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Homotopy Continuation Algorithms

Numerical homotopy continuation computes all solutions to a system of

polynomial equations. There are several approaches

→ Bézout homotopy F : (f1, . . . , fn | deg(fi) = di)

H(t; x) = tF (x) + (1 − t)(x
di
i − 1 | i = 1, . . . , n)

• Optimal (no extraneous paths) for generic systems F

• Poorly behaved for non-generic systems with structure

→ Polyhedral homotopy. Optimal for sparse systems w/ BKK bound

→ Equation by equation/regeneration. Default method for Bertini

Very general and very flexible
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Equations in Geometry

In algebraic geometry, varieties do not have natural square formulations

(number of equations=number of variables)

This is even more true in enumerative geometry, which is concerned with

zero-dimensional transverse intersections of varieties

Even when square, the number of solutions is far less than BKK bound

Typically, all methods are non-optimal

Point de départ:

Classical 19thc enumerative geometry is based on the principle of continuity

and the method of specialization—this is just a homotopy continuation

algorithm in reverse
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Schubert Problems

Scubert problems are a fundamental class of problems in enumerative

geometry

The set of linear spaces having position α with respect to a flag of subspaces

F : F1 ⊂ · · · ⊂ Fn = C
n is a Schubert variety, XαF

Schubert problems are formulated as intersections of Schubert varieties

(∗) Xα1F
1

∩ · · · ∩ XαsF
s
,

where the flags F 1, . . . , F s are general

We want to compute the points in (∗)
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Geometric Littlewood-Richardson Rule

This transforms Y (F,M) := XαF ∩ XβM (F,M general) into a

union of Schubert varieties

The flag M is moved to coincide with F in
(

n

2

)

steps, deforming Y (F,M) in the process

Components Y••(F,M) are encoded by checker-

board patterns. Their deformations are recorded

by checkerboard games

Iterating s−1 times resolves our Schubert problem

(∗) Xα1F
1

∩ · · · ∩ XαsF
s

This sequence of deformations is organized combi-

natorially by a directed acyclic graph

(∗)

known points
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Animations

.html
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Homotopy Steps

Reversing the directed acyclic graph & putting

deformations into coordinates gives the Littlewood-

Richardson Homotopy

(∗)

known points

The action is in changing the parametrizations of

the checkerboard varieties Y••(F,M)

Each of the
(

n

2

)

steps has one of three geometries:

• Geometrically constant (Just a coordinate change)

• Simple homotopy (Subspace rotates with flag)

• Subtle homotopy (Read the paper/code)

Ã
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