Newton Polytopes via Witness Sets

Algebraic and Geometric Methods in Applied Discrete Mathematics

$$
11 \text { January } 2015
$$

Frank Sottile sottile@math.tamu.edu

Work with Jon Hauenstein and Taylor Brysiewicz.

Fundamental Problem

By algebraic geometry, an irreducible hypersurface \mathcal{H} in \mathbb{C}^{n} is defined by the vanishing of a single irreducible polynomial, $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\mathcal{H}=\mathcal{V}(f):=\left\{x \in \mathbb{C}^{n} \mid f(x)=0\right\}
$$

The problem I want to consider is: Suppose that we know the hypersurface, but not the polynomial?

We would like to understand the polynomial f defining \mathcal{H}.

What Does Understand Mean?

Best: Complete knowledge. There are finite sets $\mathcal{A} \subset \mathbb{Z}^{n}$ and $\left\{c_{a} \mid a \in \mathcal{A}\right\} \subset \mathbb{C}$ such that

$$
f=\sum_{a \in \mathcal{A}} c_{a} x^{a} \quad\left(x^{a}:=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)
$$

Pretty Good: Knowing the support, \mathcal{A}.
We'll Settle For: Newton Polytope of \mathcal{H},

$$
N(\mathcal{H}):=\text { convex hull of } \mathcal{A} .
$$

Easier: The degree of \mathcal{H}.

How to Know \mathcal{H} but not f

The hypersurface \mathcal{H} might be the image of a map,

$$
\varphi: X \longrightarrow \mathcal{H} \subset \mathbb{C}^{n} .
$$

This is fairly common, for example

pr: $\Sigma \rightarrow \mathbb{P}^{1}$ is a projective bundle, and $\pi(\Sigma)$ is the classical discriminant of a d-form.

Example: Lüroth Quartics

Lüroth, 1869: If $\ell_{1}, \ldots, \ell_{5}$ are equations for lines, then

$$
q:=\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5}\left(\frac{1}{\ell_{1}}+\frac{1}{\ell_{2}}+\frac{1}{\ell_{3}}+\frac{1}{\ell_{4}}+\frac{1}{\ell_{5}}\right)
$$

defines a quartic that inscribes the great pentagon, $\mathcal{V}\left(\ell_{1} \ell_{2} \ell_{3} \ell_{4} \ell_{5}\right)$.

This set of quartics is the image of a map $\left(\mathbb{C}^{3}\right)^{5}-\rightarrow \mathbb{P}^{14}$ ($\mathbb{P}^{14}=$ plane quartics), and it forms a hypersurface, \mathcal{L}. Morley, 1919: \mathcal{L} has degree 54.

The defining equation of \mathcal{L} is the Lüroth invariant, which could have as many as $\binom{54+14}{14}=123234279768160$ monomials.

How to Represent a Polytope?

$P=$ convex hull of a finite subset of \mathbb{R}^{n}.
$P=\bigcap\left\{x \mid \omega \cdot x \leq b_{\omega}\right\}$,
ω in a finite set the intersection of finitely many half-spaces.

Oracle Representation:
For $\omega \in \mathbb{R}^{n}$, set $h(\omega)=\max \{\omega \cdot x \mid x \in P\}$.
The face P_{ω} of P exposed by ω is

$$
P_{\omega}:=\{x \in P \mid \omega \cdot x=h(\omega)\}
$$

The oracle representation of P is a function that given $\omega \in \mathbb{R}^{n}$ returns P_{ω}, if it is a vertex.

We propose a method, based on numerical algebraic geometry to compute an oracle representation of the Newton polytope of a hypersurface.

Witness Sets

Numerical Algebraic Geometry uses numerical analysis to represent and manipulate varieties on a computer.

Let $V \subset \mathbb{C}^{n}$ be a variety of codimension k, given as a component of $F(x)=0$. A witness set for V is a pair (W, L), where - L is a general affine plane of dimension k, and
$-W=V \cap L$.

L is either parameterized, or cut out by $n-k$ affine forms, and W consists of numerical approximations to $V \cap L$.

