HOMEWORK 1 MATH 689 SECTION 604

LUIS GARCIA-PUENTE AND FRANK SOTTILE

Hand in two problems in each section. Due February 28. Let \mathbb{F} be an arbitrary field.

Finger Exercises

(1) Verify the claim that smallest ideal containing a set $S \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials is the set of all expressions of the form $h_{1} f_{1}+\cdots+h_{m} f_{m}$ where $f_{1}, \ldots, f_{m} \in S$ and $h_{1}, \ldots, h_{m} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.
(2) Let \mathcal{I} be an ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that

$$
\sqrt{\mathcal{I}}:=\left\{f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right] \mid f^{m} \in \mathcal{I} \text { for some } m \geq 1\right\}
$$

is an ideal, is radical, and is the smallest radical ideal containing \mathcal{I}.
(3) Prove that in \mathbb{A}^{2}, we have $\mathcal{V}\left(y-x^{2}\right)=\mathcal{V}\left(y^{3}-y^{2} x^{2}, x^{2} y-x^{4}\right)$.
(4) Express the cubic space curve C with parametrization $\left(t, t^{2}, t^{3}\right)$ in each of the following ways.
(a) The intersection of a quadric and a cubic hypersurface.
(b) The intersection of two quadrics.
(c) The intersection of three quadrics.

Zariski topology
(5) Show that no proper nonempty open subset S of \mathbb{R}^{n} or \mathbb{C}^{n} is a variety. Here, we mean open in the usual (Euclidean) topology on \mathbb{R}^{n} and \mathbb{C}^{n}. (Hint: Consider the Taylor expansion of any polynomial in $\mathcal{I}(S)$.)
(6) (a) Describe all the algebraic varieties in $\mathbb{A}_{\mathbb{F}}^{1}$.
(b) Show that any open set in $\mathbb{A}_{F}^{1} \times \mathbb{A}_{F}^{1}$ is open in $\mathbb{A}_{\mathbb{F}}^{2}$.
(c) Find a Zariski open set in $\mathbb{A}_{\mathbb{F}}^{2}$ which is not open in $\mathbb{A}_{\mathbb{F}}^{1} \times \mathbb{A}_{\mathbb{F}}^{1}$.
(7) (a) Show that the Zariski topology in $\mathbb{A}_{\mathbb{F}}^{n}$ is not Hausdorff if \mathbb{F} is infinite.
(b) Prove that any nonempty open subset of $\mathbb{A}_{\mathbb{F}}^{n}$ is dense.
(c) Prove that $\mathbb{A}_{\mathbb{F}}^{n}$ is compact.
(8) Show that a regular map $\varphi: X \rightarrow Y$ between affine varieties X and Y is continuous in the Zariski topology.

Algebraic varieties.

(9) Let $\mathbb{A}_{\mathbb{F}}^{n^{2}}$ be the set of $n \times n$ matrices.
(a) Show that the set $\mathbf{S L}(n, \mathbb{F}) \subset \mathbb{A}_{\mathbb{F}}^{n^{2}}$ of matrices with determinant 1 is an algebraic variety.
(b) Show that the set of singular matrices in $\mathbb{A}_{\mathbb{F}}^{n^{2}}$ is an algebraic variety.
(c) Show that the set $\mathbf{G L}(n, \mathbb{C})$ of invertible matrices is not an algebraic variety in $\mathbb{C}^{n^{2}}$. $G L_{n}(\mathbb{F})$ can be identified with an algebraic subset of $\mathbb{C}^{n^{2}+1}=\mathbb{C}^{n^{2}} \times \mathbb{C}^{1}$. Find the corresponding map.
(10) An $n \times n$ matrix with complex entries is unitary if its columns are orthonormal under the complex inner product $\langle z, w\rangle=z \cdot \bar{w}^{t}=\sum_{i=1}^{n} z_{i} \overline{w_{i}}$. Show that the set $\mathbf{U}(n)$ of unitary matrices is not a complex algebraic variety. Show that it can be described as the zero locus of a collection of polynomials with real coefficients in $\mathbb{R}^{2 n^{2}}$, and so it is a real algebraic variety.
(11) Let $\mathbb{A}_{\mathbb{F}}^{m n}$ be the set of $m \times n$ matrices over \mathbb{F}.
(a) Show that the set of matrices of rank $\leq r$ is an algebraic variety.
(b) Show that the set of matrices of rank $=r$ is not an algebraic variety if $r>0$.
(12) (a) Show that the set $\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{F}\right\}$ is an algebraic variety in $\mathbb{A}_{\mathbb{F}}^{3}$.
(b) Show that the following sets are not algebraic varieties
(i) $\left\{(x, y) \in \mathbb{A}_{\mathbb{R}}^{2} \mid y=\sin x\right\}$
(ii) $\left\{(\cos t, \sin t, t) \in \mathbb{A}_{\mathbb{R}}^{3} \mid t \in \mathbb{R}\right\}$
(iii) $\left\{\left(x, e^{x}\right) \in \mathbb{A}_{\mathbb{R}}^{2} \mid x \in \mathbb{R}\right\}$

