Newton Polytopes via Witness Sets Algebraic and Geometric Methods in Applied Discrete Mathematics 11 January 2015

Frank Sottile

Work with Jon Hauenstein and Taylor Brysiewicz.

Fundamental Problem

By algebraic geometry, an irreducible hypersurface \mathcal{H} in \mathbb{C}^n is defined by the vanishing of a single irreducible polynomial, $f \in \mathbb{C}[x_1, \ldots, x_n]$,

$$\mathcal{H} = \mathcal{V}(f) := \{ x \in \mathbb{C}^n \mid f(x) = 0 \}.$$

The problem I want to consider is: Suppose that we know the hypersurface, but not the polynomial?

We would like to understand the polynomial f defining \mathcal{H} .

What Does Understand Mean?

Best: Complete knowledge. There are finite sets $\mathcal{A} \subset \mathbb{Z}^n$ and $\{c_a \mid a \in \mathcal{A}\} \subset \mathbb{C}$ such that

$$f = \sum_{a \in \mathcal{A}} c_a x^a \qquad (x^a := x_1^{a_1} \cdots x_n^{a_n})$$

Pretty Good: Knowing the support, \mathcal{A} .

We'll Settle For: Newton Polytope of \mathcal{H} ,

 $N(\mathcal{H}) :=$ convex hull of \mathcal{A} .

Easier: The degree of \mathcal{H} .

How to Know ${\mathcal H}$ but not f

The hypersurface ${\mathcal H}$ might be the image of a map,

$$\varphi: X \longrightarrow \mathcal{H} \subset \mathbb{C}^n.$$

This is fairly common, for example

$$\Sigma := \{(p, f) \mid p \in \mathbb{P}^1, \deg(f) = d, f_x(p) = f_y(p)\}$$

$$pr / \bigwedge_{\pi} \mathbb{P}^1 \quad \mathbb{P}^d$$

 $pr: \Sigma \to \mathbb{P}^1$ is a projective bundle, and $\pi(\Sigma)$ is the classical discriminant of a *d*-form.

Example: Lüroth Quartics

Lüroth, 1869: If ℓ_1, \ldots, ℓ_5 are equations for lines, then

$$q \; := \; \ell_1 \ell_2 \ell_3 \ell_4 \ell_5 \Bigl(rac{1}{\ell_1} + rac{1}{\ell_2} + rac{1}{\ell_3} + rac{1}{\ell_4} + rac{1}{\ell_5} \Bigr)$$

defines a quartic that inscribes the great pentagon, $\mathcal{V}(\ell_1\ell_2\ell_3\ell_4\ell_5).$

This set of quartics is the image of a map $(\mathbb{C}^3)^5 \to \mathbb{P}^{14}$ $(\mathbb{P}^{14} = \text{plane quartics}),$ and it forms a hypersurface, \mathcal{L} .

Morley, 1919: \mathcal{L} has degree 54.

The defining equation of \mathcal{L} is the *Lüroth invariant*, which could have as many as $\binom{54+14}{14} = 123234279768160$ monomials.

How to Represent a Polytope?

 $P = \text{convex hull of a finite subset of } \mathbb{R}^n$.

$$P = \bigcap \{x \mid \omega \cdot x \leq b_{\omega}\},\$$

 ω in a finite set the intersection of finitely many half-spaces.

Oracle Representation:

For $\omega \in \mathbb{R}^n$, set $h(\omega) = \max\{\omega \cdot x \mid x \in P\}$.

The face P_ω of P *exposed* by ω is

$$P_{\omega} := \{ x \in P \mid \omega \cdot x = h(\omega) \}$$

The oracle representation of P is a function that given $\omega \in \mathbb{R}^n$ returns P_{ω} , if it is a vertex.

We propose a method, based on numerical algebraic geometry to compute an oracle representation of the Newton polytope of a hypersurface.

Witness Sets

Numerical Algebraic Geometry uses numerical analysis to represent and manipulate varieties on a computer.

Let $V \subset \mathbb{C}^n$ be a variety of codimension k, given as a component of F(x) = 0. A witness set for V is a pair (W, L), where -L is a general affine plane of dimension k, and $-W = V \cap L$.

L is either parameterized, or cut out by n-k affine forms, and W consists of numerical approximations to $V \cap L$.

Continuation

In numerical algebraic geometry, the basic operation is continuation, which traces points along implicitly-defined paths.

Suppose that L(t) for $t \in \mathbb{C}$ is a family of k-planes, and we have a witness set $(W_1, L(1))$ for V.

We numerically continue these points in $V \cap L(t)$ from t = 1 to t = 0 to get another witness set $(W_0, L(0))$ for V.

This allows us to sample points from V.

Witness Sets of Projections

Our hypersurfaces come as the image under a projection.

Suppose that $X \subset \mathbb{C}^n \oplus \mathbb{C}^m$ and $\mathcal{H} = \pi(X) \subset \mathbb{C}^n$ is a hypersurface.

