Converting the Black-Scholes PDE to The Heat Equation

The Black-Scholes partial differential equation and boundary value problem is

\[
L(V) = \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0, \quad 0 \leq S, \quad 0 \leq t \leq T
\]

\[
V(S,T) = f(S), \quad 0 \leq S, \quad V(0,t) = 0, \quad 0 \leq t \leq T.
\]

If \(V \) is the price of a call option, then the boundary condition \(f(S) = \max(S - E, 0) \), where \(E \) denotes the strike price of the call option.

The following change of variables transforms the Black-Scholes boundary value problem into a standard boundary value problem for the heat equation.

\[
S = e^x, \quad t = T - \frac{2\tau}{\sigma^2},
\]

\[
V(S,t) = v(x,\tau) = v \left(\ln(S), \frac{\sigma^2}{2}(T - t) \right).
\]

The partial derivatives of \(V \) with respect to \(S \) and \(t \) expressed in terms of partial derivatives of \(v \) in terms of \(x \) and \(\tau \) are:

\[
\frac{\partial V}{\partial t} = -\frac{\sigma^2}{2} \frac{\partial v}{\partial \tau}
\]

\[
\frac{\partial V}{\partial S} = \frac{1}{S} \frac{\partial v}{\partial x}
\]

\[
\frac{\partial^2 V}{\partial S^2} = -\frac{1}{S^2} \frac{\partial v}{\partial x} + \frac{1}{S^2} \frac{\partial^2 v}{\partial x^2}
\]

Placing these expressions into the Black-Scholes partial differential equation and simplifying we have

\[
\frac{\partial v}{\partial \tau} - \frac{\partial^2 v}{\partial x^2} + \left(\frac{2r}{\sigma^2} - 1 \right) \frac{\partial v}{\partial x} - \frac{2r}{\sigma^2} v.
\]

Setting \(\kappa = \frac{2r}{\sigma^2} \) and \(t = \tau \), the Black-Scholes boundary value problem becomes

\[
\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + (\kappa - 1) \frac{\partial v}{\partial x} - \kappa v, \quad -\infty < x < \infty, \quad 0 \leq t \leq \frac{\sigma^2}{2} T
\]

\[
v(x,0) = V(e^x,T) = f(e^x), \quad -\infty < x < \infty
\]
One more change of variables is needed in order to eliminate the last two terms on the right hand side of the last equation. To this end set

\[v(x, t) = e^{\alpha x + \beta t} u(x, t) = \phi u, \]

where we’ll pick \(\alpha \) and \(\beta \) later. Computing the partials of \(v \) in terms of \(x \) and \(t \) we have

\[
\begin{align*}
\frac{\partial v}{\partial t} &= \beta \phi u + \phi \frac{\partial u}{\partial t} \\
\frac{\partial v}{\partial x} &= \alpha \phi u + \phi \frac{\partial u}{\partial x} \\
\frac{\partial^2 v}{\partial x^2} &= \alpha^2 \phi u + 2 \alpha \phi \frac{\partial u}{\partial x} + \phi \frac{\partial^2 u}{\partial x^2}
\end{align*}
\]

Placing these expressions into the partial differential equation which \(v \) satisfies, and setting

\[
\alpha = -\frac{1}{2} (k - 1) = \frac{\sigma^2 - 2r}{2\sigma^2}
\]

\[
\beta = -\frac{1}{4} (k + 1)^2 = -\left(\frac{\sigma^2 + 2r}{2\sigma^2} \right)^2.
\]

we have

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty, \quad 0 < t \leq \frac{\sigma^2}{2} T \\
u(x, 0) &= e^{-\alpha x} v(x, 0) = e^{-\alpha x} f(e^x), \quad -\infty < x < \infty
\end{align*}
\]

(1)

(2)

If the option is a call option, with strike price \(E \), then \(f(x) = \max(x - E, 0) \), and

\[
u(x, 0) = e^{-\alpha x} \max(e^x - E, 0).
\]

It can be shown that the solution to the heat equation (1) and initial condition (2) is given by the following integral

\[
u(x, t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} u(\xi, 0) e^{-\frac{(x-\xi)^2}{4t}} \, d\xi.
\]
Find the value of an option, whose value at expiration equals \(f(S) \), where

\[
f(S) = \begin{cases}
0, & S < 1 \\
3, & 1 \leq S \leq 2 \\
0, & S > 3
\end{cases}
\]

\[
V(S, 0) = \nu \left(\ln S, \frac{\sigma^2 T}{2} \right) = e^{\alpha \ln S} e^{\beta \frac{\sigma^2 T}{2}} u \left(\ln S, \frac{\sigma^2 T}{2} \right)
\]

\[
= e^{\alpha \ln S} e^{\beta \frac{\sigma^2 T}{2}} \frac{1}{\sqrt{4\pi \frac{\sigma^2 T}{2}}} \int_{-\infty}^{\infty} u(\xi, 0) e^{-\frac{(\ln S - \xi)^2}{2 \frac{\sigma^2 T}{2}}} d\xi
\]

\[
= e^{\alpha \ln S} e^{\beta \frac{\sigma^2 T}{2}} \frac{1}{\sqrt{2\pi \sigma^2 T}} \int_{-\infty}^{\infty} e^{-\alpha \xi} f(e^\xi) e^{-\frac{(\ln S - \xi)^2}{2 \frac{\sigma^2 T}{2}}} d\xi
\]

\[
= e^{\alpha \ln S} e^{\beta \frac{\sigma^2 T}{2}} \frac{3}{\sqrt{2\pi \sigma^2 T}} \int_{0}^{\ln 2} e^{-\alpha \xi} e^{-\frac{(\ln S - \xi)^2}{2 \frac{\sigma^2 T}{2}}} d\xi
\]

\[
= e^{\alpha \ln S} e^{\beta \frac{\sigma^2 T}{2}} \frac{3S^{-\alpha}}{\sqrt{2\pi \sigma^2 T}} e^{\frac{\sigma^2 T}{2}} \int_{\lambda_1}^{\lambda_2} e^{-\lambda^2/2} d\lambda
\]

\[
\lambda_1 = \frac{\ln(S/2) + (r - \sigma^2/2)T}{\sigma \sqrt{T}} \\
\lambda_2 = \frac{\ln(S + (r - \sigma^2/2)T)}{\sigma \sqrt{T}}
\]

\[
= 3e^{-\frac{\sigma^2 + 8r T}{8}} \left[N(\lambda_2) - N(\lambda_1) \right].
\]