Trace Test in Numerical Algebraic Geometry CARGO Lab 15-year Event 31 March 2017

Frank Sottile sottile@math.tamu.edu

Work with Anton Leykin and Jose Israel Rodriguez.

Numerical Algebraic Geometry

nu•mer•i•cal al.ge•bra•ic ge.om•e•try
[n̄̄'merəkəl, aljə'brāik jē'ämətrē]
1: The use of techniques from numerical analysis to study algebraic varieties.

2: A symbolic-numerical approach to computing in algebraic geometry that exploits modern parallelism and refinable approximations to treat questions that are out of reach of purely symbolic methods.

3 : The future of computation in algebraic geometry.

Core Numerical Methods

Numerical algebraic geometry rests upon two core numerical methods, Newton's method to refine approximate solutions to a system of equations, and discretization (e.g. Euler or Runge-Kutta) from numerical PDE.

These are combined to give robust predictor-corrector methods for following implicitly defined curves, such as the Euler predictor shown below.

Homotopy

A homotopy is a one-parameter family of polynomial systems connecting a system F you want to solve with one G whose solutions are known.

Formally, $H: \mathbb{C}^{n} \times \mathbb{C}_{t} \rightarrow \mathbb{C}^{m}$ with $H(\bullet, 1)=G$ and $H(\bullet, 0)=F$, and $H^{-1}(0)$ is a curve C over \mathbb{C}_{t}. Then $\left.C\right|_{t \in[0,1]}$ consists of arcs connecting the unknown points $F=0$ to known points in $G=0$.

Bézout Homotopy

The universal Bézout homotopy is easy to describe.

Suppose that we have a square polynomial system

$$
F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}
$$

with $\operatorname{deg}\left(F_{i}\right)=d_{i}$.
Set $G=\left(G_{1}, \ldots, G_{n}\right)$ where $G_{i}:=x_{i}^{d_{i}}-1$, and then define

$$
H:=t \cdot G+(1-t) \cdot F
$$

The solutions to G are known, and every solution to F is connected to a solution to G along some arc of $\left.H^{-1}(0)\right|_{[0,1]}$.

More sophisticated homotopy algorithms are exceptionally powerful and efficient.

Witness Set

Numerical algebraic geometry uses the ability to solve systems of polynomial equations to study algebraic varieties on a computer.

Its key data structure for representing a variety $V \subset \mathbb{C}^{n}$ is a witness set. This is a triple (F, Λ, W), where

1. $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is a polynomial system with V a component of $F^{-1}(0)$.
2. $\Lambda: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ is a general affine linear map with $k=\operatorname{dim} V$.
3. $W:=V \cap L$ is transverse and a finite set of points, where we have $L:=\Lambda^{-1}(0)$.

Observe that W is among the solutions to the augmented system $[F, \Lambda]$.
The set W is considered to be a generic point of V in the sense of Weil.

Changing Witness Sets and Sampling

Witness sets are used in many algorithms to study a variety $V \subset \mathbb{C}^{n}$.
Let (F, Λ, W) be a witness set for V, and set $k:=\operatorname{dim} V$.
Let $\Lambda^{\prime}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ be another map and $\Lambda(t)$ for $t \in \mathbb{C}$ be a family of maps interpolating between Λ and Λ^{\prime} (so that $\Lambda(1)=\Lambda$ and $\Lambda(0)=\Lambda^{\prime}$).

The augmented system $[F, \Lambda(t)]$ is a homotopy between W and $W^{\prime}:=V \cap L^{\prime}$, where $L^{\prime}=\left(\Lambda^{\prime}\right)^{-1}(0)$.

When Λ^{\prime} is sufficiently general so that $W^{\prime}:=V \cap L^{\prime}$ is transverse, then W^{\prime} is another witness set for V.

Even if Λ^{\prime} is not general, then W^{\prime} consists of points of V.
Moving Λ in this manner enables us to sample points of V.

