Equivariant Cohomology and the Pattern Map

Combinatorics of Symmetric Functions AMS Meeting in Athens, GA, 5 March 2016

Frank Sottile
sottile@math.tamu.edu

H. Praise Adeyemo ph.adeyemo@ui.edu.ng

$$
\text { arXiv.org/1506. } 04411
$$

Equivariant Cohomology of Flag

 ManifoldsThe (torus) equivariant cohomology of flag manifold $\mathcal{F}=G / B$ has three algebraic/combinatorial presentations.

- Borel: $H_{T}^{*}(\mathcal{F})=S \otimes_{S^{W}} S$, where W is the Weyl group $S=$ symmetric algebra of character group of T (polynomials).
- GKM: $H_{T}^{*}(\mathcal{F}) \subset$ Functions (W, S), subspace of ϕ satisfying GKM-relations:

For every edge $u \rightarrow v$ in the moment graph, $\phi(v)-\phi(u)$ is divisible by $v-u$, the linear form giving the edge direction.

$$
W=S_{4}
$$

Schubert Basis

- Schubert: $H_{T}^{*}(\mathcal{F})=\bigoplus_{w \in W} S \cdot \mathfrak{S}_{w}$, where \mathfrak{S}_{w} is the equivariant class of a Schubert variety, X_{w}.

Schubert classes have (known) expressions in the other presentations, which generalize Schur polynomials.

Expanding $\mathfrak{S}_{\alpha} \cdot \mathfrak{S}_{\beta}$ in the Schubert basis for $H_{T}^{*}(\mathcal{F})$,

$$
\mathfrak{S}_{\alpha} \cdot \mathfrak{S}_{\beta}=\sum_{\gamma \in W} c_{\alpha, \beta}^{\gamma} \mathfrak{S}_{\gamma}
$$

defines equivariant Schubert structure constants $c_{\alpha, \beta}^{\gamma} \in S$.
These generalizations of Littlewood-Richardson coefficients are positive in the sense of Graham.

Geometry of Permutation Patterns

Billey-Braden ('03): G : Semisimple linear algebraic group. Let \mathcal{F} be the flag variety of G, parametrizing Borel subgroups. Let $\eta \in G$ be semisimple. Set $G_{\eta}:=Z_{G}(\eta)$.
$B \mapsto B_{\eta}:=B \cap G_{\eta}$ defines the geometric pattern map, π_{η},

$$
\mathcal{F}^{\eta}:=\{B \in \mathcal{F} \mid \eta \in B\} \xrightarrow{\pi_{\eta}} \mathcal{F}_{\eta}:=G_{\eta} / B_{\eta} .
$$

Let W, W_{η} be the Weyl groups of G, G_{η}. If $\pi_{\eta}: W \rightarrow W_{\eta}$ is the Billey-Postnikov generalised pattern map, then we have

Theorem [BB]. $\pi_{\eta}\left(X_{w} \cap \mathcal{F}^{\eta}\right)=X_{\pi_{\eta}(w)}$.

$$
\mathbb{F} \ell(2) \times \mathbb{F} \ell(2) \hookrightarrow \mathbb{F} \ell(4)
$$

Set $\eta=\left(\begin{array}{cc}\alpha I_{2} & 0 \\ 0 & \beta I_{2}\end{array}\right)$, so that $G L(4)_{\eta}=G L(2) \times G L(2)$.
$\mathbb{F} \ell(4)_{\eta}=G L(4)_{\eta} / B_{\eta}=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Moment graph of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a square.
$\mathbb{F} \ell(4)^{\eta}$ is six $=\binom{4}{2}$ copies of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
Each section $\iota_{\varsigma}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{F} \ell(4)^{\eta}$ of pattern map is given by a shuffle ς, which is a minimal right coset representative of W_{η} in W.

We compute ι_{ς}^{*} in each of the three presentations.

Pattern Map: Borel \& GKM

In the Borel presentation, $H_{T}^{*}(\mathcal{F})=S \otimes_{S^{W}} S$, the left copy of S is the coefficient ring $H_{T}^{*}(p t)$, and the right copy is generated by equivariant Chern classes.

