Galois Groups of Schubert Problems

AMS Summer Research Institute in Algebraic Geometry
17 July 2015

Galois theory originated in the symmetries of roots of polynomials. Later, Galois groups came to be understood as encoding all symmetries of field extensions. It is now a pillar of number theory and arithmetic geometry.

Galois groups also appear in enumerative geometry, encoding intrinsic structure of geometric problems. This is not well-developed, for such geometric Galois groups are very hard to determine. Until recently, they were almost always expected to be the full symmetric group.

I will describe a project to shed more light on Galois groups in enumerative geometry. It is focussed on Galois groups in the \textit{Schubert calculus}, a well-studied class of geometric problems involving linear subspaces.

It is best to begin with examples.
The Problem of Four Lines

What are the lines m_i meeting four general lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4?
What are the lines \(m_i \) meeting four general lines \(\ell_1, \ell_2, \ell_3, \) and \(\ell_4? \)

The lines \(\ell_1, \ell_2, \ell_3 \) lie on a unique hyperboloid \(Q \) of one sheet, and the lines that meet \(\ell_1, \ell_2, \ell_3 \) form one ruling of \(Q \).
The Problem of Four Lines

What are the lines m_i meeting four general lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4?

The lines ℓ_1, ℓ_2, ℓ_3 lie on a unique hyperboloid Q of one sheet, and the lines that meet ℓ_1, ℓ_2, ℓ_3 form one ruling of Q. Thus the solutions m_i are the lines in that ruling passing through the points of intersection $\ell_4 \cap Q$.

Frank Sottile, Texas A&M University
The Problem of Four Lines

What are the lines m_i meeting four general lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4?

The lines ℓ_1, ℓ_2, ℓ_3 lie on a unique hyperboloid Q of one sheet, and the lines that meet ℓ_1, ℓ_2, ℓ_3 form one ruling of Q. Thus the solutions m_i are the lines in that ruling passing through the points of intersection $\ell_4 \cap Q$.

Rotating the line ℓ_4 180° around the point p interchanges the two solution lines m_1, m_2.
The Problem of Four Lines

What are the lines m_i meeting four general lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4?

The lines ℓ_1, ℓ_2, ℓ_3 lie on a unique hyperboloid Q of one sheet, and the lines that meet ℓ_1, ℓ_2, ℓ_3 form one ruling of Q. Thus the solutions m_i are the lines in that ruling passing through the points of intersection $\ell_4 \cap Q$.

Rotating the line ℓ_4 180° around the point p interchanges the two solution lines m_1, m_2.

This shows that

The Galois group of the problem of four lines is the symmetric group S_2.

Frank Sottile, Texas A&M University
A Problem with Exceptional Geometry

Q: What 4-planes H in \mathbb{C}^8 meet four general 4-planes K_1, K_2, K_3, K_4 in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h_1, h_2, h_3, h_4) 2-planes in \mathbb{C}^8 meeting each of K_1, K_2, K_3, K_4.

Fact: All solutions H to our problem have the form $H_{i,j} = \langle h_i, h_j \rangle$ for $1 \leq i < j \leq 4$.

It follows that the two problems have the same Galois group, which is the symmetric group S_4. This permutes the 2-planes in the auxiliary problem and is the induced action on the six solutions $H_{i,j}$ of the original problem.

This action is not two-transitive.

Frank Sottile, Texas A&M University
Galois Groups of Enumerative Problems

In 1870, Jordan explained how algebraic Galois groups arise naturally from problems in enumerative geometry; earlier (1851), Hermite showed that such an algebraic Galois group coincides with a geometric monodromy group.

This Galois group of a geometric problem is a subtle invariant. When it is deficient (not the full symmetric group), the geometric problem has some exceptional, intrinsic structure.

Hermite’s observation, work of Vakil, and some number theory together with modern computational tools give several methods to study Galois groups.

I will describe a project to study Galois groups for problems coming from the Schubert calculus using numerical algebraic geometry, symbolic computation, combinatorics, and more traditional methods (Theorems).
Some Theory

A degree e surjective map $E \xrightarrow{\pi} B$ of equidimensional irreducible varieties (up to codimension one, $E \to B$ is a covering space of degree e) \(\leadsto\) degree e extension of fields of rational functions $\pi^* K(B) \subset K(E)$. Define the Galois group $\text{Gal}(E/B) \subset S_e$ to be the Galois group of the Galois closure of this extension.

