Solving Sparse Decomposable Systems

AMS Special Session on Applications of Algebra and Geometry Fall Central Section Meeting of the AMS 14 September 2019

Frank Sottile sottile@math.tamu.edu

Work with Taylor Brysiewicz, Jose Rodriguez, and Thomas Yahl

Solving Structured Systems

Goal: Develop numerical methods to solve systems of equations that exploit natural structures of the equations.

My current favourite structure:
A family of systems of equations $F(x)=0$ on $\mathbb{C}^{n}\left(x \in \mathbb{C}^{n}\right)$ parameterized by $\mathbb{C}^{N}\left(F \in \mathbb{C}^{N}\right)$ has an incidence variety

$$
\mathcal{X}:=\left\{(x, F) \in \mathbb{C}^{n} \times \mathbb{C}^{N} \mid F(x)=0\right\}
$$

The projection $\pi: \mathcal{X} \rightarrow \mathbb{C}^{N}$ has fibre $\pi^{-1}(F)=\{x \mid F(x)=0\}$.
This is a branched cover, over an open set $U \subset \mathbb{C}^{N},\left.\mathcal{X}\right|_{U} \rightarrow U$ is a covering space with monodromy group G_{π}, the Galois group of this family $\pi: \mathcal{X} \rightarrow \mathbb{C}^{N}$ of equations.
(G_{π} is a Galois group in the usual sense.)

Imprimitivity

Recall: $\pi: \mathcal{X} \rightarrow \mathbb{C}^{N}$ with $\pi^{-1}(F)=\{x \mid F(x)=0\}$.
The monodromy group G_{π} of this branched cover acts on fibers. This action is imprimitive if G_{π} preserves a nontrivial partition.

Example. The dihedral group D_{6} acts imprimitively on the vertices of the hexagon, preserving opposite pairs of vertices.
This gives: $\mathbb{Z} / 2 \mathbb{Z} \hookrightarrow D_{6} \rightarrow S_{3}$.
Proposition. G_{π} is imprimitive if and only if π factors

$$
\begin{equation*}
\pi: \mathcal{X} \rightarrow \mathcal{Y} \rightarrow \mathbb{C}^{N} \tag{*}
\end{equation*}
$$

as a composition of nontrivial branched covers.
Améndola and Rodriguez explained how to exploit such a decomposable branched cover ($*$) in numerical algebraic geometry. Obstruction: How to compute such a decomposition.

Sparse Polynomial Systems

A point $a \in \mathbb{Z}^{n}$ corresponds to a monomial $x^{a}:=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$.
Let $\mathcal{A} \subset \mathbb{Z}^{n}$ be finite with $0 \in \mathcal{A}$. Then $f=\sum_{a \in \mathcal{A}} c_{a} x^{a}$ for $c_{a} \in \mathbb{C}$ is a sparse polynomial with support \mathcal{A}. Write $f \in \mathbb{C}^{\mathcal{A}}$.

Example. The support of $f=1+2 x^{3} y$ $+3 x^{6} y^{2}+4 x y^{3}+5 x^{4} y^{4}+6 x^{7} y^{5}$ $+7 x^{2} y^{6}+8 x^{5} y^{7}$ is at right.

Let $\mathcal{A}_{\bullet}=\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ with $0 \in \mathcal{A}_{i} \subset \mathbb{Z}^{n}$.
 $F=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{C}^{\mathcal{A}} \bullet=\mathbb{C}^{\mathcal{A}_{1}} \times \cdots \times \mathbb{C}^{\mathcal{A}_{n}}$ is a system of polynomials with support \mathcal{A}.

Theorem. (Kushnirenko-Bernstein) The number of solutions in $\left(\mathbb{C}^{\times}\right)^{n}$ to a general system with support \mathcal{A}_{\bullet} is the mixed volume $M V\left(\mathcal{A}_{\bullet}\right)$ of the convex hulls of the \mathcal{A}_{i}.

