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Galois theory and the Schubert calculus

Galois theory originated from understanding symmetries of roots of

polynomials. Later, Galois groups came to be understood as encoding all

the symmetries of field extensions. Today, it is a pillar of number theory.

Galois groups also appear in enumerative geometry. This aspect is not

well-developed, because of its subtlety and because Galois groups are very

hard to determine.

I will describe a project to shed more light on Galois groups in enumer-

ative geometry. It is focussed on Galois groups in the Schubert calculus, a

well-studied class of geometric problems involving linear subspaces.

It is best to begin with examples.
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The Problem of Four Lines

What are the lines mi meeting four general lines ℓ1, ℓ2, ℓ3, and ℓ4?

The lines ℓ1, ℓ2, ℓ3 lie on a unique hyperboloid Q of one sheet, and the

lines that meet ℓ1, ℓ2, ℓ3 form one ruling of Q. Thus the solutions mi are

the lines in that ruling passing through the points of intersection ℓ4 ∩ Q.

Rotating the line ℓ4 180◦

around the point p inter-

changes the two solution lines

m1, m2.

This shows that

The Galois group of the problem of four lines is the symmetric group S2.
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A Problem with Exceptional Geometry

Q: What 4-planes H in C8 meet four general 4-planes K1, K2, K3, K4

in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8 meeting

each of K1, K2, K3, K4. Schematically, 4 = 4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉 for

1 ≤ i < j ≤ 4. Schematically,
4
= 6.

It follows that the Galois group of
4
= 6 equals the Galois group

of 4 = 4, which is the symmetric group S4. This action is not

two-transitive.

This problem
4
= 6 also has exceptional reality: If K1, K2, K3, K4

are real, then either two or six of the Hi,j are real, and never four or zero.
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Galois Groups of Enumerative Problems

In 1870, Jordan explained how algebraic Galois groups arise naturally from

problems in enumerative geometry; earlier (1851), Hermite showed that such

an algebraic Galois group coincides with a geometric monodromy group.

This Galois group of a geometric problem is a subtle invariant. When it

is deficient (i.e. not the full symmetric group), the geometric problem has

some exceptional, intrinsic structure.

Hermite’s observation, work of Vakil, and some number theory together

with modern computational tools give several methods to determine Galois

groups, at least experimentally.

I will describe a project to study Galois groups for problems coming from the

Schubert calculus using numerical algebraic geometry, symbolic computation,

combinatorics, and more traditional methods.
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Some Theory

A degree e surjective map E
π
−→ B of equidimensional irreducible varieties

(up to codimension one, E → B is a covering space of degree e)

Ã degree e extension of fields of rational functions π∗K(B) ⊂ K(E).

Define the Galois group Gal(E/B) ⊂ Se to be the Galois group of the

Galois closure of this extension.

Hermite’s Theorem. (Work over C.) Restricting E → B to open subsets

over which π is a covering space, E′ → B′, the Galois group is equal to

the monodromy group of deck transformations.

This is the group of permutations of a fixed fiber induced by analytically

continuing the fiber over loops in the base.

Point de départ: Such monodromy permutations are readily and reliably

computed using methods of numerical algebraic geometry.

Frank Sottile, Texas A&M University 5



Enumerative Geometry

“Enumerative Geometry is the art of determining the number e of geometric

figures x having specified positions with respect to other, fixed figures b.”

— Hermann Cäser Hannibal Schubert, 1879.

B := configuration space of the fixed figures, and X := the space of the

figures x we count. Then E ⊂ X × B consists of pairs (x, b) where

x ∈ X has given position with respect to b ∈ B.

The projection E → B is a degree e cover outside of some discriminant

locus, and the Galois group of the enumerative problem is Gal(E/B).

In the problem of four lines, B = four-tuples of lines, X = lines, and

E consists of 5-tuples (m, ℓ1, ℓ2, ℓ3, ℓ4) with m meeting each ℓi. We

showed that this has Galois group the symmetric group S2.
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Schubert Problems

The Schubert calculus is an algorithmic method promulgated by Schubert

to solve a wide class of problems in enumerative geometry.

