, symbolic computation, and numerical homotopy continuation, and require the development of new algorithms and software.