Continuation

In numerical algebraic geometry, the basic operation is continuation, which traces points along implicitly-defined paths.

Suppose that $L(t)$ for $t \in \mathbb{C}$ is a family of k-planes, and we have a witness set $\left(W_{1}, L(1)\right)$ for V.

We numerically continue these points in $V \cap L(t)$ from $t=1$ to $t=0$ to get another witness set $\left(W_{0}, L(0)\right)$ for V.

This allows us to sample points from V.

Witness Sets of Projections

Our hypersurfaces come as the image under a projection.
Suppose that $X \subset \mathbb{C}^{n} \oplus \mathbb{C}^{m}$ and $\mathcal{H}=\pi(X) \subset \mathbb{C}^{n}$ is a hypersurface.
Hauenstein, Sommese, Wampler: Given a witness set $(X \cap L, L)$ for X, compute a witness set $(\mathcal{H} \cap \ell, \ell)$ for \mathcal{H} :

- Choose a general lines $\ell \subset \mathbb{C}^{n}$
- Move L to a non-general plane Λ with $\pi(\Lambda)=\ell$.

Set $W^{\prime}:=X \cap \Lambda$. Then $\left(\pi\left(W^{\prime}\right), \ell\right)$ is a witness set for \mathcal{H}.
Delicate: Λ is not in general position.

Witness set of a Hypersurface

Suppose $f=\sum_{a \in \mathcal{A}} c_{a} x^{a}$ is a polynomial, $\mathcal{H}:=\mathcal{V}(f)$, and $P=\operatorname{conv}(\mathcal{A})$.
Let $p, q \in \mathbb{C}^{n}$ be general, and define

$$
\ell_{p, q}(s)=\ell(s):=\{s p-q \mid s \in \mathbb{C}\} .
$$

Then $f(\ell(s))=0$ defines the witness set $\mathcal{H} \cap \ell$.
Thus a witness set gives roots of $f(\ell(s))$.
For $\omega \in \mathbb{R}^{n}$ and $t>0$, set $t^{\omega}:=\left(t^{\omega_{1}}, \ldots, t^{\omega_{n}}\right)$. Then,

$$
\begin{aligned}
& f\left(t^{\omega} \cdot \ell(s)\right)=\sum_{a \in \mathcal{A}} c_{a}\left(s p_{1}-q_{1}\right)^{a_{1}} \cdots\left(s p_{n}-q_{n}\right)^{a_{n}} t^{\omega \cdot a} \\
& \quad \stackrel{!}{=} t^{h(\omega)}\left(\sum_{\mathcal{A} \cap P_{\omega}} c_{a}(s p-q)^{a}+\sum_{\mathcal{A} \backslash P_{w}} c_{a}(s p-q)^{a} t^{\omega \cdot a-h(\omega)}\right)
\end{aligned}
$$

$\Rightarrow \exists d_{\omega}>0$ such that $\omega \cdot a-h(\omega)<-d_{\omega}$ for $a \in \mathcal{A} \backslash P_{\omega}$.

Main Lemma

$$
f\left(t^{\omega} \cdot \ell(s)\right)=t^{h(\omega)}\left(\sum_{\mathcal{A} \cap P_{\omega}} c_{a}(s p-q)^{a}+\sum_{\mathcal{A} \backslash P_{w}} c_{a}(s p-q)^{a} t^{\omega \cdot a-h(\omega)}\right)
$$

Set f_{ω} to be the sum of terms in f from P_{ω}
Lemma. In the limit as $t \rightarrow \infty, t^{-h(\omega)} f\left(t^{\omega} \cdot \ell(s)\right) \rightarrow f_{\omega}(\ell(s))$. $\operatorname{deg}(f)-\operatorname{deg}\left(f_{\omega}\right)$ zeroes will diverge to ∞, while the remaining $\operatorname{deg}\left(f_{\omega}\right)$ remaining bounded.

