
Solving the Cubic Equation and Beyond
Frank Sottile

We discuss formulas for the solutions to polynomial equations in one variable, such as

3x+ 1 = 2 , 2x2 + 1 = 4x , x3 = 7x+ 6 , . . . .

Letters near the end of the alphabet s, t, x, y, . . . will be our variables, but we will also use
letters such as a, b, c, A,B,C, α, β, γ, . . . to represent real number constants, including the
coefficients. We seek formulas for the solutions in terms of the coefficients.

Beginnings. What is the simplest type of equation to solve?
Of course the answer is a linear equation, one of the form ax + b = 0, whose solution is

x = −b/a. Solutions to such equations are discussed in the Rhind Papyrus (c.1650 BCE)
and probably are significantly more ancient.

How about the next simplest type of equation?
That would be a quadratic equation, one of the form ax2 + bx+ c = 0, whose solution is

given by the familiar quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

We derive this by completing a square. To begin, divide ax2 + bx + c = 0 by its leading
coefficient to get x2 + bx/a+ c/a = 0, and then set β := b

a
and γ = − c

a
to get x2 + βx = γ.

Let us try to simplify this using x = y + δ, which gives

(y + δ)2 + β(y + δ) = γ or y2 + (2δ + β)y + δ2 + βδ = γ .

A propitious choice is δ = −β/2, for that removes the linear term, and we get

(1) y2 = γ − δ2 − βδ = γ +
β2

4
.

This leads to y = ±
√

γ + β2/4. Substituting back for x, and then for a, b, and c gives the
familiar formula

x = −
β

2
±
√

γ +
β2

4
= −

b

2a
±
√

b2

4a2
−

c

a
.

Before moving on, I ask you: why is there a ± ? (Answer 12 = (−1)2 = 1, so 1 has
two square roots. Using both square roots of 1 gives the two solutions to (1).) This
method of completing the square goes back to the Babylonians in 2000–1600 BCE, and
increasingly more sophisticated methods were employed by Euclid (geometric), and a more
algebraic method was given by Brahmagupta (628 CE). This modern form goes back to
René Descartes (1596–1650 CE).

Solution to the cubic. The next most complicated equation is a cubic equation. Scipione
del Ferro (1465–1526) discovered the solution (which is for a special case) we will give,
but told no one. At that time, one got and kept one’s academic job by winning public
challenges, demonstrating an ability to solve problems that others could not1. On his death
bed, he passed the formula to his son-in-law Annibale della Nave (c. 1500–1558). Earlier,
he had shared this secret with his student Antonio Maria Fior, who later challenged Niccolò
Fontana (1499–1577) (a.k.a. Tartaglia, the stammerer) to a contest, posing to Tartaglia the

1Think of a peacock’s display to signaling its fitness.
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solutions of many cubic equations. Under tremendous pressure, Tartaglia discovered the
formula himself (on 12 February 1535) and vanquished Fior, cementing his reputation.

Later (1539), Gerolamo Cardano (1501–1576) talked the formula out of Tartaglia, but
swore an oath of secrecy. With his student Ludovico Ferrari (1522–1565), they discovered
the general formula. They undertook serious library research on a trip to Bologna in 1543,
with the breakthrough coming when Annibale della Nave shared with them his father-in-
laws notes. Then Cardano published this and much more in his book, Ars Magna, in 1545.
This is one of the greatest scientific treatises of the early Renaissance.

Let us discuss solving the cubic equation Ax3 + Bx2 + CX +D = 0. For now, consider
solving an easier one, say

Ax3 +D = 0 Ã x3 = −D/A =: d Ã x =
3
√
d .

What is 3
√
d? In Calculus, we show that the function f(x) = x3 is a bijection; every real

number is a cube of a real number in a unique way, and so the cube root of any real number
is a well defined real number.

While that seems settled, we can ask if this is the only solution to x3 = d. Let us explore
this when d = 1. Consider the following

(−1 +
√
−3)3 = (−1)3 + 3(−1)2

√
−3 + 3(−1)(

√
−3)2 + (

√
−3)3

= −1 + 3
√
−3 + 9− 3

√
−3 = 8 = 23 .

