# Semialgebraic Splines

#### SIAM Minisymposium on Multivariate Splines and Algebraic Geometry 11 July 2019



Frank Sottile

sottile@math.tamu.edu

Work with Michael DiPasquale



# Motivating Goals

Compute dimensions of spline spaces on a complex of semialgebraic cells, to illustrate some phenomena not observed in traditional splines on simplicial or polyhedral complexes, and also to compare to traditional splines.

Definition: A (*basic*) semialgebraic set is one of the form  $\{x \in \mathbb{R}^2 \mid h_i(x) \ge 0, \text{ for } i = 1, ..., m\},\$ where  $h_1, \ldots, h_m$  are polynomials.





Semialgebraic Cell Complex

# Semialgebraic Splines

A semialgebraic spline is a function that is piecewise a polynomial with respect to a complex  $\Delta$  whose cells are semialgebraic sets.

 $C^r_d(\Delta)$  : vector space of splines on  $\Delta$  of degree  $\leq d$  and smoothness r.

Let  $\Delta$  be a planar complex with edges defined by real polynomials. We previously showed the homological approach of Billera-Rose-Schenck-Stillman computes the spline module  $C_d^r(\Delta)$  and thus dim  $C_d^r(\Delta)$ .

When  $\Delta$  has a single interior vertex, v , we determined  $\dim C^r_d(\Delta)$  in two extreme cases:

• The curves incident to v form a *pencil* (as lines incident to v do)

• The curves incident to v have distinct tangents at v and are sufficiently *generic* (a classical case for rectilinear splines).

We continue these two cases for more involved complexes  $\Delta$ .

### Nets

Suppose that the edge forms span a two-dimensional space of forms (a *net*). Then the forms at a vertex form a pencil, and if the vertices are in general position, there is a unique edge between two vertices.

At right is the net spanned by  $\{x^2-yz,y^2-xz,z^2+xy\}$  with the indicated vertices.

A net defines a map  $\varphi \colon \mathbb{P}^2 \to \mathbb{P}^2$ , and  $\varphi(\Delta)$  is a rectilinear complex on  $\mathbb{R}^2$ .



The spline module for  $\Delta$  is a flat base-change along  $\varphi^*$  of the spline module for  $\varphi(\Delta)$ .

This gives simple formulas for dim  $C_d^r(\Delta)$  in terms of dim  $C_j^r(\varphi(\Delta))$ .

# Morgan-Scott for Nets

In the example from the previous page, here are  $\Delta$  and  $\varphi(\Delta)$ :



# Morgan-Scott for Nets

In the example from the previous page, here are  $\Delta$  and  $arphi(\Delta)$ :



These exhibit the Morgan-Scott phenomena. Let  $\Delta'$  be a generic complex from this net with the same topology as  $\Delta$ . Then we have

| d                     | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9   |
|-----------------------|---|---|---|----|----|----|----|----|----|-----|
| $\dim C^1_d(\Delta')$ | 1 | 3 | 6 | 10 | 15 | 21 | 34 | 54 | 81 | 115 |
| $\dim C^1_d(\Delta)$  | 1 | 3 | 6 | 10 | 16 | 24 | 37 | 55 | 81 | 115 |

The difference 1,3,3,1 is  $\dim \mathbb{R}[x,y,z]/\langle x^2-yz,y^2-xz,z^2+xy\rangle$ 

# Generic Complexes $\Delta$

When  $\Delta$  has a single interior vertex v and the edge forms at v have distinct tangents, we gave a combinatorial formula for the dimension of  $C_d^r(\Delta)$  for d sufficiently large.

For more general  $\Delta$ , a more subtle acyclicity condition from local cohomology, which appeared in work of Schenck and Stillman, also gives a combinatorial formula for dim  $C_d^r(\Delta)$  for d sufficiently large.



### What is the point of Generic?

Formulas for  $\dim C^r_d(\Delta)$  for d large have two pieces:

- •: A regular, combinatorial part, and
- •: A possible difficult homology module.

For a generic complex, the regular part is even more regular, (this is a consequence of our earlier paper), and the difficult homology module has finite length, so in the long run it does not contribute, and we get a formula for dim  $C_d^r(\Delta)$  for d large:

$$(\phi_2 - \phi_1) \binom{d+2}{2} + \sum_{\tau \in \Delta_1^{\circ}} \binom{d - (r+1)n_{\tau} + 2}{2} + \sum_{v \in \Delta_0^{\circ}} \left( \binom{r+a_v+2}{2} - t_v \binom{a_v+1}{2} \right)$$

Here,  $\phi_2, \phi_1, n_{ au}, a_v, t_v$  are combinatorial data from the complex  $\Delta$ .

The point of this work is not the formulae, but rather that methods for splines on rectilinear complexes mostly also work for semialgebraic complexes.

### References

- M. Di Pasquale and F. Sottile, *Bivariate Semialgebraic Splines*, ArXiv.org/1905.08438.
- M. Di Pasquale, F. Sottile, and L. Sun, *Semialgebraic splines*, Comput. Aided Geom. Design 55 (2017), 29–47.
- •L. Billera, *Homology of smooth splines: generic triangulations and a conjecture of Strang*, Trans. AMS **310** (1988), 325–340.
- H. Schenck and M. Stillman, A family of ideals of minimal regularity and the Hilbert series of C<sup>r</sup>(Â), Adv. Appl. Math. 19 (1997), 169–182.
- H. Schenck and M. Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117/118 (1997), 535–548.