Algebra - Geometry dictionary

(13) Let I be an ideal in $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Prove or find counterexamples to the following statements.
(a) If $V(I)=\mathbb{A}_{\mathbb{F}}^{n}$ then $I=(0)$.
(b) If $V(I)=\emptyset$ then $I=R$.
(14) (a) Give an example of two algebraic varieties V and W such that $I(V \cap W) \neq I(V)+$ $I(W)$.
(b) Show that $f(x, y)=y^{2}+x^{2}(x-1)^{2} \in \mathbb{R}[x, y]$ is an irreducible polynomial but that $V(f)$ is reducible.
(15) Let $f, g \in \mathbb{F}[x, y]$ be coprime polynomials. Show that $V(f) \cap V(g)$ is a finite set.
(16) (a) Let $R=\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and I be an ideal of R. Show that if R / I is a finite dimensional \mathbb{F}-vector space then $V(I)$ is a finite set.
(b) Let $J=(x y, y z, x z)$ be an ideal in $\mathbb{F}[x, y, z]$. Find the generators of $I(V(J))$. Show that J cannot be generated by two polynomials in $\mathbb{F}[x, y, z]$. Describe $V(I)$ where $I=(x y, x z-y z)$. Show that $\sqrt{I}=J$.
(17) Prove that there are three points p, q, r in $\mathbb{A}_{\mathbb{F}}^{2}$ such that

$$
\sqrt{x^{2}-2 x y^{4}+y^{6}, y^{3}-y}=I(\{p\}) \cap I(\{q\}) \cap I(\{r\}) .
$$

Find a reason why you would know that the ideal $\left(x^{2}-2 x y^{4}+y^{6}, y^{3}-y\right)$ is not a radical ideal.

Projective algebraic varieties

(18) (a) Show that two distinct lines in \mathbb{P}^{2} always intersect in one point.
(b) Let n be a positive integer and \mathbb{P}^{n} be projective n-space over \mathbb{F}. Show that there is a natural decomposition $\mathbb{P}^{n}=\mathbb{A}^{n} \cup \mathbb{A}^{n-1} \cup \cdots \cup A^{1} \cup A^{0}$ into disjoints subsets. Compute the number of elements of \mathbb{P}^{n} when \mathbb{F} is a finite field of q elements.
(19) For any $d \in \mathbb{Z}_{\geq 0}$, let $S_{d} \subset \mathbb{F}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be the \mathbb{F}-vector space of homogeneous polynomials of degree d. Prove that $\operatorname{dim}_{\mathbb{F}} S_{d}=\binom{d+n}{n}$.
(20) A conic is a variety defined by a quadratic equation.
(a) Show that in \mathbb{R}^{2} there are eight types of conics. Give an example of each type.
(b) Show that in $\mathbb{A}_{\mathbb{C}}^{2}$ there are only five types of conics.
(c) Show that in $\mathbb{P}_{\mathbb{C}}^{2}$ there are only three types of conics. Hint: This is a classification by the rank of a conic, where the rank of a quadratic form $\sum_{i} a_{i i} x_{i}^{2}+2 \sum_{i<j} a_{i j} x_{i} x_{j}$ is defined by the rank of the symmetric matrix $\left(a_{i j}\right)$.

Maps of affine and projective varieties

(21) Let $C=V\left(y^{2}-x^{3}\right)$ show that the map $\phi: \mathbb{A}_{\mathbb{C}}^{1} \rightarrow C, \phi(t)=\left(t^{2}, t^{3}\right)$ is a homeomorphism in the Zariski topology but it is not an isomorphism of affine varieties.
(22) Let $V=V\left(y-x^{2}\right) \subset \mathbb{A}_{\mathbb{F}}^{2}$ and $W=V(x y-1) \subset \mathbb{A}_{\mathbb{F}}^{2}$. Show that

$$
\begin{aligned}
\mathbb{F}[V] & :=\mathbb{F}[x, y] / I(V) \cong \mathbb{F}[t] \\
\mathbb{F}[W] & :=\mathbb{F}[x, y] / I(W) \cong \mathbb{F}\left[t, \frac{1}{t}\right]
\end{aligned}
$$

Conclude that the hyperbola $V(x y-1)$ is not isomorphic to the affine line.
(23) Let $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ be given by $\phi\left(\left[x_{0}: x_{1}\right]\right)=\left[x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}\right]$. Show that $C=\phi\left(\mathbb{P}^{1}\right)$ and \mathbb{P}^{1} are isomorphic as projective varieties but their coordinate rings are not.
(24) Give an isomorphism between \mathbb{P}^{1} and $V\left(x^{2}+y^{2}-z^{2}\right) \subset \mathbb{P}^{2}$. Use this to parametrize all integer solutions to the equation $x^{2}+y^{2}=z^{2}$.

Dimension

(25) Fix the hyperbola $H=V(x y-5) \subset \mathbb{A}_{\mathbb{R}}^{2}$ and let C_{t} be the circle $x^{2}+(y-t)^{2}=1$ for $t \in \mathbb{R}$.
(a) Show that $H \cap C_{t}$ is zero-dimensional, for any choice of t.
(b) Determine the number of points in $H \cap C_{t}$ (this number depends on t).
(26) Let V be a d-dimensional irreducible affine variety in \mathbb{A}^{n}. Let H be a hypersurface in \mathbb{A}^{n} such that $V \cap H \neq \emptyset$ and $V \cap H \neq V$. Show that all irreducible components of $V \cap H$ have dimension $d-1$.
(27) Let I be an ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ which can be generated by r elements. Prove that every irreducible component of $V(I)$ has dimension $\geq n-r$.
(28) Show that an irreducible affine variety is zero-dimensional if and only if it is a point.
(29) Show that \mathbb{A}^{2} has dimension 2 , using the combinatorial definition of dimension.

