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A-Discriminants

Let A ⊂ Z
n be a finite spanning set that lies in an affine hyperplane.

A polynomial f with support A

f :=
∑

a∈A

cax
a

ca ∈ C ,

defines a hypersurface V(f) ⊂ P
n−1.

A-discriminant : hypersurface in P
A of those f with V(f) singular.

This rational variety, its defining equation, and Newton polytope remain an

object of interest. (See the talks of Forsgård.)

The A-discriminant has many homogeneities, (C×)n acts on P
A and

on the A-discriminant via t.[ca | a ∈ A] = [taca | a ∈ A].

Taking the quotient by (C×)n gives the (reduced) discriminant.
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Reduced Discriminant

Taking the quotient by (C×)n gives the (reduced) discriminant, which is

a hypersurface in P
d−1, where |A| = n + d. Henceforth, this is the

discriminant.

In algebraic geometry, quotients are typically badly singular and difficult

to study, and the A-discriminant was already complicated.

However, Kapranov generalized the classical Horn parametrization to

discriminants

C
d ∋ z 7−→

∏

b∈B

〈b, z〉b ∈ P
d−1

,

where B is Gale-dual to A, so that Zd B
−→ Z

n+d A
−→ Z

n is exact.

He showed that the image is the (reduced) discriminant, DB. Adding back

the homogeneities gives the original A-discriminant.

This map is central to our study of discriminants.
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(Pre-) Tropical Objects

Let V ⊂ (C×)n be a variety. Its amoeba A(V ) is the set of lengths in V

and its coamoeba coA(V ) is the set of arguments in V . Gel’fand, Kapra-

nov, and Zelevinsky introduced amoebas and Passare introduced coamoebas.

Formally, identify C
× with R × T, where T = S1 is the unit complex

numbers, and erθ 7→ (r, θ). Then A(V ) is the projection of V to R
n

and coA(V ) is its projection to T
n.

Example : The amoeba and coamoeba of V(x + y + 1) are

−π

0

π

−π 0 π
✲

arg(x)

✻

arg(y)
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Tropical Variety

Tropical variety T (V ) of V : cone over the limiting directions of A(V ).

By results of Bergman and Bieri-Groves, T (V ) is a rational polyhedral fan

of the same dimension (in R
n) as V (as a complex variety).

For our line, this is the tripod,

Ã
¡
¡
¡

¡
¡
¡

Geometrically, an integral weight w ∈ Z
n lies in T (V ) if and only if the

initial scheme limt→∞ tw.V 6= ∅ (in (C×)n).
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Tropical Objects for Discriminants

Discriminants have relatively simple and understandable tropical objects.

Theorem (Passare, Sadykov, Tsikh)

Principal A-determinants have solid amoebas. (No bounded components of

complement).

We will see that the tropical variety and coamoeba of a discriminant are also

surprisingly understandable.
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Tropical Discriminants

Dickenstein, Feichtner, and Sturmfels found a beautiful structure theorem

for tropical discriminants, using the Horn-Kapranov parametrization.

The Horn-Kapranov parametrization is a composition of two simple maps

λB : C
d ∋ z 7−→ (〈b, z〉 | b ∈ B) ∈ C

B
,

πB : C
B ∋ x 7−→

∏

b∈B

x
b
b ∈ P

d−1
,

with λB linear and πB a homomorphism on dense tori.

Their work involved two steps.

(a) Tropical variety of a linear space (Bergman fan: Sturmfels,

Ardila-Klivans, and Sturmfels-Feichtner).

(b) Its image under the linear map induced by the homomorphism πB.

Ã Description of tropical discriminant and Newton polytope of discriminant.
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Example

Let B be the column vectors in





1 0 0 1 −2 0

0 1 0 2 −1 −2

0 0 1 0 −2 1





This defines a line arrangement in P
2 and a tropical discriminant.
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Example (continued)

Between the line arrangement and the tropical discriminant is the Bergman

fan of the arrangement. It lies in R
6/R(1, . . . , 1) and has cones corre-

sponding to the flags of flats of the arrangement. Its rays correspond to the

irreducible flats. Here, those are the lines and points of triple intersection.

The tropical discriminant is its image under the linear map given by B; it

has a new ray from the intersection of two cones in the image.
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Discriminant and Its Newton Polytope

3125q4r4 − 1024p5q2 + 1280p4q2r − 40p3q2r2 + 4000p2q3r2 −
40p2q2r3 + 500pq3r3 + 1280pq2r4 + 4000q3r4 − 1024q2r5 −
432p6− 1152p5q+768p4q2+864p5r+1584p4qr+512p3q2r−
432p4r2 + 1584p3qr2 + 5038p2q2r2 − 200pq3r2 − 1152p2qr3 +

512pq2r3 − 200q3r3 + 768q2r4 + 216p5 + 832p4q − 192p3q2 +

216p4r+532p3qr−208p2q2r+832p2qr2−208pq2r2+16q3r2−
192q2r3 − 27p4 − 200p3q+16p2q2 − 200p2qr+16q2r2 +16p2q

I.html
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Discriminant Coamoebas in Dimension 2

Nilsson and Passare described the discriminant coamoeba when B ⊂ Z
2 as

an explicit polyhedral object that is the complement of a zonotope generated

by B in vol(A) times a fundamental domain.

