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Galois Theory and the Schubert Calculus

Galois theory originated in the symmetries of roots of polynomials. Later,

Galois groups came to be understood as encoding all symmetries of field

extensions. It is now a pillar of number theory and arithmetic geometry.

Galois groups also appear in enumerative geometry, encoding intrinsic struc-

ture of geometric problems. This is not well-developed, for such geometric

Galois groups are very hard to determine. Until recently, they were almost

always expected to be the full symmetric group.

I will describe a project to shed more light on Galois groups in enumerative

geometry. It is focussed on Galois groups in the Schubert calculus, a

well-studied class of geometric problems involving linear subspaces.

It is best to begin with examples.

Frank Sottile, Texas A&M University 1



The Problem of Four Lines

What are the lines mi meeting four general lines ℓ1, ℓ2, ℓ3, and ℓ4?

The lines ℓ1, ℓ2, ℓ3 lie on a unique hyperboloid Q of one sheet, and the

lines that meet ℓ1, ℓ2, ℓ3 form one ruling of Q. Thus the solutions mi are

the lines in that ruling passing through the points of intersection ℓ4 ∩ Q.

Rotating the line ℓ4 180◦

around the point p inter-

changes the two solution lines

m1, m2.

This shows that

The Galois group of the problem of four lines is the symmetric group S2.
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A Problem with Exceptional Geometry

Q: What 4-planes H in C8 meet four general 4-planes K1, K2, K3, K4

in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8 meeting

each of K1, K2, K3, K4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉 for

1 ≤ i < j ≤ 4.

It follows that the two problems have the same Galois group, which is the

symmetric group S4. This permutes the 2-planes in the auxillary problem

and is the induced action on the six solutions Hi,j of the original problem.

This action is not two-transitive.
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Galois Groups of Enumerative Problems

In 1870, Jordan explained how algebraic Galois groups arise naturally from

problems in enumerative geometry; earlier (1851), Hermite showed that such

an algebraic Galois group coincides with a geometric monodromy group.

This Galois group of a geometric problem is a subtle invariant. When it is

deficient (not the full symmetric group), the geometric problem has some

exceptional, intrinsic structure.

Hermite’s observation, work of Vakil, and some number theory together with

modern computational tools give several methods to study Galois groups.

I will describe a project to study Galois groups for problems coming from the

Schubert calculus using numerical algebraic geometry, symbolic computation,

combinatorics, and more traditional methods (Theorems).
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Some Theory

A degree e surjective map E
π
−→ B of equidimensional irreducible varieties

(up to codimension one, E → B is a covering space of degree e)

Ã degree e extension of fields of rational functions π∗K(B) ⊂ K(E).

Define the Galois group Gal(E/B) ⊂ Se to be the Galois group of the

Galois closure of this extension.

Hermite’s Theorem. (Work over C.) Restricting E → B to open subsets

over which π is a covering space, E′ → B′, the Galois group is equal to

the monodromy group of deck transformations.

This is the group of permutations of a fixed fiber induced by analytically

continuing the fiber over loops in the base.

Point de départ: Such monodromy permutations are readily and reliably

computed using methods from numerical algebraic geometry.
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Enumerative Geometry

“Enumerative Geometry is the art of determining the number e of geometric

figures x having specified positions with respect to other, fixed figures b.”

— Hermann Cäser Hannibal Schubert, 1879.

B := configuration space of the fixed figures, and X := the space of the

figures x we count. Then E ⊂ X × B consists of pairs (x, b) where

x ∈ X has given position with respect to b ∈ B.

The projection E → B is a degree e cover outside of some discriminant

locus, and the Galois group of the enumerative problem is Gal(E/B).

In the problem of four lines, B = four-tuples of lines, X = lines, and

E consists of 5-tuples (m, ℓ1, ℓ2, ℓ3, ℓ4) with m meeting each ℓi. We

showed that this has Galois group the symmetric group S2.

We could also let B be sets of four lines, potentially (but not in this

case) getting a larger Galois group.
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Schubert Problems

The Schubert calculus is an algorithmic method promulgated by Schubert

to solve a wide class of problems in enumerative geometry.

Schubert problems are problems

from enumerative geometry in-

volving linear subspaces of a vec-

tor space incident upon other lin-

ear spaces, such as the problem

of four lines, and the problems

of 2-planes and 4-planes in C8. ℓ1

ℓ2

ℓ3

ℓ4

m1

m2

Q

As there are many millions of computable Schubert problems, many with

their own unique geometry, they provide a rich and convenient laboratory

for studying Galois groups of geometric problems.
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Proof-of-Concept Computation

Leykin and I used off-the-shelf numerical continuation software to compute

Galois groups of simple Schubert problems, which are formulated as the

intersection of a skew Schubert variety with Schubert hypersurfaces.

In every case, we found monodromy permutations generating the full sym-

metric group (determined by Gap). This included one Schubert problem

with e = 17, 589 solutions.

We conjectured that all simple Schubert problems have the full symmetric

group as Galois group.

White and I have just shown that these Galois groups all contain the

alternating group.

The bottleneck to studying more general problems numerically is that we

need numerical methods to solve one instance of the problem.
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Numerical Project

Recent work, including certified continuation (Beltrán-Leykin, Hauenstein-

Liddell), Littlewood-Richardson homotopies (Vakil, Verschelde, and S.),

regeneration (Hauenstein), implementation of Pieri and of Littlewood-

Richardson homotopies (Martín del Campo and Leykin) and new algorithms

in the works will enable the reliable numerical computation of Galois groups

of more general problems.