Membership and Monodromy

Let (F, Λ, W) be a witness set for $V \subset \mathbb{C}^{n}$.
We may test if $x \in \mathbb{C}^{n}$ lies in V :
Let $\Lambda^{\prime}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$ be a general linear map with $x \in L^{\prime}:=\left(\Lambda^{\prime}\right)^{-1}$.
Choose a family $\Lambda(t)$ interpolating between Λ and Λ^{\prime}, and compute $W^{\prime}:=V \cap L^{\prime}$ as before.

Then $x \in V \Longleftrightarrow x \in W^{\prime}$.
Suppose that $\Lambda=\Lambda^{\prime}$ and $\Lambda(t)$ is not constant.
Then $W=W^{\prime}$, and the arcs in the homotopy given by $\Lambda(t)$ define a permutation of W.

Computing such monodromy permutations is a standard operation in numerical algebraic geometry.

Numerical Irreducible Decomposition

Let $V=V_{1} \cup \cdots \cup V_{s}$ be a union of components of $F^{-1}(0)$, all of the same dimension.

Given a general slice $W=V \cap \Lambda^{-1}(0)$ of V,
a numerical irreducible decomposition is the partition $W=W_{1} \cup \cdots \cup W_{s}$ of W where $W_{i}:=V_{i} \cap \Lambda^{-1}(0)$.

Monodromy maps points of V_{i} to V_{i}, preserving the component W_{i}.

The partition of W given by cycles in a monodromy permutation is finer than this numerical irreducible decomposition.

Computing more monodromy permutations coarsens this orbit partition.

Needed for this is a stopping criterion.

The Trace Test

Given a partition $W=U_{1} \cup \cdots \cup U_{r}$ of the slice $W=V \cap L$, a stopping criterion for numerical irreducible decomposition would tell us if each component U_{i} forms the witness set for a component of V.

This reduces to the basic problem: Given a subset $W^{\prime} \subset W$ of a witness set, how to certify that $W^{\prime}=W$?

Trace Test: Suppose that $L(t)$ for $t \in \mathbb{C}$ is a general pencil of affine-linear spaces with $L(0)=L$. Use continuation to follow points of W^{\prime} along t, obtaining sets $W^{\prime}(t)$. Then the trace of points in $W^{\prime}(t)$,

$$
\operatorname{Tr}\left(W^{\prime}(t)\right):=\sum\left\{w \mid w \in W^{\prime}(t)\right\},
$$

is an affine function of t if and only if $W^{\prime}=W$.

Proof of Trace Test

A general irreducible curve in \mathbb{C}^{2} is defined by a dense irreducible polynomial $f \in \mathbb{C}[x, t]$ of degree d. Normalize f so that $1=$ coefficient of x^{d}.
$f \in \mathbb{C}(t)[x]$ is irreducible and monic. The negative sum of its roots is its coefficient of x^{d-1}. Thus

$$
\begin{equation*}
\operatorname{trace}(K / \mathbb{C}(t))(x)=c_{0} t+c_{1} \quad c_{0}, c_{1} \in \mathbb{C} \tag{1}
\end{equation*}
$$

where K contains the roots of f.
A general pencil $L(t)$ spans a codimension $m-1$ plane M with $M \cap V$ a curve, and M has coordinates (\underline{x}, t). By ($\mathbb{1}), \operatorname{Tr}(W(t))$ is an affine function when W is a witness set.

This does not hold for $\operatorname{Tr}\left(W^{\prime}(t)\right)$ if $W^{\prime} \subsetneq W$, as the monodromy in t is the full symmetric group.

Explain

Multihomogeneous Witness Sets

A subvariety $V \subset \mathbb{P}^{A} \times \mathbb{P}^{B}$ of dimension m has multidegrees $d_{a, b}$ for $a+b=m$: For a general codimension a plane $L \subset \mathbb{P}^{A}$ and a general codimension b plane $M \subset \mathbb{P}^{B}$,

$$
d_{a, b}(V)=\# V \cap(L \times M)
$$

Definition (Hauenstein-Rodriguez) An intersection $W_{a, b}=V \cap(L \times M)$ is a multihomogeneous witness set of bidimension (a, b) for V.

