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Critical Points of Discrete Periodic Operators

It is a widely held belief in physics that the
dispersion relation of a sufficiently general
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the edges of its spectrum. Y X
This is needed, for example, for effective
masses in solid state physics, and many
other properties (ask Peter Kuchment).

This belief holds if the critical points of the function A on the dispersion
relation are Morse non-degenerate.

For a discrete operator on a periodic graph, the dispersion relation is

an algebraic variety and degeneracy is an algebraic condition. Thus
(non)degeneracy may be studied through the lens of algebraic geometry.
Today, | discuss some early results in this program.
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Discrete Periodic Laplace-Beltrami Operators

Let ' C R"™ be a Z"-periodic graph with periodic
labels ¢, € C for each edge e. The discrete

Laplace-Beltrami operator L = L. is

Lof(u) =3 co(f(u) — F(v)),

the sum over edges e = (u, v) of T".

We consider the equation

L.f =\fforxeC il

Floquet theory seeks quasi-periodic solutions f for z € (C*)™:
f(v+a)=2f(v) for a € Z"

Such a function f is determined by its values at the vertices of a fundamental
domain GG, so that f &€ cvV(© = ¢

In the example, n = 2, d = 2 (G = K3 is diatomic), and ¢ € C?.
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R — Examp|e

IR Le(2)f(w) = al(f(u) — 25 f(u))
A i +ei(f(u) — 2z2f(u))
+ea(f(u) — z2f(v))
+es(f(u) — z1f(v))
tea(f(u) — 27 f(v))
+es(f(u) — z1f(v))
+es(f(u) — f(v))
+eo(f(u) = 23 f(v))
+co(f(u) — 27 ' f(v)).

............................

L(z)f(u) = f(u)(2c1+ ca+c3+2cs+ cs5+ ¢+ co

—ci(z4 2, ) —ca(z1 + 27 1))
—f(v)(e2z2 + c3z1 + c5 + o2y - + cozy )
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Generic (Non)Degeneracy

Set d = #V (G) and let N be the

D
number of orbits of edges in T". P
& 3"///'0”“‘:::\\\3\-‘\
<pere - — D 5 BN
The dispersion relation D = D, is o;a\oo:':‘o‘ U
A\

{EN13feC L) f =Af} |0
which is defined in (C7)™ x Cj by
® :=det(L.(z) — XIg) = 0.

Set Uy, := {c € CV | D, has a degenerate A-critical point}

Theorem. (DKS) Exactly one of Ugy or CN\Uy, is dense in C*,
and the other lies in a proper algebraic hypersurface.

This is because the set of points (¢, p) with p € D, a degenerate critical
point for the function X is an algebraic subset of CV x (C*)" x C.
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Dense Periodic Graphs

A dense periodic graph I" is one with as many edges as possible.

(1) The fundamental domain G of I" is a complete graph K.

(2) If there is an edge between G and G 4 « for some o« € Z",
then I' has all possible edges between GG and G + «.

Let A := {a € Z" | 3 an edge between G and G + a}.
Then for u € V(G), L.(z)f(u) = Z Juv(c, z)f(v),

veV(Q)
where the matrix entry g, ,(c,z) is a Laurent polynomial in z whose

coefficients are linear in ¢ and its monomials are {z% | a € A}
A = <A = —Ais .always>
symmetric
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Critical Point Equations

L.(z)is a d X d matrix of Laurent polynomials, each with support .A.

® = det(L.(z) — Aly) is a Laurent polynomial with support
d-(AU{(0"1)}), apyramid P (the Newton polytope of P)

Critical points are defined by the equations 0 = g—%, 1=1,...,n.
As 0 = 2’2 + ‘gc)l\) g;; and z; £ 0, the Critical Point Equations are
oD .
@,zia—% 1=1,...,n.

0P
Let P; be the Newton polytope of Zig,.
We have the following estimate on the number of critical points.

Bernstein's Theorem. For ¢ € C¥, the number of \-critical points on D,
is bounded above by the mixed volume of P, Py, ..., P,.

Frank Sottile, Texas A&M University 6



Example

In our running example

0P 0P
The Newton polytopes of @, 2195 and 227, are

g i lﬁk
| |

Bernstein's Theorem. For ¢ € €2, the number of critical points on D, is
bounded above by the mixed volume of P, Py, P5.
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Monotonicity

Since P; C P, we have MV (P, Py, ..., P,) < (n+1)!vol(P).

Theorem. (Rojas) We have equality if for every k-face F' of P, k of the
P; have a k-face along F'.

This holds in our example,

’ "4 "
\ \ \

Theorem. (Faust-S.) For any dense graph, MV = (n+1)! vol(P).

The key to Rojas's result is a lemma of Bernstein:

Bernstein's Lemma. The number of solutions to the critical point equations
is less than the mixed volume if and only if there is a face F' of P such that
the critical point equations restricted to F' have a solution.
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Toric Varieties
Forc € CY, D, = {®(¢c, z) =0} C (C*)" x C.
lts closure is a hypersurface in the toric variety X p corresponding to P.

This has the property that Xp D (C*)™ x C, and the difference
Xp ~ (C*)"™ x Cis a union of toric varieties X i for a face F' of P.

Also, D. N X is defined by the restriction of ®(c, z) to F.

Lemma. (Faust-S.) /f D. N Xp is smooth for all faces F' of P, then the
number of critical points is (n+1)! vol(P).

In our example,
P P\l ‘i P2Z é/
| |

|
we have 3lvol(g)) = 32.
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