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Critical Points of Discrete Periodic Operators

It is a widely held belief in physics that the

dispersion relation of a sufficiently general

periodic operator is non-degenerate near

the edges of its spectrum.

This is needed, for example, for effective

masses in solid state physics, and many

other properties (ask Peter Kuchment).

✛ :λ

σ(L)

σ(L)

T
2

This belief holds if the critical points of the function λ on the dispersion

relation are Morse non-degenerate.

For a discrete operator on a periodic graph, the dispersion relation is

an algebraic variety and degeneracy is an algebraic condition. Thus

(non)degeneracy may be studied through the lens of algebraic geometry.

Today, I discuss some early results in this program.
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Discrete Periodic Laplace-Beltrami Operators

Let Γ ⊂ R
n be a Z

n-periodic graph with periodic

labels ce ∈ C for each edge e. The discrete

Laplace-Beltrami operator L = Lc is

Lcf(u) :=
∑

ce(f(u) − f(v)),

the sum over edges e = (u, v) of Γ.
Γ

We consider the equation

Lcf = λf for λ ∈ C.

Floquet theory seeks quasi-periodic solutions f for z ∈ (C×)n:

f(v + α) = z
α
f(v) for α ∈ Z

n

Such a function f is determined by its values at the vertices of a fundamental

domain G, so that f ∈ C
V (G) = C

d.

In the example, n = 2, d = 2 (G = K2 is diatomic), and c ∈ C
9.
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Example
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Lc(z)f(u) = c1(f(u) − z−1
2 f(u))

+c1(f(u) − z2f(u))

+c2(f(u) − z2f(v))

+c3(f(u) − z1f(v))

+c4(f(u) − z−1
1 f(v))

+c4(f(u) − z1f(v))

+c5(f(u) − f(v))

+c6(f(u) − z−1
2 f(v))

+c9(f(u) − z−1
1 f(v)).

Lc(z)f(u) = f(u)(2c1 + c2 + c3 + 2c4 + c5 + c6 + c9

− c1(z2 + z
−1
2 ) − c4(z1 + z

−1
1 ))

−f(v)(c2z2 + c3z1 + c5 + c6z
−1
2 + c9z

−1
1 ) .
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Generic (Non)Degeneracy

Set d = #V (G) and let N be the

number of orbits of edges in Γ.

The dispersion relation D = Dc is

{(z, λ) | ∃f ∈ C
d Lc(z)f = λf},

which is defined in (C×
z )

n × Cλ by

Φ := det(Lc(z) − λId) = 0.

D

T
2

Set Udg := {c ∈ C
N | Dc has a degenerate λ-critical point}

Theorem. (DKS) Exactly one of Udg or CN
rUdg is dense in C

N ,

and the other lies in a proper algebraic hypersurface.

This is because the set of points (c, p) with p ∈ Dc a degenerate critical

point for the function λ is an algebraic subset of CN × (C×)n × C.
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Dense Periodic Graphs

A dense periodic graph Γ is one with as many edges as possible.

(1) The fundamental domain G of Γ is a complete graph Kd.

(2) If there is an edge between G and G + α for some α ∈ Z
n,

then Γ has all possible edges between G and G + α.

Let A := {α ∈ Z
n | ∃ an edge between G and G + α}.

Then for u ∈ V (G), Lc(z)f(u) =
∑

v∈V (G)

gu,v(c, z)f(v) ,

where the matrix entry gu,v(c, z) is a Laurent polynomial in z whose

coefficients are linear in c and its monomials are {zα | α ∈ A}.

Γ = A =

(

A = −A is always
symmetric

)

Frank Sottile, Texas A&M University 5



Critical Point Equations

Lc(z) is a d × d matrix of Laurent polynomials, each with support A.

Φ = det(Lc(z) − λId) is a Laurent polynomial with support

d · (A ∪ {(0n, 1)}), a pyramid P (the Newton polytope of Φ)

Critical points are defined by the equations 0 = ∂λ
∂zi

, i = 1, . . . , n.

As 0 = ∂Φ
∂zi

+ ∂Φ
∂λ

∂λ
∂zi

and zi 6= 0, the Critical Point Equations are

Φ , zi
∂Φ
∂zi

i = 1, . . . , n.

Let Pi be the Newton polytope of zi
∂Φ
∂zi

.

We have the following estimate on the number of critical points.

Bernstein’s Theorem. For c ∈ C
N , the number of λ-critical points on Dc

is bounded above by the mixed volume of P, P1, . . . , Pn.
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Example
In our running example

Γ = A =

The Newton polytopes of Φ, z1
∂Φ
∂z1

, and z2
∂Φ
∂z2

are

P P1 P2

Bernstein’s Theorem. For c ∈ C
9, the number of critical points on Dc is

bounded above by the mixed volume of P, P1, P2.
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Monotonicity

Since Pi ⊂ P , we have MV (P, P1, . . . , Pn) ≤ (n+1)! vol(P ).

Theorem. (Rojas) We have equality if for every k-face F of P , k of the

Pi have a k-face along F .

This holds in our example,

P P1 P2

Theorem. (Faust-S.) For any dense graph, MV = (n+1)! vol(P ).

The key to Rojas’s result is a lemma of Bernstein:

Bernstein’s Lemma. The number of solutions to the critical point equations

is less than the mixed volume if and only if there is a face F of P such that

the critical point equations restricted to F have a solution.
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Toric Varieties

For c ∈ C
N , Dc = {Φ(c, z) = 0} ⊂ (C×)n × C.

Its closure is a hypersurface in the toric variety XP corresponding to P .

This has the property that XP ⊃ (C×)n × C, and the difference

XP r (C×)n × C is a union of toric varieties XF for a face F of P .

Also, Dc ∩ XF is defined by the restriction of Φ(c, z) to F .

Lemma. (Faust-S.) If Dc ∩ XF is smooth for all faces F of P , then the

number of critical points is (n+1)! vol(P ).

In our example,
P P1 P2

we have 3!vol( ) = 32.
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