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Frank Sottile

sottile@math.tamu.edu

L

z1

z2

z3



Alex Eremenko

Frank Sottile, Texas A&M University



Inverse Wronski problem
The Wronskian of a (linear space of) univariate polynomials

f1(t), . . . , fk(t) of degree < n is the determinant

Wr(f1(t), . . . , fk(t)) := det

(

(

d

dt

)i

fj(t)

)

,

which has degree k(n−k) (and is considered up to a scalar).

Inverse Wronski problem: Given a (real) polynomial F (t)
of degree k(n−k), which linear spaces have Wronskian F (t)?

Schubert (1884) and Eisenbud and Harris (1984) determined the
number of complex spaces,

[k(n−k)]!
1! · 2! · · · (k−1)!

(n−1)!(n−2)! · · · (n−k)!
.
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Shapiro Conjecture

Conjecture (B. Shapiro & M. Shapiro c. 1994)
If F (t) has all k(n−k) roots real, then all k-dimensional

linear spaces of polynomials with Wronskian F (t) are real.

This conjecture posits a large class of systems of polynomial
equations with real coefficients that have only real solutions.

This was intensively studied, not only theoretically, but also
experimentally on computers. Many special cases were proven.
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Eremenko-Gabrielov Theorem

Theorem (A. Eremenko & A. Gabrielov, c. 2001)
(k = 2) If F (t) has all roots real, then all 2-dimensional

linear spaces of polynomials with Wronskian F (t) are real.

Wr(f(t), g(t)) = f ′(t)g(t) − g′(t)f(t) = 0 are critical
points of the rational function ϕ(t) := f(t)/g(t).

Alex: I know everything about rational functions...

Theorem (A. Eremenko & A. Gabrielov)
A rational function whose critical points lie on a circle

maps that circle to a circle.

The proof used complex analysis (uniformization theorem),
and I think I understood it.
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Mukhin-Tarasov-Varchenko Theorem

Theorem (Mukhin, Tarasov, Varchenko, c. 2006)
If F (t) has all k(n−k) roots real, then all k-dimensional

linear spaces of polynomials with Wronskian F (t) are real.

The methods were diverse and deep, from differential equa-
tions to mathematical physics (Bethe Ansatz), representation
theory, and quantum groups.

The coup-de-grace was a real symmetric matrix each of
whose real eigenvalues gave a real space of polynomials. You
will hear more later today from Tarasov.

I cannot say that I really understand this proof.
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The Wronski map, again
Identifying C

m with polynomials of degree < m, get maps

Wr : Gr(k,Cn) −→ P
k(n−k) (finite map)

WrR : Gr(k,Rn) −→ RP
k(n−k)

R
k(n−k) −→ R

k(n−k) (proper map)

MTV Theorem: The inverse image of a polynomial with only
real roots lies in the real Grassmannian, Gr(k,Rn).

Eremenko-Gabrielov (c. 2001): If WrR had a topological
degree, that would be a lower bound on the number of solutions
to the real inverse Wronski problem, which was an approach to
the Shapiro Conjecture.
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Lower bounds for Wronski problem
If n is odd and 2k < n, set σk,n to be

1!2! · · · (k−1)!(n−k−1)!(n−k−2)! · · · (n−2k+1)!(
k(n−k)

2 )!

(n−2k+2)! · · · (n−4)!(n−2)!
(

n−2k+1
2

)

! · · ·
(

n−3
2

)

!
(

n−1
2

)

!
.

Set σk,n = 0 if n is even. If 2k > n, then set σk,n := σn−k,n.

Eremenko-Gabrielov. The topological degree of the proper

map Wr : R
k(n−k) → R

k(n−k) is σk,n.

Consequently, there are at least σk,n real k-planes of polynomials
of degree < n with Wronskian a given general polynomial F (t)
of degree k(n−k).
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Why lower bounds are exciting
Many problems in engineering and science may be formulated

as the solutions to a system of polynomial equations,

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 .

Typically, only the real or the positive solutions are meaningful
for the application.