Hauenstein, Sommese, Wampler: Given a witness set $(X \cap L, L)$ for X, compute a witness set $(\mathcal{H} \cap \ell, \ell)$ for \mathcal{H} :

- Choose a general lines $\ell \subset \mathbb{C}^n$
- Move L to a non-general plane Λ with $\pi(\Lambda) = \ell$. Set $W' := X \cap \Lambda$. Then $(\pi(W'), \ell)$ is a witness set for \mathcal{H} .

Delicate: Λ is not in general position.

Witness set of a Hypersurface

Suppose $f = \sum_{a \in \mathcal{A}} c_a x^a$ is a polynomial, $\mathcal{H} := \mathcal{V}(f)$, and $P = \operatorname{conv}(\mathcal{A})$.

Let $p, q \in \mathbb{C}^n$ be general, and define

$$\ell_{p,q}(s) = \ell(s) := \{ sp - q \mid s \in \mathbb{C} \}.$$

Then $f(\ell(s)) = 0$ defines the witness set $\mathcal{H} \cap \ell$.

Thus a witness set gives roots of $f(\ell(s))$.

For $\omega \in \mathbb{R}^n$ and t > 0, set $t^{\omega} := (t^{\omega_1}, \ldots, t^{\omega_n})$. Then,

$$f(t^{\omega}.\ell(s)) = \sum_{a \in \mathcal{A}} c_a (sp_1 - q_1)^{a_1} \cdots (sp_n - q_n)^{a_n} t^{\omega \cdot a}$$

$$\stackrel{!}{=} t^{h(\omega)} \Big(\sum_{\mathcal{A} \cap P_{\omega}} c_a (sp-q)^a + \sum_{\mathcal{A} \setminus P_w} c_a (sp-q)^a t^{\omega \cdot a - h(\omega)} \Big)$$

 $\Rightarrow \exists d_{\omega} > 0 \text{ such that } \omega \cdot a - h(\omega) < -d_{\omega} \text{ for } a \in \mathcal{A} \smallsetminus P_{\omega}.$

Main Lemma

$$f(t^{\omega}.\ell(s)) = t^{h(\omega)} \Big(\sum_{\mathcal{A} \cap P_{\omega}} c_a (sp-q)^a + \sum_{\mathcal{A} \setminus P_{w}} c_a (sp-q)^a t^{\omega \cdot a - h(\omega)} \Big)$$

Set f_{ω} to be the sum of terms in f from P_{ω}

Lemma. In the limit as $t \to \infty$, $t^{-h(\omega)}f(t^{\omega}.\ell(s)) \to f_{\omega}(\ell(s))$. $\deg(f) - \deg(f_{\omega})$ zeroes will diverge to ∞ , while the remaining $\deg(f_{\omega})$ remaining bounded.

If P_{ω} is a vertex, say a (which holds when ω is generic), then

$$f_{\omega}(\ell(s)) = c_a(sp_1 - q_1)^{a_1} \cdots (sp_n - q_n)^{a_n}$$

Thus a_i zeroes of $f(t^{\omega}.\ell(s))$ coalesce to q_i/p_i as $t \to \infty$.

Our paper describes how to turn this idea into an algorithm.

Lüroth quartics, again

We created a test implementation and used it to compute a few vertices of the *Lüroth polytope* (Newton polytope of the Lüroth hypersurface).

Ciani quartics: The Lüroth quartics whose monomials are squares,

$$lpha x^4 + eta y^4 + \gamma z^4 + 2(\delta x^2 y^2 +
ho x^2 z^2 + \sigma y^2 z^2),$$

form a face of the Lüroth polytope, which we computed.

It is $14 \bigtriangledown + \alpha^4 \beta^4 \gamma^4$, where is equivalent to the bipyramid,

$$\operatorname{conv} \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} =$$

Ciani Face of Lüroth Invariant

We used a numerical factorization algorithm and an LLL-based interpolation method to compute the Lüroth invariant, restricted to this face of Ciani quartics, $f(\mathcal{L})_{\omega}$.

$$f(\mathcal{L})_{\omega} \;=\; lpha^4 eta^4 \gamma^4 f_1^4 f_2^2 f_3^2 f_4^2 \cdot f_5 \,,$$

where f_1, \ldots, f_5 have integer coefficients, between 1 and $2401 = 7^4$.

 f_1, f_2, f_3, f_4 have the same Newton polytope, \checkmark , but f_5 has Newton polytope 4

Subsequently, Basson, Lercier, Ritzenthaler, and Sijsling found an expression for the Lüroth invariant in terms of the fundamental and secondary invariants of GL(3) acting on quartics.

