HOMEWORK 1 MATH 689 SECTION 604

LUIS GARCIA-PUENTE AND FRANK SOTTILE

Hand in two problems in each section. Due February 28. Let \mathbb{F} be an arbitrary field.

Finger Exercises

- (1) Verify the claim that smallest ideal containing a set $S \subset \mathbb{F}[x_1, \ldots, x_n]$ of polynomials is the set of all expressions of the form $h_1f_1 + \cdots + h_mf_m$ where $f_1, \ldots, f_m \in S$ and $h_1, \ldots, h_m \in \mathbb{F}[x_1, \ldots, x_n]$.
- (2) Let \mathcal{I} be an ideal of $\mathbb{C}[x_1, \ldots, x_n]$. Show that

 $\sqrt{\mathcal{I}} := \{ f \in \mathbb{F}[x_1, \dots, x_n] \mid f^m \in \mathcal{I} \text{ for some } m \ge 1 \}$

is an ideal, is radical, and is the smallest radical ideal containing \mathcal{I} .

- (3) Prove that in \mathbb{A}^2 , we have $\mathcal{V}(y-x^2) = \mathcal{V}(y^3 y^2x^2, x^2y x^4)$.
- (4) Express the cubic space curve C with parametrization (t, t^2, t^3) in each of the following ways.
 - (a) The intersection of a quadric and a cubic hypersurface.
 - (b) The intersection of two quadrics.
 - (c) The intersection of three quadrics.

Zariski topology

- (5) Show that no proper nonempty open subset S of \mathbb{R}^n or \mathbb{C}^n is a variety. Here, we mean open in the usual (Euclidean) topology on \mathbb{R}^n and \mathbb{C}^n . (Hint: Consider the Taylor expansion of any polynomial in $\mathcal{I}(S)$.)
- (6) (a) Describe all the algebraic varieties in $\mathbb{A}^1_{\mathbb{R}}$.
 - (b) Show that any open set in $\mathbb{A}_F^1 \times \mathbb{A}_F^1$ is open in \mathbb{A}_F^2 .
 - (c) Find a Zariski open set in $\mathbb{A}^2_{\mathbb{F}}$ which is not open in $\mathbb{A}^1_{\mathbb{F}} \times \mathbb{A}^1_{\mathbb{F}}$.
- (7) (a) Show that the Zariski topology in $\mathbb{A}^n_{\mathbb{F}}$ is not Hausdorff if \mathbb{F} is infinite.
 - (b) Prove that any nonempty open subset of $\mathbb{A}^n_{\mathbb{F}}$ is dense.
 - (c) Prove that $\mathbb{A}^n_{\mathbb{F}}$ is compact.
- (8) Show that a regular map $\varphi \colon X \to Y$ between affine varieties X and Y is continuous in the Zariski topology.

Algebraic varieties.

- (9) Let $\mathbb{A}_{\mathbb{F}}^{n^2}$ be the set of $n \times n$ matrices.
 - (a) Show that the set $\mathbf{SL}(n, \mathbb{F}) \subset \mathbb{A}_{\mathbb{F}}^{n^2}$ of matrices with determinant 1 is an algebraic variety.
 - (b) Show that the set of singular matrices in $\mathbb{A}_{\mathbb{F}}^{n^2}$ is an algebraic variety.
 - (c) Show that the set $\mathbf{GL}(n, \mathbb{C})$ of invertible matrices is not an algebraic variety in \mathbb{C}^{n^2} . $GL_n(\mathbb{F})$ can be identified with an algebraic subset of $\mathbb{C}^{n^2+1} = \mathbb{C}^{n^2} \times \mathbb{C}^1$. Find the corresponding map.
- (10) An $n \times n$ matrix with complex entries is *unitary* if its columns are orthonormal under the complex inner product $\langle z, w \rangle = z \cdot \overline{w}^t = \sum_{i=1}^n z_i \overline{w_i}$. Show that the set $\mathbf{U}(n)$ of unitary matrices is not a complex algebraic variety. Show that it can be described as the zero locus of a collection of polynomials with real coefficients in \mathbb{R}^{2n^2} , and so it is a real algebraic variety.
- (11) Let $\mathbb{A}^{mn}_{\mathbb{F}}$ be the set of $m \times n$ matrices over \mathbb{F} .
 - (a) Show that the set of matrices of rank $\leq r$ is an algebraic variety.
 - (b) Show that the set of matrices of rank = r is not an algebraic variety if r > 0.
- (12) (a) Show that the set $\{(t, t^2, t^3) \mid t \in \mathbb{F}\}$ is an algebraic variety in $\mathbb{A}^3_{\mathbb{F}}$.
 - (b) Show that the following sets are not algebraic varieties
 - (i) $\{(x,y) \in \mathbb{A}^2_{\mathbb{R}} | y = \sin x\}$
 - (ii) $\{(\cos t, \sin t, t) \in \mathbb{A}^3_{\mathbb{R}} \mid t \in \mathbb{R}\}$
 - (iii) $\{(x, e^x) \in \mathbb{A}^2_{\mathbb{R}} \mid x \in \mathbb{R}\}$

