Cohomological Consequences of the Pattern Map

Geometry and combinatorics on homogeneous spaces AMS Meeting in Greensboro, NC, 9 Nov. 2014

Frank Sottile
sottile@math.tamu.edu

H. Praise Adeyemo ph.adeyemo@ui.edu.ng

$$
\text { arXiv.org/1408. } 4085
$$

Schubert Polynomials

Lascoux and Schützenberger (1982) defined Schubert Polynomials, $\mathfrak{S}_{w}(x)$, for w a permutation. These form a basis for all polynomials in x and include all Schur polynomials.

For $w \in S_{n}$, they form a system of polynomial representatives of Schubert classes in the cohomology ring the flag variety $\mathbb{F} \ell(n)$.

In "Structure de Hopf..." ('82) L-S show that in the expansion

$$
\mathfrak{S}_{w}\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right)=\sum_{u, v} d_{w}^{u, v} \mathfrak{S}_{u}(y) \mathfrak{S}_{v}(z)
$$

the coefficients $d_{w}^{u, v}$ are nonnegative.

Arbitrary Substitutions

Arbitrarily substituting y 's and z 's in some $\mathfrak{S}_{w}(x)$, e.g.,

$$
\mathfrak{S}_{w}\left(y_{1}, y_{2}, z_{1}, y_{3}, y_{4}, z_{2}, z_{3} \ldots\right)=\sum_{u, v} d_{w}^{u, v} \mathfrak{S}_{u}(y) \mathfrak{S}_{v}(z),
$$

defines $d_{w}^{u, v} \in \mathbb{Z}$ depending on the positions of the y 's and z 's.
Bergeron-S. ('98): These coefficients $d_{w}^{u, v}$ are naturally Schubert structure constants $c_{\beta, \gamma}^{\alpha}$ for multiplication in Schubert basis.

Used projection formula along the map $\mathbb{F} \ell(n) \times \mathbb{F} \ell(m) \hookrightarrow$ $\mathbb{F} \ell(n+m)$ whose pullback gives the substitution.

Lenart, Robinson, S. ('06): Generalized to the Grothendieck ring of $\mathbb{F} \ell(n+m)$.

Geometry of Permutation Patterns

Billey-Braden ('03): G : Semisimple linear algebraic group. Let \mathcal{F} be the flag variety of G, parametrizing Borel subgroups. Let $\eta \in G$ be semisimple. Set $G_{\eta}:=Z_{G}(\eta)$.
$B \mapsto B_{\eta}:=B \cap G_{\eta}$ defines the geometric pattern map, π_{η},

$$
\mathcal{F}^{\eta}:=\{B \in \mathcal{F} \mid \eta \in B\} \xrightarrow{\pi_{\eta}} G_{\eta} / B_{\eta} .
$$

Let W, W_{η} be the Weyl groups of G, G_{η}. If $\pi_{\eta}: W \rightarrow W_{\eta}$ is the Billey-Postnikov generalised pattern map, then we have

Theorem [BB]. $\pi_{\eta}\left(X_{w} \cap \mathcal{F}^{\eta}\right)=X_{\pi_{\eta}(w)}$.
In type A, the map $\mathbb{F} \ell(n) \times \mathbb{F} \ell(m) \hookrightarrow \mathbb{F} \ell(n+m)$ is a section of π_{η}, where $\eta=\left(\begin{array}{cc}\alpha I_{n} & 0 \\ 0 & \beta I_{m}\end{array}\right)$.

Sections of the Pattern Map

Sections of the pattern map

$$
G_{\eta} / B_{\eta} \xrightarrow{\amalg} \mathcal{F}^{\eta}
$$

correspond to right cosets \amalg of W_{η} in W.
On cohomology rings, this is just a substitution of the canonical generators \mathfrak{h}^{*} of $H^{*}(\mathcal{F})$ for the canonical generators $\mathfrak{h}^{*}(!)$ of $H^{*}\left(G_{\eta} / B_{\eta}\right)$. (Here η lies in a maximal torus for G, which is also a maximal torus for G_{η}.)

In type A, this is just renaming and shuffling the variables in a Schubert polynomial. E.g.,

$$
\amalg^{*}\left(\mathfrak{S}_{w}\right)=\mathfrak{S}_{w}\left(y_{1}, y_{2}, z_{1}, y_{3}, y_{4}, z_{2}, z_{3}, \ldots\right)
$$

Sections in Homology

For $u \in W_{\eta}, X_{u} B_{\eta}=X_{u} B_{\eta} \cap X_{\omega_{\eta}} B_{\eta}^{\prime}$, where B_{η}^{\prime} is the Borel opposite to B_{η} and ω_{η} is the longest element in W_{η}. Thus

$$
\amalg\left(X_{u} B_{\eta}\right) \subset X_{\amalg(u)} B \cap X_{Ш^{\prime}\left(\omega_{\eta}\right)} B^{\prime} .
$$

A dimension computation shows equality, so

$$
Ш_{*}\left[X_{u} B_{\eta}\right]=\left[X_{\amalg(u)} B \cap X_{Ш^{\prime}\left(\omega_{\eta}\right)} B^{\prime}\right] .
$$

For $w \in W$, we have $\amalg^{*}\left(\mathfrak{S}_{w}\right)=\sum_{u \in W_{\eta}} d_{w}^{u} \mathfrak{S}_{u}$, so d_{w}^{u} is

$$
p_{*}\left(\amalg^{*}\left(\mathfrak{S}_{w}\right) \cap\left[X_{u}\right]\right)=p_{*}\left(\mathfrak{S}_{w} \cap\left[X_{\amalg(u)} \cap X_{Ш^{\prime}\left(\omega_{\eta}\right)}^{\prime}\right]\right),
$$

where p is the map to a point.
$\rightsquigarrow d_{w}^{u}$ is a particular Schubert structure constant.

The Actual Formula

The section \amalg corresponds to a right coset of W_{η}. Let $\varsigma \in W$ be the minimal length coset representative. Then $d_{u}^{w}=c_{w, \varsigma}^{u \varsigma}$. Algorithm:

Expand the product $\mathfrak{S}_{w} \cdot \mathfrak{S}_{\varsigma}$ in Schubert basis for $H^{*}(\mathcal{F})$.
Restrict to terms of the form $\mathfrak{S}_{u \varsigma}$ for $u \in W_{\eta}$.
Replace $\mathfrak{S}_{u \varsigma}$ by \mathfrak{S}_{u} to obtain formula for $\amalg^{*}\left(\mathfrak{S}_{w}\right)$.
Example: $G=C_{4}, G_{\eta}=A_{3}$, and $\varsigma=\overline{2} \overline{1} 34$

$$
\mathfrak{C}_{3 \overline{1} 42} \cdot \mathfrak{C}_{\overline{2} \overline{1} 34}=\mathfrak{C}_{\overline{3} \overline{2} 4 \overline{1}}+2 \mathfrak{C}_{2 \overline{3} 4 \overline{1}}
$$

$$
+2 \mathfrak{C}_{\overline{4} \overline{3} 12}+2 \mathfrak{C}_{\overline{2} \overline{3} 41}+2 \mathfrak{C}_{\overline{1} \overline{4} 32}+2 \mathfrak{C}_{\overline{4} \overline{2} 31}
$$

so $\amalg^{*}\left(\mathfrak{C}_{3 \overline{1} 42}\right)=2 \mathfrak{S}_{3412}+2 \mathfrak{S}_{3241}+2 \mathfrak{S}_{4132}+2 \mathfrak{S}_{2431}$.

