Trace Test in Numerical Algebraic Geometry CARGO Lab 15-year Event 31 March 2017

Work with Anton Leykin and Jose Israel Rodriguez.

Numerical Algebraic Geometry

nu·mer·i·cal al·ge·bra·ic ge·om·e·try [nā/merəkəl ˌaljə/brāik jē/ämətrē]

- 1 : The use of techniques from numerical analysis to study algebraic varieties.
- 2 : A symbolic-numerical approach to computing in algebraic geometry that exploits modern parallelism and refinable approximations to treat questions that are out of reach of purely symbolic methods.
- 3 : The future of computation in algebraic geometry.

Core Numerical Methods

Numerical algebraic geometry rests upon two core numerical methods, *Newton's method* to refine approximate solutions to a system of equations, and *discretization* (e.g. Euler or Runge-Kutta) from numerical PDE.

These are combined to give robust *predictor-corrector* methods for following implicitly defined curves, such as the Euler predictor shown below.

Homotopy

A homotopy is a one-parameter family of polynomial systems connecting a system F you want to solve with one G whose solutions are known.

Formally, $H: \mathbb{C}^n \times \mathbb{C}_t \to \mathbb{C}^m$ with $H(\bullet, 1) = G$ and $H(\bullet, 0) = F$, and $H^{-1}(0)$ is a curve C over \mathbb{C}_t . Then $C|_{t \in [0,1]}$ consists of arcs connecting the unknown points F = 0 to known points in G = 0.

Bézout Homotopy

The universal *Bézout homotopy* is easy to describe.

Suppose that we have a square polynomial system

$$F = (F_1, \ldots, F_n) : \mathbb{C}^n \longrightarrow \mathbb{C}^n$$

with $\deg(F_i) = d_i$.

Set $G = (G_1, \ldots, G_n)$ where $G_i := x_i^{d_i} - 1$, and then define $H := t \cdot G + (1 - t) \cdot F$.

The solutions to G are known, and every solution to F is connected to a solution to G along some arc of $H^{-1}(0)|_{[0,1]}$.

More sophisticated homotopy algorithms are exceptionally powerful and efficient.

Witness Set

Numerical algebraic geometry uses the ability to solve systems of polynomial equations to study algebraic varieties on a computer.

Its key data structure for representing a variety $V \subset \mathbb{C}^n$ is a *witness set*. This is a triple (F, Λ, W) , where

F: Cⁿ → C^m is a polynomial system with V a component of F⁻¹(0).
Λ: Cⁿ → C^k is a general affine linear map with k = dim V.

3. $W:=V\cap L$ is transverse and a finite set of points, where we have $L:=\Lambda^{-1}(0).$

Observe that W is among the solutions to the augmented system $[F, \Lambda]$.

The set W is considered to be a generic point of V in the sense of Weil.

Changing Witness Sets and Sampling

Witness sets are used in many algorithms to study a variety $V \subset \mathbb{C}^n$.

Let (F, Λ, W) be a witness set for V, and set $k := \dim V$.

Let $\Lambda' : \mathbb{C}^n \to \mathbb{C}^k$ be another map and $\Lambda(t)$ for $t \in \mathbb{C}$ be a family of maps interpolating between Λ and Λ' (so that $\Lambda(1) = \Lambda$ and $\Lambda(0) = \Lambda'$).

The augmented system $[F, \Lambda(t)]$ is a homotopy between W and $W' := V \cap L'$, where $L' = (\Lambda')^{-1}(0)$.

When Λ' is sufficiently general so that $W' := V \cap L'$ is transverse, then W' is another witness set for V.

Even if Λ' is not general, then W' consists of points of V.

Moving Λ in this manner enables us to sample points of V.

Membership and Monodromy

Let (F, Λ, W) be a witness set for $V \subset \mathbb{C}^n$.

We may test if $x \in \mathbb{C}^n$ lies in V:

Let $\Lambda' \colon \mathbb{C}^n \to \mathbb{C}^k$ be a general linear map with $x \in L' := (\Lambda')^{-1}$.

Choose a family $\Lambda(t)$ interpolating between Λ and Λ' , and compute $W' := V \cap L'$ as before.

Then $x \in V \iff x \in W'$.

Suppose that $\Lambda = \Lambda'$ and $\Lambda(t)$ is not constant. Then W = W', and the arcs in the homotopy given by $\Lambda(t)$ define a permutation of W.

Computing such *monodromy permutations* is a standard operation in numerical algebraic geometry.

Numerical Irreducible Decomposition

Let $V = V_1 \cup \cdots \cup V_s$ be a union of components of $F^{-1}(0)$, all of the same dimension.

Given a general slice $W = V \cap \Lambda^{-1}(0)$ of V, a *numerical irreducible decomposition* is the partition $W = W_1 \cup \cdots \cup W_s$ of W where $W_i := V_i \cap \Lambda^{-1}(0)$.

Monodromy maps points of V_i to V_i , preserving the component W_i .

The partition of W given by cycles in a monodromy permutation is finer than this numerical irreducible decomposition.

Computing more monodromy permutations coarsens this orbit partition.

Needed for this is a stopping criterion.

The Trace Test

Given a partition $W = U_1 \cup \cdots \cup U_r$ of the slice $W = V \cap L$, a stopping criterion for numerical irreducible decomposition would tell us if each component U_i forms the witness set for a component of V.

This reduces to the basic problem: Given a subset $W' \subset W$ of a witness set, how to certify that W' = W?