Algebra - Geometry dictionary

- (13) Let I be an ideal in $R = \mathbb{F}[x_1, \ldots, x_n]$. Prove or find counterexamples to the following statements.
 - (a) If $V(I) = \mathbb{A}^n_{\mathbb{F}}$ then I = (0).
 - (b) If $V(I) = \emptyset$ then I = R.
- (14) (a) Give an example of two algebraic varieties V and W such that $I(V \cap W) \neq I(V) + I(W)$.
 - (b) Show that $f(x,y) = y^2 + x^2(x-1)^2 \in \mathbb{R}[x,y]$ is an irreducible polynomial but that V(f) is reducible.
- (15) Let $f, g \in \mathbb{F}[x, y]$ be coprime polynomials. Show that $V(f) \cap V(g)$ is a finite set.
- (16) (a) Let $R = \mathbb{F}[x_1, x_2, \dots, x_n]$ and I be an ideal of R. Show that if R/I is a finite dimensional \mathbb{F} -vector space then V(I) is a finite set.
 - (b) Let J = (xy, yz, xz) be an ideal in $\mathbb{F}[x, y, z]$. Find the generators of I(V(J)). Show that J cannot be generated by two polynomials in $\mathbb{F}[x, y, z]$. Describe V(I) where I = (xy, xz yz). Show that $\sqrt{I} = J$.
- (17) Prove that there are three points p, q, r in $\mathbb{A}^2_{\mathbb{F}}$ such that

$$\sqrt{x^2 - 2xy^4 + y^6, y^3 - y} = I(\{p\}) \cap I(\{q\}) \cap I(\{r\}).$$

Find a reason why you would know that the ideal $(x^2 - 2xy^4 + y^6, y^3 - y)$ is not a radical ideal.

Projective algebraic varieties

- (18) (a) Show that two distinct lines in \mathbb{P}^2 always intersect in one point.
 - (b) Let n be a positive integer and \mathbb{P}^n be projective n-space over \mathbb{F} . Show that there is a natural decomposition $\mathbb{P}^n = \mathbb{A}^n \cup \mathbb{A}^{n-1} \cup \cdots \cup \mathbb{A}^1 \cup \mathbb{A}^0$ into disjoints subsets. Compute the number of elements of \mathbb{P}^n when \mathbb{F} is a finite field of q elements.
- (19) For any $d \in \mathbb{Z}_{\geq 0}$, let $S_d \subset \mathbb{F}[x_0, x_1, \ldots, x_n]$ be the \mathbb{F} -vector space of homogeneous polynomials of degree d. Prove that $\dim_{\mathbb{F}} S_d = \binom{d+n}{n}$.
- (20) A *conic* is a variety defined by a quadratic equation.
 - (a) Show that in \mathbb{R}^2 there are eight types of conics. Give an example of each type.

 - (b) Show that in $\mathbb{A}^2_{\mathbb{C}}$ there are only five types of conics. (c) Show that in $\mathbb{P}^2_{\mathbb{C}}$ there are only three types of conics. Hint: This is a classification by the rank of a conic, where the rank of a quadratic form $\sum_{i} a_{ii} x_i^2 + 2 \sum_{i < i} a_{ij} x_i x_j$ is defined by the rank of the symmetric matrix (a_{ij}) .

Maps of affine and projective varieties

- (21) Let $C = V(y^2 x^3)$ show that the map $\phi : \mathbb{A}^1_{\mathbb{C}} \to C, \ \phi(t) = (t^2, t^3)$ is a homeomorphism in the Zariski topology but it is not an isomorphism of affine varieties.
- (22) Let $V = V(y x^2) \subset \mathbb{A}^2_{\mathbb{F}}$ and $W = V(xy 1) \subset \mathbb{A}^2_{\mathbb{F}}$. Show that

$$\mathbb{F}[V] := \mathbb{F}[x, y] / I(V) \cong \mathbb{F}[t]$$
$$\mathbb{F}[W] := \mathbb{F}[x, y] / I(W) \cong \mathbb{F}[t, \frac{1}{t}]$$

Conclude that the hyperbola V(xy-1) is not isomorphic to the affine line.

- (23) Let $\phi : \mathbb{P}^1 \to \mathbb{P}^2$ be given by $\phi([x_0:x_1]) = [x_0^2:x_0x_1:x_1^2]$. Show that $C = \phi(\mathbb{P}^1)$ and \mathbb{P}^1 are isomorphic as projective varieties but their coordinate rings are not.
- (24) Give an isomorphism between \mathbb{P}^1 and $V(x^2 + y^2 z^2) \subset \mathbb{P}^2$. Use this to parametrize all integer solutions to the equation $x^2 + y^2 = z^2$.

Dimension

- (25) Fix the hyperbola $H = V(xy 5) \subset \mathbb{A}^2_{\mathbb{R}}$ and let C_t be the circle $x^2 + (y t)^2 = 1$ for $t \in \mathbb{R}$.
 - (a) Show that $H \cap C_t$ is zero-dimensional, for any choice of t.
 - (b) Determine the number of points in $H \cap C_t$ (this number depends on t).
- (26) Let V be a d-dimensional irreducible affine variety in \mathbb{A}^n . Let H be a hypersurface in \mathbb{A}^n such that $V \cap H \neq \emptyset$ and $V \cap H \neq V$. Show that all irreducible components of $V \cap H$ have dimension d - 1.
- (27) Let I be an ideal of $\mathbb{F}[x_1,\ldots,x_n]$ which can be generated by r elements. Prove that every irreducible component of V(I) has dimension $\geq n - r$.
- (28) Show that an irreducible affine variety is zero-dimensional if and only if it is a point.
- (29) Show that \mathbb{A}^2 has dimension 2, using the combinatorial definition of dimension.