Thus 1 = (−1

2
+

√

−3

2
)3 and a similar calculation (or taking complex conjugates), gives

1 = (−1

2
−

√

−3

2
)3. Let us define

(2) ζ := −1

2
+

√

−3

2
.

Then ζ2 = −1

2
−

√

−3

2
, so that ζ3 = 1 = (ζ2)3. These, together with 1, are the three cube

roots of 1 or cube roots of unity.
In this way there are three solutions to the equation x3 = d for d ∈ R, namely

x =
3
√
d , ζ

3
√
d , ζ2

3
√
d .

We return to the general cubic equation Ax3 + Bx2 + CX +D = 0. First, let us divide
by A to simplify and get x3 + bx2 + cx + d = 0, where b = B/A, c = C/A, and d = D/A.
This time the substitution x = y + δ is most propitious for δ = −b/3 for that will cancel
the coefficient b of x2 (you should check this). Substituting x = y − b/3, gives

y3 + y(c− b2

3
) + d− bc

3
+ 2b3

27
= 0 .

Let us rewrite (and thus simplify) this as

(3) y3 + βy = γ ,

which is called the depressed cubic, a reduction due to Cardano and Ferrari.
The first step towards solving this is involves an amazing idea. Note that

(s+ t)3 = s3 + 3s2t+ 3st2 + t3 = 3st(s+ t) + (s3 + t3) ,

or

(s+ t)3 − 3st(s+ t) = s3 + t3 .
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Comparing this to (3), pattern matching suggests the interesting substitutions

y = s+ t , β = −3st , and γ = s3 + t3 .

Solving for t in β = −3st and substituting this in the formula for γ gives

t = −
β

3s
Ã γ = s3 −

β3

27s3
.

Clearing denominators gives

s6 − γs3 −
β3

27
= 0 .

While this may seem a step backwards (reducing a cubic to a sextic!), it is in fact a quadratic
in disguise, a quadratic in s3. Solve using the quadratic formula to get

(4) s3 =
γ

2
±

√

γ2

4
+

β3

27
.

One solution to the sextic is then

s =
3

√

γ

2
+

√

γ2

4
+

β3

27
.

Writing t3 = γ − s3 gives t3 = γ

2
−
√

γ2

4
+ β3

27
. Using y = s+ t gives,

y =
3

√

γ

2
+

√

γ2

4
+

β3

27
+

3

√

γ

2
−
√

γ2

4
+

β3

27
.

Note that we use both solutions to (4) here.

Example. Let us try to solve y3 + 6y = 20 using this method. Here, β = 6 and γ = 20,
and the innermost quantity is (γ

2
)2 + (β

3
)3 = 102 + 23 = 108 = 3 · 62, and so we obtain

y =
3

√

10 + 6
√
3 +

3

√

10− 6
√
3 .

This may be simplified, as the terms 10± 6
√
3 are perfect cubes. For that, try the Ansatz2:

(a+ b
√
3)3 = a3 + 3a2b

√
3 + 3a(b

√
3)2 + (b

√
3)3

= a3 + 3a2b
√
3 + 9ab2 + 3b3

√
3 = a(a2 + 9b2) + 3b(b2 + a2)

√
3 .

So we are looking for solutions in a, b to

10 = a(a2 + 9b2) and 6 = 3b(b2 + a2) .

We may find a solution a = b = 1 by inspection, and so we obtain that

y = 1 +
√
3 + 1−

√
3 = 2 ,

which we check is a solution to our equation as 23 + 6 · 2 = 20.
What about the other roots? Long division of y3+6y−20 by y−2 gives the factorization

y3 + 6y − 20 = (y − 2)(y2 + 2y + 10) ,

2An Ansatz is an educated guess that is verified later by its results
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and then the quadratic formula gives the other two roots as

(5) −
2

2
±

√

22

4
− 10 = −1±

√
−9 = −1± 3

√
−1 .

Let us check this,

(−1± 3
√
−1)3 + 6(−1± 3

√
−1) = −1± 9

√
−1 + 27∓ 27

√
−1 − 6± 18

√
−1 = 20 .

