The Optimal Littlewood-Richardson Homotopy

Algorithms and Complexity in Polynomial System Solving SIAM Meeting on Applied Algebraic Geometry, 3 August 2015

Frank Sottile sottile@math.tamu.edu

Work with: Abraham Martín del Campo,

Anton Leykin, Ravi Vakil, and Jan Verschelde

Homotopy Continuation Algorithms

Numerical homotopy continuation computes all solutions to a system of polynomial equations. There are several approaches
\rightarrow Bézout homotopy $F:\left(f_{1}, \ldots, f_{n} \mid \operatorname{deg}\left(f_{i}\right)=d_{i}\right)$

$$
H(t ; x)=t F(x)+(1-t)\left(x_{i}^{d_{i}}-1 \mid i=1, \ldots, n\right)
$$

- Optimal (no extraneous paths) for generic systems F
- Poorly behaved for non-generic systems with structure
\rightarrow Polyhedral homotopy. Optimal for sparse systems w/ BKK bound
\rightarrow Equation by equation/regeneration. Default method for Bertini Very general and very flexible

Equations in Geometry

In algebraic geometry, varieties do not have natural square formulations (number of equations=number of variables)

This is even more true in enumerative geometry, which is concerned with zero-dimensional transverse intersections of varieties

Even when square, the number of solutions is far less than BKK bound

Typically, all methods are non-optimal

Point de départ:
Classical $19^{\text {th }}$ c enumerative geometry is based on the principle of continuity and the method of specialization-this is just a homotopy continuation algorithm in reverse

Schubert Problems

Scubert problems are a fundamental class of problems in enumerative geometry

The set of linear spaces having position α with respect to a flag of subspaces $F: F_{1} \subset \cdots \subset F_{n}=\mathbb{C}^{n}$ is a Schubert variety, $X_{\alpha} F$

Schubert problems are formulated as intersections of Schubert varieties $(*) \quad X_{\alpha^{1}} F^{1} \cap \cdots \cap X_{\alpha^{s}} F^{s}$, where the flags F^{1}, \ldots, F^{s} are general

We want to compute the points in (*)

Geometric Littlewood-Richardson Rule

This transforms $Y(F, M):=X_{\alpha} F \cap X_{\beta} M(F, M$ general) into a union of Schubert varieties

The flag M is moved to coincide with F in $\binom{n}{2}$ steps, deforming $Y(F, M)$ in the process

Components $Y_{\bullet \bullet}(F, M)$ are encoded by checkerboard patterns. Their deformations are recorded
 by checkerboard games

Iterating s-1 times resolves our Schubert problem $(*) \quad X_{\alpha^{1}} F^{1} \cap \cdots \cap X_{\alpha} F^{s}$

This sequence of deformations is organized combinatorially by a directed acyclic graph

Animations
.html

Homotopy Steps

Reversing the directed acyclic graph \& putting deformations into coordinates gives the LittlewoodRichardson Homotopy
The action is in changing the parametrizations of the checkerboard varieties $Y_{\bullet \bullet}(F, M)$

Each of the $\binom{n}{2}$ steps has one of three geometries:

known points

- Geometrically constant (Just a coordinate change)
- Simple homotopy (Subspace rotates with flag)
- Subtle homotopy (Read the paper/code)

References

- F. Sottile, Pieri's formula via explicit rational equivalence, Canad. J. Math., (6) 49 (1997). 1281-1298.
- B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus, J. Symb. Comp., 26 (1998), 767-788.
- R. Vakil, Geometric Littlewood-Richardson Rule, Ann. of Math. (2) 164 (2006), 376-421.
- R. Vakil, Schubert induction, Ann. of Math. (2) 164 (2006), 489-512.
- F. Sottile, R. Vakil, and J. Verschelde, Solving Schubert problems with Littlewood-Richardson homotopies, ISSAC 2010, ACM, pp. 179-186.