Advantages:
(1) Reflects the structure of V in $\mathbb{P}^{A} \times \mathbb{P}^{B}$.
(2) Smaller than alternatives. Embedding V into $\mathbb{P}^{A B+A+B}$ via Segre σ,

$$
\operatorname{deg}(\sigma(V))=\sum_{a+b=m}\binom{m}{a} d_{a, b}
$$

This is huge.

Using Multihomogeneous Witness Sets

Hauenstein and Rodriguez showed that many algorithms in numerical algebraic geometry work well with multihomogeneous witness sets.
These include regeneration, membership, and using a multihomogeneous witness set in one bidimension to populate another.

What does not work well is the trace test.
Fact. If $L(t) \subset \mathbb{P}^{A}$ and $M(s) \subset \mathbb{P}^{B}$ are pencils of affine spaces of codimensions a and b, respectively, then $\operatorname{Tr}(V \cap(L(t) \times M(s)))$ is not a bilinear function in s and t.

We cannot even fix t and let s vary for irreducible decomposition, for $V \cap L$ could be reducible even if V is irreducible.

Dimension Reduction

Let $V \subset \mathbb{P}^{A} \times \mathbb{P}^{B}$ be irreducible of dimension $m \geq 2, a+b=m$ with $d_{a, b}(V) \neq 0, L^{\prime} \subset \mathbb{P}^{A}$ a general linear space of codimension $a-1$, and $M^{\prime} \subset \mathbb{P}^{B}$ a general linear space of codimension $b-1$.
$U:=V \cap\left(L^{\prime} \times M^{\prime}\right)$ is irreducible of dimension 2 with multidegrees

$$
d_{0,2}=d_{a-1, b+1}(V), \quad d_{1,1}=d_{a, b}(V), \quad d_{2,0}=d_{a+1, b-1}(V)
$$

Either (1) $d_{0,2}=d_{2,0}=0 \Rightarrow U$ is a product of curves. Then V is also a product and we may treat each factor separately.

Or (2) a further linear slice is possible, reducing V to a curve in a product of projective spaces.

The cases are detected from the tangent spaces at general points of V or of U.

A Multihomogeneous Trace Test

Assume that V is not a product. Given nonzero adjacent multidegrees $d_{\alpha+1, \beta}$ and $d_{\alpha, \beta+1}, L^{\prime} \subset \mathbb{P}^{A}$ and $M^{\prime} \subset \mathbb{P}^{B}$ of codimensions α and β containing hyperplanes $L \subset L^{\prime}$ and $M \subset M^{\prime}$, then

$$
W_{10}:=V \cap\left(L \times M^{\prime}\right) \text { and } W_{01}:=V \cap\left(L^{\prime} \times M\right)
$$

are the corresponding multihomogeneous witness sets.
Then $C:=V \cap\left(L^{\prime} \times M^{\prime}\right)$ is an irreducible curve with multidegrees $d_{10}=d_{\alpha+1, \beta}$ and $d_{01}=d_{\alpha, \beta+1}$ having witness sets W_{10} and W_{01}.

Working in an affine patch $\mathbb{C}^{n} \oplus \mathbb{C}^{m}$ on $L^{\prime} \times M^{\prime}, C$ has degree $d_{10}+d_{01}$ and $W_{01} \cup W_{10}$ can be used to get a witness set $W=C \cap H$, which we may use for a trace test in the affine space $\mathbb{C}^{n} \oplus \mathbb{C}^{m}$.

Example

Suppose that $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ is defined locally by $y^{2} x=1$.

Left: Linear spaces $x=x_{0}$ and $y=y_{0}$, line $H: h=0$, and the curve $g\left(\frac{1}{2}\right)$, where $g(t):=\left(x-x_{0}\right)\left(y-y_{0}\right)(1-t)+t h$. These are $g(t)$ at $t=0, \frac{1}{2}, 1$.

Right: the parallel slices $h=\tau$ are in green, and the averages of witness points ($\frac{1}{3}$ of the trace) lies on the brown line.

Congradulations to CARGO Lab on Your 15th Anniversary