f_5

 $2401\alpha^{4}\beta^{4}\gamma^{4} - 196\alpha^{4}\beta^{3}\gamma^{3}\sigma^{2} + 102\alpha^{4}\beta^{2}\gamma^{2}\sigma^{4} - 4\alpha^{4}\beta\gamma\sigma^{6} + \alpha^{4}\sigma^{8} - 196\alpha^{3}\beta^{4}\gamma^{3}\rho^{2}$ $-196\alpha^{3}\beta^{3}\gamma^{4}\delta^{2}+840\alpha^{3}\beta^{3}\gamma^{3}\delta\rho\sigma-820\alpha^{3}\beta^{3}\gamma^{2}\rho^{2}\sigma^{2}-820\alpha^{3}\beta^{2}\gamma^{3}\delta^{2}\sigma^{2}+232\alpha^{3}\beta^{2}\gamma^{2}\delta\rho\sigma^{3}$ $-12\alpha^{3}\beta^{2}\gamma\rho^{2}\sigma^{4}-12\alpha^{3}\beta\gamma^{2}\delta^{2}\sigma^{4}-40\alpha^{3}\beta\gamma\delta\rho\sigma^{5}+4\alpha^{3}\beta\rho^{2}\sigma^{6}+4\alpha^{3}\gamma\delta^{2}\sigma^{6}-8\alpha^{3}\delta\rho\sigma^{7}$ $+102\alpha^{2}\beta^{4}\gamma^{2}\rho^{4} - 820\alpha^{2}\beta^{3}\gamma^{3}\delta^{2}\rho^{2} + 232\alpha^{2}\beta^{3}\gamma^{2}\delta\rho^{3}\sigma - 12\alpha^{2}\beta^{3}\gamma\rho^{4}\sigma^{2} + 102\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}$ $+232\alpha^2\beta^2\gamma^3\delta^3\rho\sigma+128\alpha^2\beta^2\gamma^2\delta^2\rho^2\sigma^2-80\alpha^2\beta^2\gamma\delta\rho^3\sigma^3+6\alpha^2\beta^2\rho^4\sigma^4-12\alpha^2\beta\gamma^3\delta^4\sigma^2$ $-80\alpha^{2}\beta\gamma^{2}\delta^{3}\rho\sigma^{3}+220\alpha^{2}\beta\gamma\delta^{2}\rho^{2}\sigma^{4}-24\alpha^{2}\beta\delta\rho^{3}\sigma^{5}+6\alpha^{2}\gamma^{2}\delta^{4}\sigma^{4}-24\alpha^{2}\gamma\delta^{3}\rho\sigma^{5}$ $+24\alpha^2\delta^2\rho^2\sigma^6 - 4\alpha\beta^4\gamma\rho^6 - 12\alpha\beta^3\gamma^2\delta^2\rho^4 - 40\alpha\beta^3\gamma\delta\rho^5\sigma + 4\alpha\beta^3\rho^6\sigma^2 - 12\alpha\beta^2\gamma^3\delta^4\rho^2$ $-80\alpha\beta^2\gamma^2\delta^3\rho^3\sigma + 220\alpha\beta^2\gamma\delta^2\rho^4\sigma^2 - 24\alpha\beta^2\delta\rho^5\sigma^3 - 4\alpha\beta\gamma^4\delta^6 - 40\alpha\beta\gamma^3\delta^5\rho\sigma$ $+220\alpha\beta\gamma^{2}\delta^{4}\rho^{2}\sigma^{2}-272\alpha\beta\gamma\delta^{3}\rho^{3}\sigma^{3}+48\alpha\beta\delta^{2}\rho^{4}\sigma^{4}+4\alpha\gamma^{3}\delta^{6}\sigma^{2}-24\alpha\gamma^{2}\delta^{5}\rho\sigma^{3}$ $+48\alpha\gamma\delta^{4}\rho^{2}\sigma^{4}-32\alpha\delta^{3}\rho^{3}\sigma^{5}+\beta^{4}\rho^{8}+4\beta^{3}\gamma\delta^{2}\rho^{6}-8\beta^{3}\delta\rho^{7}\sigma+6\beta^{2}\gamma^{2}\delta^{4}\rho^{4}-24\beta^{2}\gamma\delta^{3}\rho^{5}\sigma$ $+24\beta^2\delta^2\rho^6\sigma^2+4\beta\gamma^3\delta^6\rho^2-24\beta\gamma^2\delta^5\rho^3\sigma+48\beta\gamma\delta^4\rho^4\sigma^2-32\beta\delta^3\rho^5\sigma^3+\gamma^4\delta^8-8\gamma^3\delta^7\rho\sigma$ $+ 24\gamma^2\delta^6\rho^2\sigma^2 - 32\gamma\delta^5\rho^3\sigma^3 + 16\delta^4\rho^4\sigma^4.$

The Future

This approach to finding Newton polytopes of hypersurface, and possibly using that information with interpolation to find a defining polynomial appears feasible, and would have many applications, were a proper implementation made.

This is a current project of Taylor Brysiewicz, a graduate student at TAMU.

References

- R. Basson, R. Lercier, C. Ritzenthaler, and J. Sijsling, An explicit expression of the Lüroth invariant, ISSAC 13, ACM, New York, 2013, pp. 31–36.
- [2] J. Hauenstein and F. Sottile, Newton Polytopes and Witness Sets,] Mathematics in Computer Science, 8 (2014), pp. 235–251.