Hermite’s Theorem. (Work over \mathbb{C}.) Restricting $E \to B$ to open subsets over which π is a covering space, $E' \to B'$, the Galois group is equal to the monodromy group of deck transformations.

This is the group of permutations of a fixed fiber induced by analytically continuing the fiber over loops in the base.

Point de départ: Such monodromy permutations are readily and reliably computed using methods from numerical algebraic geometry.
Enumerative Geometry

“Enumerative Geometry is the art of determining the number e of geometric figures x having specified positions with respect to other, fixed figures b.” — Hermann Cäsar Hannibal Schubert, 1879.

$B :=$ configuration space of the fixed figures, and $X :=$ the space of the figures x we count. Then $E \subset X \times B$ consists of pairs (x, b) where $x \in X$ has given position with respect to $b \in B$.

The projection $E \to B$ is a degree e cover outside of some discriminant locus, and the Galois group of the enumerative problem is $\text{Gal}(E/B)$.

In the problem of four lines, $B =$ four-tuples of lines, $X =$ lines, and E consists of 5-tuples $(m, \ell_1, \ell_2, \ell_3, \ell_4)$ with m meeting each ℓ_i. We showed that this has Galois group the symmetric group S_2.

We could also let B be sets of four lines, potentially (but not in this case) getting a larger Galois group.
Schubert Problems

The Schubert calculus is an algorithmic method promulgated by Schubert to solve a wide class of problems in enumerative geometry.

Schubert problems are problems from enumerative geometry involving linear subspaces of a vector space incident upon other linear spaces, such as the problem of four lines, and the problems of 2-planes and 4-planes in \mathbb{C}^8.

As there are many millions of computable Schubert problems, many with their own unique geometry, they provide a rich and convenient laboratory for studying Galois groups of geometric problems.
Proof-of-Concept Computation

Leykin and I used off-the-shelf numerical continuation software to compute Galois groups of *simple Schubert problems*, which are formulated as the intersection of a skew Schubert variety with Schubert hypersurfaces.

In every case, we found monodromy permutations generating the full symmetric group (determined by Gap). This included one Schubert problem with $e = 17,589$ solutions.

We conjectured that all simple Schubert problems have the full symmetric group as Galois group.

White and I have just shown that these Galois groups all contain the alternating group.

The bottleneck to studying more general problems numerically is that we need numerical methods to solve *one* instance of the problem.
Numerical Project

Recent work, including certified continuation (Beltrán-Leykin, Hauenstein-Liddell), Littlewood-Richardson homotopies (Vakil, Verschelde, and S.), regeneration (Hauenstein), implementation of Pieri and of Littlewood-Richardson homotopies (Martín del Campo and Leykin) and new algorithms in the works will enable the reliable numerical computation of Galois groups of more general problems.

We plan to use a supercomputer to investigate many of the millions of computable Schubert problems. We intend to build a library of Schubert problems (expected to be very few) whose Galois groups are deficient.

These data will help us to classify Schubert problems with deficient Galois groups and to showcase the possibilities of numerical computation.

Problem. Software/algorithm development takes a lot of time.
Vakil’s Alternating Criteria

Suppose $S \subset B$ has a dense set of regular values of $E \to B$. Then

$$\text{Gal}(E|_S/S) \hookrightarrow \text{Gal}(E/B).$$

Common in enumerative geometry are geometric degenerations

$$X \cap Y \leadsto W \cup Z$$

which give natural families $S \subset B$ such that

$$E|_S \simeq F \cup G$$

where $F \to S$ and $G \to S$ are child problems for $W \& Z$ of degrees f, g, with $f + g = e$.

Vakil’s Alternating Criteria.

(1) If $f \neq g$ and both $\text{Gal}(F/S)$ and $\text{Gal}(G/S)$ contain the alternating groups A_f and A_g, then $\text{Gal}(E/B)$ contains the alternating group A_e.

(2) If $\text{Gal}(E/B)$ is two-transitive, then we only need $(f, g) \neq (6, 6)$.
Using Vakil’s Criteria

A Schubert problem is *at least alternating* if its Galois group contains the alternating group. Vakil’s first (combinatorial) Criterion and some estimation of integrals (corresponding to combinatorial inequalities) gives:

Theorem. (Brooks, Martín del Campo, S.) *The Galois group of any Schubert problem involving 2-planes in \(\mathbb{C}^n \) is at least alternating.*

By Vakil’s second criterion, to show high-transitivity (\(S_e \) or \(A_e \)), we often only need 2-transitivity. *Interestingly*, all known Galois groups of Schubert problems are either at least alternating or fail to be 2-transitive.

