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Motivating Goals

Compute dimensions of spline spaces on a complex of semialgebraic cells,

to illustrate some phenomena not observed in traditional splines on

simplicial or polyhedral complexes, and also to compare to traditional splines.

Definition: A (basic) semialgebraic set is one of the form

{x ∈ R
2
| hi(x) ≥ 0 , for i = 1, . . . ,m} ,

where h1, . . . , hm are polynomials.

Simplicial Complex Semialgebraic Cell Complex
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Semialgebraic Splines

A semialgebraic spline is a function that is piecewise a polynomial with

respect to a complex ∆ whose cells are semialgebraic sets.

Cr
d(∆) : vector space of splines on ∆ of degree ≤ d and smoothness r.

Let ∆ be a planar complex with edges defined by real polynomials.

We previously showed the homological approach of Billera-Rose-Schenck-

Stillman computes the spline module Cr
d(∆) and thus dimCr

d(∆).

When ∆ has a single interior vertex, v, we determined dimCr
d(∆) in two

extreme cases:

• The curves incident to v form a pencil (as lines incident to v do)

• The curves incident to v have distinct tangents at v and are

sufficiently generic (a classical case for rectilinear splines).

We continue these two cases for more involved complexes ∆.
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Nets

Suppose that the edge forms span a two-dimensional space of forms (a net).

Then the forms at a vertex form a pencil, and if the vertices are in general

position, there is a unique edge between two vertices.

At right is the net spanned by

{x2 − yz, y2 − xz, z2 + xy}

with the indicated vertices.

A net defines a map ϕ : P2 →

P
2, and ϕ(∆) is a rectilinear

complex on R
2.
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The spline module for ∆ is a flat base-change along ϕ∗ of the

spline module for ϕ(∆).

This gives simple formulas for dimCr
d(∆) in terms of dimCr

j (ϕ(∆)).
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Morgan-Scott for Nets

In the example from the previous page, here are ∆ and ϕ(∆):

These exhibit the Morgan-Scott phenomena. Let ∆′ be a generic mesh

from this net with the same topology as ∆. Then we have

d 0 1 2 3 4 5 6 7 8 9

dimC1
d(∆

′) 1 3 6 10 15 21 34 54 81 115

dimC1
d(∆) 1 3 6 10 16 24 37 55 81 115

The difference 1,3,3,1 is dimR[x, y, z]/〈x2−yz, y2−xz, z2+xy〉
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Generic Complexes ∆

When ∆ has a single interior vertex v and the edge forms at v have distinct

tangents, we gave a combinatorial formula for the dimension of Cr
d(∆) for

d sufficiently large.

For more general ∆, a more subtle acyclicity condition from local coho-

mology, which appeared in work of Schenck and Stillman, also gives a

combinatorial formula for dimCr
d(∆) for d sufficiently large.

Not Generic Generic
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What is the point of Generic?

Formulas for dimCr
d(∆) for d large have two pieces:

•: A regular, combinatorial part, and

•: A possible difficult homology module.

For a generic complex, the regular part is even more regular, (this is a

consequence of our earlier paper), and the difficult homology module has

finite length, so in the long run it does not contribute, and we get a formula

for dimCr
d(∆) for d large:
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Here, φ2, φ1, nτ , av, tv are combinatorial data from the complex ∆.

The point of this work is not the formulae, but rather that methods for splines

on rectilinear complexes mostly also work for semialgebraic complexes.
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