<u>Trace Test</u>: Suppose that L(t) for $t \in \mathbb{C}$ is a general pencil of affine-linear spaces with L(0) = L. Use continuation to follow points of W' along t, obtaining sets W'(t). Then the trace of points in W'(t),

$$Tr(W'(t)) := \sum \{ w \mid w \in W'(t) \},\$$

is an affine function of t if and only if W' = W.

Proof of Trace Test

A general irreducible curve in \mathbb{C}^2 is defined by a dense irreducible polynomial $f \in \mathbb{C}[x, t]$ of degree d. Normalize f so that $1 = \text{coefficient of } x^d$.

 $f\in \mathbb{C}(t)[x]$ is irreducible and monic. The negative sum of its roots is its coefficient of $x^{d-1}.$ Thus

$$\operatorname{trace}(K/\mathbb{C}(t))(x) = c_0 t + c_1 \qquad c_0, c_1 \in \mathbb{C}, \qquad (1)$$

where K contains the roots of f.

A general pencil L(t) spans a codimension m-1 plane M with $M \cap V$ a curve, and M has coordinates (\underline{x}, t) . By (1), Tr(W(t)) is an affine function when W is a witness set.

This does not hold for Tr(W'(t)) if $W' \subsetneq W$, as the monodromy in t is the full symmetric group.

Multihomogeneous Witness Sets

A subvariety $V \subset \mathbb{P}^A \times \mathbb{P}^B$ of dimension m has *multidegrees* $d_{a,b}$ for a+b = m: For a general codimension a plane $L \subset \mathbb{P}^A$ and a general codimension b plane $M \subset \mathbb{P}^B$,

$$d_{a,b}(V) = \#V \cap (L \times M).$$

<u>Definition</u> (Hauenstein-Rodriguez) An intersection $W_{a,b} = V \cap (L \times M)$ is a *multihomogeneous witness set* of bidimension (a, b) for V.

Advantages:

- (1) Reflects the structure of V in $\mathbb{P}^A \times \mathbb{P}^B$.
- (2) Smaller than alternatives. Embedding V into \mathbb{P}^{AB+A+B} via Segre σ ,

$$\deg(\sigma(V)) = \sum_{a+b=m} {m \choose a} d_{a,b}.$$

This is huge.

Using Multihomogeneous Witness Sets

Hauenstein and Rodriguez showed that many algorithms in numerical algebraic geometry work well with multihomogeneous witness sets. These include regeneration, membership, and using a multihomogeneous witness set in one bidimension to populate another.

What does not work well is the trace test.

Fact. If $L(t) \subset \mathbb{P}^A$ and $M(s) \subset \mathbb{P}^B$ are pencils of affine spaces of codimensions a and b, respectively, then $\operatorname{Tr}(V \cap (L(t) \times M(s)))$ is not a bilinear function in s and t.

We cannot even fix t and let s vary for irreducible decomposition, for $V\cap L$ could be reducible even if V is irreducible.

Dimension Reduction

Let $V \subset \mathbb{P}^A \times \mathbb{P}^B$ be irreducible of dimension $m \geq 2$, a+b = m with $d_{a,b}(V) \neq 0$, $L' \subset \mathbb{P}^A$ a general linear space of codimension a-1, and $M' \subset \mathbb{P}^B$ a general linear space of codimension b-1.

 $U := V \cap (L' \times M')$ is irreducible of dimension 2 with multidegrees

$$d_{0,2} = d_{a-1,b+1}(V)$$
, $d_{1,1} = d_{a,b}(V)$, $d_{2,0} = d_{a+1,b-1}(V)$.

Either (1) $d_{0,2} = d_{2,0} = 0 \implies U$ is a product of curves. Then V is also a product and we may treat each factor separately.

Or (2) a further linear slice is possible, reducing V to a curve in a product of projective spaces.

The cases are detected from the tangent spaces at general points of V or of U_{\cdot}

A Multihomogeneous Trace Test

Assume that V is not a product. Given nonzero adjacent multidegrees $d_{\alpha+1,\beta}$ and $d_{\alpha,\beta+1}$, $L' \subset \mathbb{P}^A$ and $M' \subset \mathbb{P}^B$ of codimensions α and β containing hyperplanes $L \subset L'$ and $M \subset M'$, then

 $W_{10} := V \cap (L \times M')$ and $W_{01} := V \cap (L' \times M)$

are the corresponding multihomogeneous witness sets.

Then $C := V \cap (L' \times M')$ is an irreducible curve with multidegrees $d_{10} = d_{\alpha+1,\beta}$ and $d_{01} = d_{\alpha,\beta+1}$ having witness sets W_{10} and W_{01} .

Working in an affine patch $\mathbb{C}^n \oplus \mathbb{C}^m$ on $L' \times M'$, C has degree $d_{10} + d_{01}$ and $W_{01} \cup W_{10}$ can be used to get a witness set $W = C \cap H$, which we may use for a trace test in the affine space $\mathbb{C}^n \oplus \mathbb{C}^m$.

Example

Suppose that $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ is defined locally by $y^2 x = 1$.

Left: Linear spaces $x = x_0$ and $y = y_0$, line H : h = 0, and the curve $g(\frac{1}{2})$, where $g(t) := (x-x_0)(y-y_0)(1-t) + th$. These are g(t) at $t = 0, \frac{1}{2}, 1$.

Right: the parallel slices $h = \tau$ are in green, and the averages of witness points ($\frac{1}{3}$ of the trace) lies on the brown line.

Congradulations to CARGO Lab on Your 15th Anniversary