White and I are studying 2-transitivity using geometry and combinatorics.

Theorem. [S.-White]

- *Every Schubert problem involving 3-planes in \(\mathbb{C}^n \) is 2-transitive.*
- *Every special Schubert problem (partition a single row) is 2-transitive.*

\(~\Rightarrow~\) The proof suggests that not 2-transitive implies imprimitive.
Vakil’s Criteria II

Vakil’s geometric Littlewood-Richardson rule, his criteria, and some 2-transitivity give an algorithm that can show a Schubert problem has at least alternating monodromy. Using the simpler geometric Pieri rule, we show:

Theorem. [S.-White] *Every simple Schubert problem is at least alternating.*

We are developing code to implement Vakil’s criteria and his geometric Littlewood-Richardson rule, and take advantage of what we have proven. There are serious computer-science challenges to overcome as this is an extremely recursive algorithm.

Our goal is to use it to test all Schubert problems on all small Grassmannians (many hundreds of millions of Schubert problems), and get a second library of Schubert problems with deficient Galois groups.
Specialization Lemma

Given $\pi : E \to B$ with B rational, the fiber $\pi^{-1}(b)$ above a smooth point $b \in B(\mathbb{Q})$ has a minimal polynomial $p_b(t) \in \mathbb{Q}[t]$. In this situation, the algebraic Galois group of $p_b(t)$ is a subgroup of $\operatorname{Gal}(E/B)$.

Working modulo a prime, the minimal polynomial of such a fiber is easy to compute when $e \lesssim 700$. The degrees of its irreducible factors give the cycle type of a Frobenius element in the Galois group.

This quickly determines the Galois group when it is the full symmetric group, and allows the estimation of the Galois group when it is not.

Using Vakil’s criteria and this method, we have nearly determined the Galois groups of all Schubert problems involving 4-planes in \mathbb{C}^8 and \mathbb{C}^9. (The first interesting case.) The deficient Schubert problems fall into a few easily-identified families, which suggests the possibility of classifying all deficient Schubert problems and identifying their Galois groups.

Frank Sottile, Texas A&M University
Combinatorial Shadows of Deficient Problems

Many deficient problems have

- Restrictions on numbers of real solutions (unsurprising).
- Combinatorics reflecting structure of Schubert problem/Galois group.

Partitions encode Schubert conditions:

Eg. in $G(4, 8)$, (4-planes in \mathbb{C}^8)

\[\begin{array}{cccc}
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2 \\
6 & 5 & 4 & 3 \\
7 & 6 & 5 & 4 \\
\end{array} \]

\[\begin{array}{cccc}
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2 \\
6 & 5 & 4 & 3 \\
7 & 6 & 5 & 4 \\
\end{array} \]

$\overrightarrow{\text{dim}}$

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2 \\
6 & 5 & 4 & 3 \\
7 & 6 & 5 & 4 \\
\end{array} \]

L_2 in a 1-plane and sharing a 2-plane with a 5-plane L_5, where $L_2 \subset L_5$.
Reprise: A Problem with Exceptional Geometry

Q: What 4-planes \(H \) in \(\mathbb{C}^8 \) meet four general 4-planes \(K_1, K_2, K_3, K_4 \) in a 2-dimensional subspace of each?

Auxiliary problem: There are four \((h_1, h_2, h_3, h_4)\) 2-planes in \(\mathbb{C}^8 \) meeting each of \(K_1, K_2, K_3, K_4 \).
Schematically, \(\Box^4 = 4 \).

Fact: All solutions \(H \) to our problem have the form \(H_{i,j} = \langle h_i, h_j \rangle \) for \(1 \leq i < j \leq 4 \).
Schematically, \(\Box^4 = 6 \).
is the problem of four lines.

Its two solutions correspond to two fillings:

The auxiliary problem, has four fillings:

For the deficient problem, there are six fillings:
A Deficient Schubert Problem

\[\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\end{array} = 4 \text{ in } G(4, 8) \]

Fillings

The first two and last two conditions give an auxiliary problem of four lines.

Look at the four corners:

For each solution of the auxiliary problem, the middle four conditions give another problem of four lines, and this is reflected by the possible fillings.

The Galois group is $S_2 \wr S_2$, which is the dihedral group of symmetries of a square.

Frank Sottile, Texas A&M University
Thank You!

Frank Sottile, Texas A&M University
References

• F. Sottile, J. White, and R. Williams, *Galois Groups of simple Schubert problems are at least alternating*, in preparation.