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Witness sets in Numerical Algebraic
Geometry

Numerical algebraic geometry uses the ability to solve systems of polynomial

equations to study algebraic varieties on a computer.

It represents a variety V ⊂ Cn as a witness set W = V ∩L, where L is

a general affine linear space of codimension m = dimV .

Basic problem: Given a subset W ′ ⊂ W how to certify that W ′ = W ?

Trace Test: Suppose that L(t) for t ∈ C is a general pencil of affine-linear

spaces with L(0) = L. Use continuation to follow points of W ′ along t,

obtaining sets W ′(t). Then the trace of points in W ′(t),

Tr(W
′
(t)) :=

∑

{w | w ∈ W
′
(t)} ,

is an affine function of t if and only if W ′ = W .
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Proof of Trace Test

A general irreducible curve in C2 is defined by a dense irreducible polynomial

f ∈ C[x, t] of degree d. Normalize f so that 1 = coefficient of xd.

f ∈ C(t)[x] is irreducible and monic. The negative sum of its roots is its

coefficient of xd−1. Thus

trace(K/C(t))(x) = c0t + c1 c0, c1 ∈ C , (1)

where K contains the roots of f .

A general pencil L(t) spans a codimension m−1 plane M with M ∩ V

a curve, and M has coordinates (x, t). By (1), Tr(W (t)) is an affine

function when W is a witness set.

This does not hold for Tr(W ′(t)) if W ′ ( W , as the monodromy in t is

the full symmetric group.
Explain
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Multihomogeneous Witness Sets

A subvariety V ⊂ PA × PB of dimension m has multidegrees da,b for

a+b = m: For a general codimension a plane L ⊂ PA and a general

codimension b plane M ⊂ PB,

da,b(V ) = #V ∩ (L × M) .

Definition (Hauenstein-Rodriguez) An intersection Wa,b = V ∩(L×M)

is a multihomogeneous witness set of bidimension (a, b) for V .

Advantages:

(1) Reflects the structure of V in PA × PB.

(2) Smaller than alternatives. Embedding V into PAB+A+B via Segre σ,

deg(σ(V )) =
∑

a+b=m

(m
a

)

da,b .

This is huge.
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Using Multihomogeneous Witness Sets

Hauenstein and Rodriguez showed that many algorithms in numerical

algebraic geometry work well with multihomogeneous witness sets.

These include regeneration, membership, and using a multihomogeneous

witness set in one bidimension to populate another.

What does not work well is the trace test.

Fact. If L(t) ⊂ PA and M(s) ⊂ PB are pencils of affine spaces of

codimensions a and b, respectively, then Tr(V ∩ (L(t)×M(s))) is not

a bilinear function in s and t.

We cannot even fix t and let s vary for irreducible decomposition, for V ∩L

could be reducible even if V is irreducible.
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Dimension Reduction

Let V ⊂ PA × PB be irreducible of dimension m ≥ 2, a+b = m with

da,b(V ) 6= 0, L′ ⊂ PA a general linear space of codimension a−1, and

M ′ ⊂ PB a general linear space of codimension b−1.

U := V ∩ (L′ × M ′) is irreducible of dimension 2 with multidegrees

d0,2 = da−1,b+1(V ) , d1,1 = da,b(V ) , d2,0 = da+1,b−1(V ) .

Either (1) d0,2 = d2,0 = 0 ⇒ U is a product of curves. Then V is also

a product and we may treat each factor separately.

Or (2) a further linear slice is possible, reducing V to a curve in a product

of projective spaces.

The cases are detected from the tangent spaces at general points of V or

of U .
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A Multihomogeneous Trace Test

Assume that V is not a product. Given nonzero adjacent multidegrees

dα+1,β and dα,β+1, L
′ ⊂ PA and M ′ ⊂ PB of codimensions α and β

containing hyperplanes L ⊂ L′ and M ⊂ M ′, then

W10 := V ∩ (L × M
′
) and W01 := V ∩ (L

′
× M)

are the corresponding multihomogeneous witness sets.

Then C := V ∩ (L′ × M ′) is an irreducible curve with multidegrees

d10 = dα+1,β and d01 = dα,β+1 having witness sets W10 and W01.

Working in an affine patch Cn⊕Cm on L′×M ′, C has degree d10+d01

and W01 ∪ W10 can be used to get a witness set W = C ∩ H, which

we may use for a trace test in the affine space Cn ⊕ Cm.
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Example

Suppose that C ⊂ P1 × P1 is defined locally by y2x = 1.

1

y

x1

L′ × M

g(12) h
L × M ′

C

C
1

y

x 1

h

τ = 0

τ = −1

τ = −2

Left: Linear spaces x = x0 and y = y0, line H : h = 0, and the curve

g(12), where g(t) := (x−x0)(y−y0)(1−t) + th. These are g(t) at

t = 0, 1
2, 1.

Right: the parallel slices h = τ are in green, and the averages of witness

points (13 of the trace) lies on the brown line.
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