We plan to use a supercomputer to investigate many of the millions of

computable Schubert problems. We intend to build a library of Schubert

problems (expected to be very few) whose Galois groups are deficient.

These data will help us to classify Schubert problems with deficient Galois

groups and to showcase the possibilities of numerical computation.

Problem. Software/algorithm development takes a lot of time.
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Vakil’s Alternating Criteria

Suppose S ⊂ B has a dense set of regular values of E → B. Then

Gal(E|S/S) →֒ Gal(E/B) .

Common in enumerative geometry are geometric degenerations

X ∩ Y Ã W ∪ Z

which give natural families S ⊂ B such that

E|S ≃ F
⋃

G where F → S and G → S

are child problems for W & Z of degrees f , g, with f + g = e.

Vakil’s Alternating Criteria.

(1) If f 6= g and both Gal(F/S) and Gal(G/S) contain the alternating

groups Af and Ag, then Gal(E/B) contains the alternating group Ae.

(2) If Gal(E/B) is two-transitive, then we only need (f, g) 6= (6, 6).
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Using Vakil’s Criteria

A Schubert problem is at least alternating if its Galois group contains the

alternating group. Vakil’s first (combinatorial) Criterion and some estimation

of integrals (corresponding to combinatorial inequalities) gives:

Theorem. (Brooks, Martín del Campo, S.) The Galois group of any Schubert

problem involving 2-planes in Cn is at least alternating.

By Vakil’s second criterion, to show high-transitivity (Se or Ae), we often

only need 2-transitivity. Interestingly, all known Galois groups of Schubert

problems are either at least alternating or fail to be 2-transitive.

White and I are studying 2-transitivity using geometry and combinatorics.

Theorem. [S.-White]

Every Schubert problem involving 3-planes in Cn is 2-transitive.

Every special Schubert problem (partition a single row) is 2-transitive.

Ã The proof suggests that not 2-transitive implies imprimitive.

Frank Sottile, Texas A&M University 11



Vakil’s Criteria II

Vakil’s geometric Littlewood-Richardson rule, his criteria, and some 2-

transitivity give an algorithm that can show a Schubert problem has at least

alternating monodromy. Using the simpler geometric Pieri rule, we show:

Theorem. [S.-White] Every simple Schubert problem is at least alternating.

We are developing code to implement Vakil’s criteria and his geometric

Littlewood-Richardson rule, and take advantage of what we have proven.

There are serious computer-science challenges to overcome as this is an

extremely recursive algorithm.

Our goal is to use it to test all Schubert problems on all small Grassmannians

(many hundreds of millions of Schubert problems), and get a second library

of Schubert problems with deficient Galois groups.
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Specialization Lemma

Given π : E → B with B rational, the fiber π−1(b) above a smooth

point b ∈ B(Q) has a minimal polynomial pb(t) ∈ Q[t]. In this situation,

the algebraic Galois group of pb(t) is a subgroup of Gal(E/B).

Working modulo a prime, the minimal polynomial of such a fiber is easy to

compute when e . 700. The degrees of its irreducible factors give the

cycle type of a Frobenius element in the Galois group.

This quickly determines the Galois group when it is the full symmetric group,

and allows the estimation of the Galois group when it is not.

Using Vakil’s criteria and this method, we have nearly determined the Galois

groups of all Schubert problems involving 4-planes in C8 and C9. (The first

interesting case.) The deficient Schubert problems fall into a few easily-

identified families, which suggests the possibility of classifying all deficient

Schubert problems and identifying their Galois groups.
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Combinatorial Shadows of Deficient Probems

Many deficient problems have

• Restrictions on numbers of real solutions (unsurprising).

• Combinatorics reflecting structure of Schubert problem/Galois group.

Partitions encode Schubert conditions:

Eg. in G(4, 8), (4-planes in C8)

←→ the set of 4-planes meeting a 2-plane

L2 in a 1-plane and sharing a 2-plane with a

5-plane L5, where L2 ⊂ L5.
︸ ︷︷ ︸

8−4

dim
1
2
3
4

4 3 2 1
5 4 3 2
6 5 4 3
7 6 5 4
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Reprise: A Problem with Exceptional
Geometry

Q: What 4-planes H in C8 meet four general 4-planes K1, K2, K3, K4

in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8 meeting

each of K1, K2, K3, K4.

Schematically, 4 = 4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉 for

1 ≤ i < j ≤ 4.

Schematically,
4
= 6.
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Fillings Give Numbers of Solutions

· · · is the problem of four lines.

Its two solutions correspond to two fillings:

The auxillary problem, · · · , has four

fillings:

For the deficient problem, · · · , there are six

fillings:
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A Deficient Schubert Problem

· · · · · · · = 4 in G(4, 8)

Fillings
The first two and last two conditions give an

auxillary problem of four lines.

Look at the four corners:

For each solution of the auxillary problem,

the middle four conditions give another prob-

lem of four lines, and this is reflected by the

possible fillings.

The Galois group is S2 ≀ S2, which is the

dihedral group of symetries of a square.
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Thank You!
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Q

p✑
✑
✑

✑
✑✑✸
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