Given a section of the pattern map t_{ς}, we have

$$
\iota_{\varsigma}^{*}(f \otimes g)=f \otimes \varsigma(g) \in S \otimes_{S^{W_{\eta}}} S=H_{T}^{*}\left(\mathcal{F}_{\eta}\right)
$$

In the GKM presentation, the map ι_{ς}^{*} : Functions $(W, S) \rightarrow$ Functions $\left(W_{\eta}, S\right)$ is simply restriction of functions:

$$
\iota_{\varsigma}^{*}(\phi)(v)=\phi\left(\iota_{\varsigma}(v)\right)=\phi(v \varsigma),
$$

for $\phi: W \rightarrow S$ and $v \in W_{\eta}$.

Pattern Map: Schubert Basis

Expanding $\iota_{\varsigma}^{*} \mathfrak{S}_{w}$ in the Schubert basis for $H_{T}^{*}\left(\mathcal{F}_{\eta}\right)$,

$$
\iota_{\varsigma}^{*} \mathfrak{S}_{w}=\sum_{v \in W_{\eta}} d_{w, \varsigma}^{v} \mathfrak{S}_{v}
$$

defines decomposition coefficients $d_{w, \varsigma}^{v} \in S$.
Using the formula $\pi_{\eta}\left(X_{w} \cap \mathcal{F}^{\eta}\right)=X_{\pi_{\eta}(w)}$, we obtain
Theorem. $d_{w, \varsigma}^{v}=c_{w, \varsigma}^{v \varsigma}$.
Algorithm:
Expand the product $\mathfrak{S}_{w} \cdot \mathfrak{S}_{\varsigma}$ in Schubert basis for $H_{T}^{*}(\mathcal{F})$.
Restrict to terms of the form $\mathfrak{S}_{v \varsigma}$ for $v \in W_{\eta}$.
Replace $\mathfrak{S}_{v \varsigma}$ by \mathfrak{S}_{v} to obtain formula for $\iota_{\varsigma}^{*}\left(\mathfrak{S}_{w}\right)$.

Example

$$
\begin{gathered}
G=C_{4}, S=\mathbb{Q}\left[t_{1}, \ldots, t_{4}\right], G_{\eta}=A_{3}, \text { and } \varsigma=\overline{2} \overline{1} 34 \\
\mathfrak{C}_{3 \overline{1} 42} \cdot \mathfrak{C}_{\overline{2} \overline{1} 34}=2\left(t_{1}^{2}+t_{1} t_{3}\right) \mathfrak{C}_{\overline{3} \overline{1} 42}+2\left(t_{1}+t_{3}\right) \mathfrak{C}_{\overline{1} \overline{3} 42} \\
\quad+2 t_{1} \mathfrak{C}_{\overline{4} \overline{1} 32}+2\left(t_{1}+t_{2}+t_{3}\right) \mathfrak{C}_{\overline{3} \overline{2} 41} \\
+2\left(t_{1}+t_{2}\right) \mathfrak{C}_{3 \overline{2} 4 \overline{1}}+\mathfrak{C}_{\overline{3} \overline{2} 4 \overline{1}}+2 \mathfrak{C}_{2 \overline{3} 4 \overline{1}} \\
+2 \mathfrak{C}_{\overline{4} \overline{3} 12}+2 \mathfrak{C}_{\overline{2} \overline{3} 41}+2 \mathfrak{C}_{\overline{1} \overline{4} 32}+2 \mathfrak{C}_{\overline{4} \overline{2} 31} .
\end{gathered}
$$

As only the first and last four indices have the form $v \varsigma$,

$$
\begin{aligned}
\iota_{\varsigma}^{*}\left(\mathfrak{C}_{3 \overline{1} 42}\right) & =2\left(t_{1}^{2}+t_{1} t_{3}\right) \mathfrak{S}_{1342}+2\left(t_{1}+t_{3}\right) \mathfrak{S}_{3142} \\
& +2 t_{1} \mathfrak{S}_{1432}+2\left(t_{1}+t_{2}+t_{3}\right) \mathfrak{S}_{2341} \\
& +2 \mathfrak{S}_{3412}+2 \mathfrak{S}_{3241}+2 \mathfrak{S}_{4132}+2 \mathfrak{S}_{2431}
\end{aligned}
$$