Schubert problems are problems

from enumerative geometry in-

volving linear subspaces of a vec-

tor space incident upon other lin-

ear spaces, such as the problem

of four lines, and the problems
4 = 4 and

4
= 6. ℓ1

ℓ2

ℓ3

ℓ4

m1

m2

Q

As there are many millions of computable Schubert problems, many with

their own unique geometry, they provide a rich and convenient laboratory

for studying Galois groups of geometric problems.
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Proof-of-concept computation

Leykin and I used off-the-shelf numerical homotopy continuation software

to compute Galois groups of some Schubert problems formulated as the

intersection of a skew Schubert variety with Schubert hypersurfaces.

In every case, we found monodromy permutations generating the full sym-

metric group (determined by Gap). This included one Schubert problem

with e = 17, 589 solutions.

We conjectured that problems of this type will always have the full symmetric

group as Galois group.

As a first step, White and I showed these Galois groups are 2-transitive as

permutation groups.

The bottleneck to studying more general problems numerically is that we

need numerical methods to solve one instance of the problem.
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Numerical Project

Recent work, including certified continuation (Beltrán and Leykin),

Littlewood-Richardson homotopies (Vakil, Verschelde, and S.), regenera-

tion (Hauenstein), implementation of Pieri and of Littlewood-Richardson

homotopies (Martín del Campo and Leykin) and new algorithms in the

works will enable the reliable numerical computation of Galois groups of

more general problems.

We plan to use a supercomputer whose day job is calculus instruction to

investigate many of the millions of accessible and computable Schubert

problems. Our intention is to build a library of Schubert problems (expected

to be very few) whose Galois groups are deficient.

These data would be used to generate conjectures, leading to proofs about

Galois groups of Schubert problems, as well as showcase the possibilities of

numerical computation.
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Vakil’s Criteria

Vakil introduced two combinatorial criteria which can be used to show

that the Galois group of a Schubert problem contains the alternating group.

(Is at least alternating). The first criterion is simple combinatorics, while

the second requires knowledge of 2-transitivity.

Theorem. (Brooks, Martín del Campo, S.) The Galois group of any Schubert

problem involving 2-planes in Cn is at least alternating.

By Vakil’s second criterion, to show high-transitivity (Se or Ae), we

often only need 2-transitivity. All known Galois groups of Schubert problems

are either at least alternating or fail to be 2-transitive.

White and I are studying 2-transitivity.

Theorem. Every Schubert problem involving 3-planes in Cn is 2-transitive.

Every special Schubert problem (partition a single row) is 2-transitive.

Ã The proof suggests that not 2-transitive implies imprimitive.
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Vakil’s Criteria II

Vakil’s geometric Littlewood-Richardson rule, his criteria, and some

2-transitivity give an algorithm that can show a Schubert problem has at

least alternating monodromy.

Python code written by Brooks is being modified by Maril and Moore

to implement this algorithm. There are serious computer-science challenges

to overcome.

Our goal is to use it to test all Schubert problems on all small Grass-

mannians (many hundreds of million Schubert problems), and get a second

library of Schubert problems with deficient Galois groups.

Frank Sottile, Texas A&M University 11



Specialization Lemma

Given π : E → B with B rational, the fiber π−1(b) above a Q-

rational point b ∈ B(Q) has a minimal polynomial py(t) ∈ Q[t]. In this

situation, the algebraic Galois group of py(t) is a subgroup of Gal(E/B).

Working modulo a prime, the minimal polynomial of such fibers are easy

to compute when e . 500. The degrees of its irreducible factors give the

cycle type of a Frobenius element in the Galois group.

This quickly determines the Galois group when it is the full symmetric

group, and allows the estimation of the Galois group when it is not.

Using Vakil’s criteria and this method, we have determined the Galois

groups of all Schubert problems involving 4-planes in C8 and C9. (The first

interesting case.) The deficient Schubert problems fall into a few easily-

identified families, which suggests the possibility of classifying all deficient

Schubert problems and identifying their Galois groups.
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Thank You!
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