Esterov's Theorem

As before, the incidence variety

$$
\mathcal{X}_{\mathcal{A} \bullet}:=\left\{(x, F) \in\left(\mathbb{C}^{\times}\right)^{n} \times \mathbb{C}^{\mathcal{A} \bullet} \mid F(x)=0\right\}
$$

is a branched cover over $\mathbb{C}^{\mathcal{A}_{\bullet}}$ with Galois group $G_{\mathcal{A} \bullet}$.
This has two sources of imprimitivity
(1) Lacunary. For example, $f(x)=g\left(x^{3}\right)$.
(2) Triangular. For example, $f(x, y)=g(x)=0$.

For both, the solutions of f given a solution of g are the preserved partition.
Theorem. (Esterov) $G_{\mathcal{A}_{\bullet}}$ is the symmetric group if neither (1) nor (2) occurs. Otherwise, $G_{\mathcal{A}_{\bullet}}$ is imprimitive (besides trivial cases).

We now explain these two cases of lacunary and triangular supports.

Lacunary

Suppose that $\mathcal{A}_{\bullet}=\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are supports with $0 \in \mathcal{A}_{i}$, and the span $\mathbb{Z} \mathcal{A} \bullet \subset \mathbb{Z}^{n}$ has rank n.

Smith normal form of the matrix whose columns are $\mathcal{A} \bullet \rightsquigarrow d_{1}, \ldots, d_{n} \in$ \mathbb{N} and coordinate changes such that $\mathcal{A}_{i} \subset d_{1} \mathbb{Z} \oplus d_{2} \mathbb{Z} \oplus \cdots \oplus d_{n} \mathbb{Z}$.

Then $f_{i}(x)=g_{i}\left(x_{1}^{d_{1}}, \ldots, x_{n}^{d_{n}}\right)$, where support of g_{i} is $\mathcal{B}_{i}=\operatorname{diag}\left(\frac{1}{d_{1}}, \ldots, \frac{1}{d_{n}}\right) \mathcal{A}_{i}$.

To solve $F=0$:
(1) Solve $g_{1}=\cdots=g_{n}=0$.
(2) For each solution y, get solutions x of F with coordinates

$$
x_{j}:=\exp \left(\frac{2 \pi \arg \left(y_{j}\right) \sqrt{-1}}{d_{j}}\right)\left|y_{j}\right|^{\frac{1}{d_{j}}} \text {, up to } d_{j} \text {-th roots of unity. }
$$

The Galois group is imprimitive if $M V\left(\mathcal{B}_{\bullet}\right)>1$ and $d_{1} \cdots d_{n}>1$.

Triangular

After permuting and changing coordinates using Smith normal form, $\mathbb{Z}\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right\} \subset \mathbb{Z}^{k} \oplus 0^{n-k}$ and has rank k.
This gives a projection $p: \mathbb{Z}^{k} \oplus \mathbb{Z}^{n-k} \rightarrow \mathbb{Z}^{n-k}$ and corresponding coordinates $(x, z) \in\left(\mathbb{C}^{\times}\right)^{k} \times\left(\mathbb{C}^{\times}\right)^{n-k}$.

To solve $F=0$:
(1) Solve $f_{1}(x)=\cdots=f_{k}(x)=0$ in $\left(\mathbb{C}^{\times}\right)^{k}$.
(2) For each solution y, solve the new system

$$
G: f_{k+1}(y, z)=\cdots=f_{n}(y, z)=0
$$ which has support $p\left(\mathcal{A}_{k+1}\right), \ldots, p\left(\mathcal{A}_{n}\right)$.

The Galois group is imprimitive when $1 \leq k<n$ and $M V\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)>1$ and $\operatorname{MV}\left(p\left(\mathcal{A}_{k+1}\right), \ldots, p\left(\mathcal{A}_{n}\right)\right)>1$.

(Recursive) Algorithm

Given a polynomial system F with support \mathcal{A}_{\bullet},
If neither lacunary nor triangular, call PHCpack to solve, otherwise:

If lacunary follow the algorithm given two pages ago.
If triangular follow the algorithm given on last page.
On (admittedly) manufactured examples of systems that are lacunary and/or triangular, perhaps with several levels of structure, this algorithm outperforms PHCpack.

Moral: Exploit structure. Understand Galois groups.

Thanks! Paper to come....