If P_{ω} is a vertex, say a (which holds when ω is generic), then

$$
f_{\omega}(\ell(s))=c_{a}\left(s p_{1}-q_{1}\right)^{a_{1}} \cdots\left(s p_{n}-q_{n}\right)^{a_{n}} .
$$

Thus a_{i} zeroes of $f\left(t^{\omega} \cdot \ell(s)\right)$ coalesce to q_{i} / p_{i} as $t \rightarrow \infty$.
Our paper describes how to turn this idea into an algorithm.

Lüroth quartics, again

We created a test implementation and used it to compute a few vertices of the Lüroth polytope (Newton polytope of the Lüroth hypersurface).

Ciani quartics: The Lüroth quartics whose monomials are squares,

$$
\alpha x^{4}+\beta y^{4}+\gamma z^{4}+2\left(\delta x^{2} y^{2}+\rho x^{2} z^{2}+\sigma y^{2} z^{2}\right)
$$

form a face of the Lüroth polytope, which we computed.
It is $14 \boxtimes+\alpha^{4} \beta^{4} \gamma^{4}$, where \mathbb{J} is equivalent to the bipyramid,
conv $\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)=$

Ciani Face of Lüroth Invariant

We used a numerical factorization algorithm and an LLL-based interpolation method to compute the Lüroth invariant, restricted to this face of Ciani quartics, $f(\mathcal{L})_{\omega}$.

$$
f(\mathcal{L})_{\omega}=\alpha^{4} \beta^{4} \gamma^{4} f_{1}^{4} f_{2}^{2} f_{3}^{2} f_{4}^{2} \cdot f_{5}
$$

where f_{1}, \ldots, f_{5} have integer coefficients, between 1 and $2401=7^{4}$.
$f_{1}, f_{2}, f_{3}, f_{4}$ have the same Newton polytope, \mathbb{Z}, but f_{5} has Newton polytope 4

Subsequently, Basson, Lercier, Ritzenthaler, and Sijsling found an expression for the Lüroth invariant in terms of the fundamental and secondary invariants of $G L(3)$ acting on quartics.

