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Multivariate Galois Theory

We all know that Galois theory arose from attempts first to solve, and then

later to understand, the structure of the roots of a univariate polynomial

f(z) = 0 .

In enumerative geometry and in the applications of algebraic geometry, it is

natural to consider the solutions to a system of multivariate polynomials,

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 .

Galois theory likewise informs us about the structure of the solutions, but

simply reducing to a univariate setting is often not helpful.

In this multivariate setting or in enumerative geometry, known (or discovered)

structure constrains the Galois group and the problem arises to show that

the group is as large as possible.
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27 Lines on a Cubic Surface

Cayley & Salmon showed that 27 lines lie on

a smooth cubic surface in P3. These lines

have a very interesting configuration whose

automorphism group is the Coxeter group E8.

For a cubic defined over Q, the lines are defined

over a Galois extension K and Jordan observed

that Gal(K/Q) ⊂ E8.

Courtesy of Oliver Labs

Work in the 20th century showed that for a general cubic surface, the Galois

group equals E8.

This is also a monodromy group. Over the P19 r ∆ of smooth cubics the

monodromy action on the lines is E8.

It is also a Galois group of the extension of C[P19] to the field over which

each line in the family is defined.
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Schubert Galois Groups

The Schubert calculus studies problems of linear spaces that satisfy incidence

conditions imposed by other linear spaces. It forms a rich laboratory for

studying new phenomena in enumerative geometry.

C. 2003 Derksen and Vakil discovered a Schubert problem with Galois group

not the full symmetric group. Since then, some themes have emerged.

• Apparent Dichotomy. Known Schubert Galois groups are either the full

symmetric group on the solutions or are imprimitive.

• Possible Classification. Discovery and constructions of families of Schubert

problems with small Galois group suggests the possibility to classify such

enriched Schubert problems.

• Inverse Galois Problem. If G is a Schubert Galois group, then so is G ≀Sn.
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Bernstein’s Theorem

An integer vector α ∈ Zn
Ã a Laurent monomial xα := x

α1
1 · · · xαn

n .

A finite subset A ⊂ Zn
Ã a Laurent polynomial with support A,

f =
∑

α∈A

cαx
α

cα ∈ C .

Write CA for the vector space of polynomials with support A.

Theorem. (Bernstein) Let A1, . . . ,An ⊂ Zn be finite sets. For general

(f1, . . . , fn) ∈ CA1 ⊕ · · · ⊕ CAn, the number of solutions to

f1(x) = f2(x) = · · · = fn(x) = 0

in (C×)n is the mixed volume of conv(A1), . . . , conv(An).

Question. What does Galois theory have to say about systems of sparse

polynomials?
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Obstructions to Full Symmetric

While we expect that for typical supports A• = (A1, . . . ,An), the

generic system will have Galois group GalA• the full symmetric group

SMV (A•), there are two obvious ways for this to fail.

I) n = 1. f(x) = g(xa) = 0 with a > 1.

II) n = 2. f(x, y) = g(y) = 0.

In both cases, the solutions form a fibration over roots of g.

The Galois group must preserve this fibration, which implies that

Gal ⊂ Sa ≀ Sb ,

where b = deg(g) and a = deg(f(x, root of g)).

Note that the expectation is the Observed Dichotomy, GalA• is either full

symmetric or imprimitive.
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Obstructions, Continued

Suppose that 0 ∈ Ai and write F for f1, . . . , fn.

I) Z{A1, . . . ,An} = Λ ( Zn. Then there is a homomorphism

ϕA• : (C
×
)
n
։ (C

×
)
n

with kerϕA• = Hom(Z
n
/Λ,C

×
)

s.t. F (x) = G(ϕA•(x)) with the support of G spanning Zn.

II) After reordering, ∃k with rkZ{A1, . . . ,Ak} = k, and changing

coordinates, (C×)n = (C×)k × (C×)n−k, x = (y; z) with

F (x) = G(y), H(y; z)

support G is A1, . . . ,Ak and support H is Ak+1, . . . ,An.

Theorem. (Esterov ’18) If I or II do not hold, then GalA• = SMV (A•).

Corollary. This enables the complete classification of when general polynomial

systems with support A• are solvable in radicals.
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Why this is called research....

Until Friday, Andrew Bridy and I had a ’proof’ of a conjecture of Esterov

when n = 2:

Broken Conjecture. Suppose that B1, . . . ,Bn ⊂ Zn do not satisfy

I or II, and λ : Zn ∼
−→ Λ ( Zn, and Ai = λ(Bi).

Then GalA• = kerϕA• ≀ SMV (B•).

Example. (Esterov-Lang)

A1 = A2 = A

GalA• = (Z/2Z ≀ S4) ∩ A8.
A =

Obstruction. No edge of convA is primitive, and the edges are

’dependent’ modulo ZA.

Our proof does work with some mild hypotheses.
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