There is another way to obtain the remaining roots. Recall the equation β = −3st, and
the cube root of unity (2), ζ. Inserting 1 = ζ3 between s and t, we have β = −3sζ3t =
−3(ζs)(ζ2t) = −3(ζ2s)(ζt). Note then that (ζs)3 = (ζ2s)3 = s3, and the same for t, so that
we still have

γ = s3 + t3 = (ζs)3 + (ζ2t)3 = (ζ2s)3 + (ζt)3 .

If we take these other possibilities for s in (4) and the corresponding values for t, we get

s = ζ
3

√

γ

2
+

√

γ2

4
+

β3

27
and s = ζ2

3

√

γ

2
+

√

γ2

4
+

β3

27
,

we obtain the other two possibilities for the solution y,

(6)

y2 = ζ
3

√

γ

2
+

√

γ2

4
+

β3

27
+ ζ2

3

√

γ

2
−

√

γ2

4
+

β3

27
, and

y3 = ζ2
3

√

γ

2
+

√

γ2

4
+

β3

27
+ ζ

3

√

γ

2
−
√

γ2

4
+

β3

27
.

Let us now return to y3 + 6y − 20 = 0. These formulas (6) give

y2 =
(

−1

2
+

√

−3

2

)

(1 +
√
3) +

(

−1

2
−

√

−3

2

)

(1−
√
3) = −1 + 3

√
−1

y3 =
(

−1

2
−

√

−3

2

)

(1 +
√
3) +

(

−1

2
+

√

−3

2

)

(1−
√
3) = −1− 3

√
−1 ,

the same roots that we found in (5).

Let us solve another cubic,
y3 − 15y = 4 .

For this, β/3 = 5 and γ/2 = 2, and so

y =
3

√

2 +
√
4− 125 +

3

√

2−
√
4− 125 =

3

√

2 + 11
√
−1 +

3

√

2− 11
√
−1 .

To find the cube root, let us try this Ansatz,

(a+ b
√
−1)3 = a3 + 3a2b

√
−1− 3ab2 − b3

√
−1

= a(a2 − 3b2)3 + b(3a2 − b
√
−1)

?
= 2 + 11

√
−1 .

A little playing with numbers shows that a = 2 and b = 1 works, so that a solution is

y = (2 +
√
−1) + (2−

√
−1) = 4 .

Before returning to the human story, let us have a few words about numbers.

Negative numbers. While some mathematicians had discussed and even used negative
numbers by the 1540’s, they were not considered real or legitimate. There was no subtraction
sign, and Cardano avoided negative numbers in his book (except as a tool for solving
simultaneous linear equations).
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Complex numbers. These were avoided even more. (This is why we often call the
number

√
−1 ‘imaginary’.) Cardano talked of the ‘mental tortures’ involved when he used

them (sparingly) in Ars Magna.
Despite this, mathematicians eventually came around to the use of complex and imaginary

numbers, in part because of the rôle of imaginary numbers in the del Ferro-Tartaglia formula,
particularly to find the ‘real’ solution y = 4 for the cubic equation y3 = 15y + 4, as we
saw above. In his 1572 book L’Algebra, Bombelli introduced

√
−1 and used it to revisit

Cardano’s work, including the solution of the cubic y3 = 15y + 4.
Back to the human story... Tartaglia was incensed by what he viewed as Cardano’s be-

trayal in Ars Magna, where Cardano revealed the del Ferro-Tartaglia formula. He challenged
Cardano to a contest. Cardano declined. Then Tartaglia challenged Ferrari to a contest in
1548, which he lost.

Ferrari solved the quartic in 1540. We skip his solution in favor of a more interesting one.
We begin with a depressed quartic equation

(7) y4 + αy2 + βy + γ = 0 .

Suppose for the moment that we find numbers q, r, s, t such that

(8) y4 + αy2 + βy + γ = (y2 + qy + r)(y2 + sy + t) .

Then we would be able to find all roots to the quartic (7). (Why would we be done?)
Expanding the right hand side of the factorization (8) gives

y4 + (q + s)y3 + (r + qs+ t)y2 + (rs+ qt)y + rt .