f_{5}

$$
\begin{aligned}
& 2401 \alpha^{4} \beta^{4} \gamma^{4}-196 \alpha^{4} \beta^{3} \gamma^{3} \sigma^{2}+102 \alpha^{4} \beta^{2} \gamma^{2} \sigma^{4}-4 \alpha^{4} \beta \gamma \sigma^{6}+\alpha^{4} \sigma^{8}-196 \alpha^{3} \beta^{4} \gamma^{3} \rho^{2} \\
& -196 \alpha^{3} \beta^{3} \gamma^{4} \delta^{2}+840 \alpha^{3} \beta^{3} \gamma^{3} \delta \rho \sigma-820 \alpha^{3} \beta^{3} \gamma^{2} \rho^{2} \sigma^{2}-820 \alpha^{3} \beta^{2} \gamma^{3} \delta^{2} \sigma^{2}+232 \alpha^{3} \beta^{2} \gamma^{2} \delta \rho \sigma^{3} \\
& -12 \alpha^{3} \beta^{2} \gamma \rho^{2} \sigma^{4}-12 \alpha^{3} \beta \gamma^{2} \delta^{2} \sigma^{4}-40 \alpha^{3} \beta \gamma \delta \rho \sigma^{5}+4 \alpha^{3} \beta \rho^{2} \sigma^{6}+4 \alpha^{3} \gamma \delta^{2} \sigma^{6}-8 \alpha^{3} \delta \rho \sigma^{7} \\
& +102 \alpha^{2} \beta^{4} \gamma^{2} \rho^{4}-820 \alpha^{2} \beta^{3} \gamma^{3} \delta^{2} \rho^{2}+232 \alpha^{2} \beta^{3} \gamma^{2} \delta \rho^{3} \sigma-12 \alpha^{2} \beta^{3} \gamma \rho^{4} \sigma^{2}+102 \alpha^{2} \beta^{2} \gamma^{4} \delta^{4} \\
& +232 \alpha^{2} \beta^{2} \gamma^{3} \delta^{3} \rho \sigma+128 \alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \rho^{2} \sigma^{2}-80 \alpha^{2} \beta^{2} \gamma \delta \rho^{3} \sigma^{3}+6 \alpha^{2} \beta^{2} \rho^{4} \sigma^{4}-12 \alpha^{2} \beta \gamma^{3} \delta^{4} \sigma^{2} \\
& -80 \alpha^{2} \beta \gamma^{2} \delta^{3} \rho \sigma^{3}+220 \alpha^{2} \beta \gamma \delta^{2} \rho^{2} \sigma^{4}-24 \alpha^{2} \beta \delta \rho^{3} \sigma^{5}+6 \alpha^{2} \gamma^{2} \delta^{4} \sigma^{4}-24 \alpha^{2} \gamma \delta^{3} \rho \sigma^{5} \\
& +24 \alpha^{2} \delta^{2} \rho^{2} \sigma^{6}-4 \alpha \beta^{4} \gamma \rho^{6}-12 \alpha \beta^{3} \gamma^{2} \delta^{2} \rho^{4}-40 \alpha \beta^{3} \gamma \delta \rho^{5} \sigma+4 \alpha \beta^{3} \rho^{6} \sigma^{2}-12 \alpha \beta^{2} \gamma^{3} \delta^{4} \rho^{2} \\
& -80 \alpha \beta^{2} \gamma^{2} \delta^{3} \rho^{3} \sigma+220 \alpha \beta^{2} \gamma \delta^{2} \rho^{4} \sigma^{2}-24 \alpha \beta^{2} \delta \rho^{5} \sigma^{3}-4 \alpha \beta \gamma^{4} \delta^{6}-40 \alpha \beta \gamma^{3} \delta^{5} \rho \sigma \\
& +220 \alpha \beta \gamma^{2} \delta^{4} \rho^{2} \sigma^{2}-272 \alpha \beta \gamma \delta^{3} \rho^{3} \sigma^{3}+48 \alpha \beta \delta^{2} \rho^{4} \sigma^{4}+4 \alpha \gamma^{3} \delta^{6} \sigma^{2}-24 \alpha \gamma^{2} \delta^{5} \rho \sigma^{3} \\
& +48 \alpha \gamma \delta^{4} \rho^{2} \sigma^{4}-32 \alpha \delta^{3} \rho^{3} \sigma^{5}+\beta^{4} \rho^{8}+4 \beta^{3} \gamma \delta^{2} \rho^{6}-8 \beta^{3} \delta \rho^{7} \sigma+6 \beta^{2} \gamma^{2} \delta^{4} \rho^{4}-24 \beta^{2} \gamma \delta^{3} \rho^{5} \sigma \\
& +24 \beta^{2} \delta^{2} \rho^{6} \sigma^{2}+4 \beta \gamma^{3} \delta^{6} \rho^{2}-24 \beta \gamma^{2} \delta^{5} \rho^{3} \sigma+48 \beta \gamma \delta^{4} \rho^{4} \sigma^{2}-32 \beta \delta^{3} \rho^{5} \sigma^{3}+\gamma^{4} \delta^{8}-8 \gamma^{3} \delta^{7} \rho \sigma \\
& +24 \gamma^{2} \delta^{6} \rho^{2} \sigma^{2}-32 \gamma \delta^{5} \rho^{3} \sigma^{3}+16 \delta^{4} \rho^{4} \sigma^{4} .
\end{aligned}
$$

The Future

This approach to finding Newton polytopes of hypersurface, and possibly using that information with interpolation to find a defining polynomial appears feasible, and would have many applications, were a proper implementation made.

This is a current project of Taylor Brysiewicz, a graduate student at TAMU.

References

[1] R. Basson, R. Lercier, C. Ritzenthaler, and J. Sijsling, An explicit expression of the Lüroth invariant, ISSAC 13, ACM, New York, 2013, pp. 31-36.
[2] J. Hauenstein and F. Sottile, Newton Polytopes and Witness Sets,] Mathematics in Computer Science, 8 (2014), pp. 235-251.