For B =
(

1 −2 1 0
0 1 −2 1

)

, here is the

coamoeba in its fundamental domain and

as the complement of the zonotope.

Here are some reduced dicriminants in dimension d = 2, together with

the vectors B:
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Nilsson-Passare description of discriminant
coamoebae

Order the vectors of B by the clockwise

order of the lines they span, starting from

just below the horizontal.
b5b4

b3

b2
b1

b0

We describe the discriminant coamoeba in R
2, the universal cover of T2.

Starting at which of (0, 0), (π, 0), (0, π),

(π, π) is the argument of the Horn-

Kapranov parametrization at [1, t] for t ≫
0, place the vectors πb0, . . . , πbN in order,

head-to-tail.

−π π
−π

π
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A-discriminant coamoebae
This path is the boundary of a topo-

logical 2-chain, which is the half of the

coamoeba corresponding to the upper half

plane. Starting again at (0, π) place the vec-

tors −πb0, . . . ,−πbN in order, and fill in to

get the rest of the coamoeba chain AB.

This is an oriented topological 2-

chain in T
2 whose oriented bound-

ary consists of the edges coming from

πb0, . . . , πbN ,−πb0, . . . ,−πbn.

We display it in the fundamental domain.
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A zonotope

The boundary of this coamoeba chain, but in

reverse order, is shared by the zonotope ZB

generated by the vectors πb0, πb1, . . . , πbN .

The union of ZB and the coamoeba

chain is therefore a topological 2-

cycle on T
2.

In our example, AB ∪ ZB covers 7

fundamental domains.

Note that it tiles the plane.
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Phase Limit Set

The phase limit set P∞(V ) of a subvariety V ⊂ (C×)n is the set of

accumulation points of arguments of unbounded sequences {xi | i ∈ N}
in V . (Definition similar to the logarithmic limit set.)

Each cone σ of the tropical variety T (V ) of V gives an initial scheme

inσV , on which the subgroup of the torus (C×)n corresponding to the

linear span of σ acts freely. The quotient is the part of V at the infinity

corresponding to σ.

Theorem (Nisse-S.)

The closure of coA(V ) is coA(V ) ∪ P∞(V ), and

P∞
(V ) =

⋃

σ 6=0

coA(inσV ) .

II.html
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Phase Limit Set of a Linear Space

A flat L of the hyperplane arrangement given by B is any intersection

of hyperplanes. The set of hyperplanes BL ⊂ B containing L gives an

arrangement on C
d/L and its complement BL gives an arrangement in L.

There are corresponding linear spaces λBL
(Cd/L) ⊂ C

BL and

λBL(L) ⊂ C
BL

. (Deletion-restriction).

Using the definition of phase limit set, we deduce:

Theorem (Nisse-S.)

The closure of the coamoeba of λB(C
d) is the union of sets, one for each

flat L of B. The set corresponding to L is

coA(λBL
(Cd/L)) × coA(λBL(L)) .

The shape of this recovers what we would get from the Bergman fan using

the structure theorem for phase limit sets.
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More : Coamoeba of a Linear Space

A part of this is a determination of the dimension of the coamoeba (and

also amoeba) of a linear space.

The dimension of the coamoeba of a linear space Λ ⊂ C
n of dimension k is

at most the maximum of n and 2k− h(Λ), where h(Λ) is the dimension

of the maximal (C×)h that acts on Λ, its number of homogeneities.

Lemma. dim coA(Λ) = min{n, 2k − h(Λ)}.

Consequently, the top-dimensional components of the phase limit set of a

linear space correspond to the irreducible flats of B.

The closure of the coamoeba discriminant is the image of the closure of the

coamoeba of the linear space λB(C
d) under the homomorphism πB.

The same is true for the phase limit set of the discriminant.
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Discriminant Coamoebas in Dimension Three

Lemma If dim > 2, the coamoeba discriminant equals its phase limit set.

By the structure theorem for the phase limit set, we need only understand

the components coming from the rays of the tropical discriminant.

There are three types.

(a) Hyperplanes for b ∈ B. This gives a component Tb × coA(DB/b),

which we understand recursively.

(b) Other irreducible flats. If one-dimensional, the component is collapsed

by πB, and does not contribute.

(c) Rays arising from the projection πB of the Bergman fan. These do

not contribute.

In dimension three, only the first type contributes, and we obtain a

description of the coamoeba as a union of polyhedra, and as lying outside

of the zonotope of B, but there is more work to be done...
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