While the number of complex solutions is often known, a

priori information on the real solutions is hard to obtain.

A non-trivial lower bound on the number of real solutions
gives an existence proof for real solutions, which often suffices
for the application.

Extending the scope of problems for which we have lower
bounds will be important for the applications of mathematics.
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Lower bounds from topology
Eremenko and Gabrielov used topology to get lower bounds

on the number of real solutions to systems of polynomials.

Suppose that the real solutions are the fiber of a proper map

f−1(x) where f : Y 7−→ S ,

with Y and S oriented and x ∈ S is a regular value of f .

Then f has a well-defined degree, which is the weighted sum

deg(f) :=
∑

y∈f−1(x)

sign det df(y) .

(This sum is independent of the regular value x.)
Thus | deg(f)| is a lower bound on the number of solutions.
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Sparse polynomials
A polynomial with support A ⊂ Z

n is a sum

f =
∑

α∈A

cαx
α cα ∈ R ,

where xα := xα1
1 xα2

2 · · ·xαn
n .

This is the pullback of a linear form
∑

cαzα along the map

ϕ : (C∗)n ∋ x 7−→ [xα | α ∈ A] ∈ P
A .

Set XA := ϕ((C∗)n) (a toric variety). A system of polynomials
with support A corresponds to a linear section of XA,

f1 = · · · = fn = 0 ←→ XA ∩ L ,

and real solutions are real points in the section.
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An example
The system of polynomials

x2y + 2xy2 + xy − 1 = x2y − xy2 − xy + 2 = 0 ,

corresponds to a linear section of the toric variety

XA := [xy : x2y : xy2 : 1] = V(z1z2z3 − z30)

A

L

z1

z2

z3

solution ✲
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Polynomial systems as fibers
We realize XA ∩ L as the fiber of a map.

Let E ⊂ L be a codimension one
linear subspace and M ≃ P

n a
complementary linear space.

The projection f from E sends
XA to M with XA∩L the fiber
above x = L ∩M .

❍❍❥

✻

✁
✁
✁
✁
✁
✁✁✕

❇
❇
❇
❇
❇❇▼

f ✲

E ❍❍❥

L
✄
✄✎

x✛

M✛

XA

✻

✁
✁
✁
✁
✁
✁✁✕

❇
❇
❇
❇
❇❇▼

f−1(x)

Restricting to YA := XA∩RP
A, the real solutions are fibers of

f : YA → M ∩ RP
A ≃ RP

n .

If YA and RP
n were orientable, | deg(f)| is a lower bound.
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Orientability of real toric varieties
YA and RP

n are typically not orientable. This is improved
by pulling back to the spheres SA and S

n, which are oriented:

f : YA ⊂ RP
A

f

−−− → RP
n

f+ : Y +
A

⊂ S
A

f+

−−− → S
n

❄ ❄ ❄

The orientability of Y +
A

is characterized using the Newton poly-
tope of A. (Details omitted)

When Y +
A

is orientable, | deg(f+)| is our lower bound.

Soprunova and I used geometric combinatorics and Gröbner bases
to compute this degree in many cases, including recovering and
extending the result of Eremenko-Gabrielov.
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An interpolation problem
We all know that two points determine a line, and the Greeks

knew that five points in the plane determine a conic.

Parameter counting shows that there will be finitely many,
Nd, plane rational curves of degree d interpolating 3d−1 general
points. By 1873, N3 = 12 and N4 = 620 were known, which is
where matters stood until about 1990, when Kontsevich gave an
elegant recursion for the number Nd using ideas from Gromov-
Witten theory/quantum cohomology.

What about real rational curves of degree d interpolating
3d−1 real points in the plane?

Kharlamov showed there were 8, 10, or 12 real plane cubics
(d = 3) interpolating 8 general points.
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Tropical lower bounds
About 2002, Welschinger proved that the weighted sum of real
rational curves (weights are the parity ±1 of the number of
nodes) interpolating 3d−1 real points was a constant, Wd, now
called the Welschinger invariant.