Equating coefficients with the quartic (7) gives the four equations,

0 = q + s , α = r + qs+ t , β = rs+ qt , and γ = rt .

Solving the first for q and substituting gives

q = −s , α + s2 = r + t , β = s(r − t) , and γ = rt .

The following expressions allow us to eliminate r and t,

s2(α + s2)− β2 = s2(r + t)2 − s2(r − t)2

= 4s2rt = 4s2γ .

Writing this all out gives the sextic,3

(9) s6 + 2αs4 + (α2 − 4γ)s2 − β2 = 0 .

Setting σ := s2 gives a cubic in σ. We use the del Ferro-Tartaglia formula to solve for σ
and then take the square roots to get s and q = −s. Then we may use these solutions in
β = s(r − t) and γ = rt to solve for r and t (these will be a quadratic), and then this will
give us our factorization (8). Finally, two applications of the quadratic formula gives us the
solutions to the depressed quartic (7) with which we began. Note that each of the three
solutions for σ to the cubic gives a different factorization with the sign ±s coming from
solving s2 = σ interchanging factors. This can be written out to give a ‘formula’ for the
solution to a quartic, which is somewhat involved. (It takes about a page to write down.)
We will leave our solution as above, a series of reductions.

3Again a sextic. What does 6 have to do with 4?
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At this point, you might want to try your hand at this formula/algorithm on a real
example. Let us try this with the extremely depressed quartic equation y4 − 5y − 6 = 0.
Then the cubic associated to (9) is

(10) σ3 + 24σ − 25 = 0 .

The del Ferro-Tartaglia for this cubic (with γ = 25 and β = 24) gives

σ =
3

√

25

2
+
√

625

4
+ 512 +

3

√

25

2
−

√

625

4
+ 512 =

3

√

25

2
+ 9

2

√
33 +

3

√

25

2
− 9

2

√
33 .

The simplification is because 625

4
+ 512 = 2673/4 and 2673 = 81 · 33. A similar Ansatz as

before for (a+ b
√
33)3 = 25

2
± 9

2

√
33 gives a = b = 1

2
, and so

s2 = σ = 1

2
+ 1

2

√
33 + 1

2
− 1

2

√
33 = 1 ,

which we may also see by inspection in (10). Using s = 1 and q = −1, we solve −5 = 1(r−t)
and −6 = rt to get r = −3 and t = 2, and obtain the factorization

y4 − 5y − 6 = (y2 − y − 2)(y2 + y + 3) .

Factoring the first quadratic gives y = 2 and y = −1 as solutions, and using the quadratic
formula for the second quadratic gives y = 1

2
± 1

2

√
−11 for the last two roots. Before

continuing this story, I note that the first two real solutions can be found by inspection.

Back to our story. We see that the solution to linear equations is truly ancient, and that
special forms of quadratic equations were known 3600 years ago, with the complete solution
about 1400 years ago. Then, in the space of only a few decades about 500 years ago, cubics
and quartics were also solved. By the end of the 16th century, one might have thought that
with the quickening pace, a complete solution to an equation of any degree would be soon
discovered.

That was not the case, and despite much work, there was no progress on this problem
even for the quintic until 1799. Let me be more precise on what is meant by a solution. The
solutions to equations of degree at most four expressed the roots in terms of the coefficients,
where we used basic arithmetic operations, together with extracting roots. The problem
of solving the quintic came to mean finding an expression for the roots of a quintic as a
function of the coefficients using basic operations of arithmetic, together with extracting
roots.

In 1799, Ruffini published an incomplete proof of the impossibility of this problem, and
the tragically great Norwegian mathematician Niels Hendrik Abel published a complete
proof of this in 1824 (when he was 22 years old). A few years later this impossibility was

better understood in the 1830 treatise of (the equally tragic) Évariste Galois (who was only
18 at the time).

Here are some cubics to try your hand at solving:

(1) y3 − 7y − 6 = 0.
(2) y3 + 2y + 4

√
−1 = 0.

(3) y3 − 6y − 6 = 0.
(4) 2x3 − 30x2 + 162x− 350 = 0.
(5) (Bonus!) x4 − 10x2 + 4x+ 8 = 0.