Itenberg, Kharlamov, and Shustin used the tropical correspon-
dence theorem of Mikhalkin to show that

Wd ≥
d!

3
and lim

d→∞

logWd

logNd

= 1 .

Thus Wd is a non-trivial lower bound for the number of real
rational curves interpolating 3d−1 points in RP

2.
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Lines on Calabi-Yau Hypersurfaces
There are finitely many lines on a hypersurface of degree

2n−1 in P
n+1: specifically, 27 lines on a cubic surface and 2875

lines on a quintic threefold.....

At least three of the lines on a real cubic surface are real.
Segre classified these lines as elliptic or hyperbolic, and Okonek-
Teleman observed that h− e = 3.

Separately, Okonek-Teleman and Kharlamov-Finashin gener-
alized Segre’s work, associating an intrinsic sign ǫ(ℓ) ∈ {±1} to
a real line ℓ on a real hypersurface X of degree 2n−1 in P

n+1,
and showed that

∑

ℓ⊂X

ǫ(ℓ) ,

is independent of the hypersurface X and equals (2n−1)!!.
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Ramification of linear series
A space V = Span{f1, . . . , fk} of univariate polynomials is

a linear series of dimension k−1 and degree n−1 on P
1.

The ramification of V at a point x ∈ P
1 is the increasing

sequence α = 0 = α1 < αn < · · · < αk for which there is a
basis g1, . . . , gk of V with αi = ordx(gi). The Wronskian of V
vanishes to order

∑

iαi−i+1 at x.

The inverse Wronski problem more generally asks for linear
series with particular ramification at particular points of P1 (the
ramification chosen so there are finitely many linear series).
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Eremenko and Gabrielov, again
Ramification {(α1, x1), . . . , (α

m, xm)} is real if

{(α1, x1), . . . , (α
m, xm)} = {(α1, x1), . . . , (α

m, xm)} ,

as multisets. Its type records the numbers of real and complex
conjugate pairs among the (λi, xi).

A natural generalization of the lower bounds of Eremenko-
Gabrielov is to seek lower bounds for this problem of linear series
with real ramification that depends upon type.

With Nick Hein, we investigated this on a supercomputer in
a smallish experiment. (Investigated 344 million instances of 756
ramification problems, using 549 GHz-years of computing.) We
observed that such lower bound were ubiquitous.
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A taste of our data
Frequency table for (0 < 6), (0 < 2)7 = 6, with (k, n) = (2, 8)

r0<2
Number of Real Solutions

Total
0 2 4 6

7 100000 100000

5 77134 22866 100000

3 47138 47044 5818 100000
1 8964 67581 22105 1350 100000

We do have a proof of this lower bound of r0<2 − 1, but
most of the other lower bounds we observed in the experiment
we did not understand, but Tarasov does—see his talk.
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Wronski map for (k, n) = (3, 6)
Observed numbers of real spaces versus c := number of

complex conjugate pairs of roots of F (t). Note that σ3,6 = 0.

c 0 2 4 6 8 10 12 14 16 18 20

1 1099 7975 42235 9081 6102

2 24495 30089 25992 5054 3632

3 39371 35022 15924 3150 1990

4 76117 14481 3754 1375

c 22 24 26 28 30 32 34 36 38 40 42

1 8827 1597 4207 1343 172 17362

2 4114 955 1586 832 63 3188

3 2183 494 622 367 35 842

4 2925 271 364 204 32 477
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A congruence modulo four
The obvious congruence modulo four was established with

Nick Hein and Igor Zelenko. The Grassmannian Gr(n, 2n) of n
planes in C

2n has two commuting involutions: complex conju-
gation and a symplectic involution (corresponding to transpose
of a matrix), which comes from the natural symplectic form on
univariate polynomials.

For ramification problems that were symmetric, and where
a numerical criterion holds which implies these involutions act
independently, we were able to prove this observed congruence
modulo four, for then the non-real solutions came in orbits of
size four.
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