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Falling body (+ direction is down).

x(t) = x0 + v0t+
1
2gt

2.

d2x

dt2
= g, x(0) = x0 ,

dx

dt
(0) = v0 .

v0 can be negative!

tmax = − v0

g
, xmax = x0 −

1

2g
v0

2 .
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Ceiling

Require: x can never be negative. If
x hits 0, the ball bounces back with
equal but opposite v.

0 = x0 + v0tb + 1
2gtb

2.

tb =
1

g

(

−v0 −
√

v02 − 2gx0

)

.

Later, x(t) = −v0(t− tb) +
1
2g(t− tb)

2.
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Two-point boundary value problem

(needed for quantum mechanics)

I want to throw the ball so that x(tf) = xf .
v0 is at my disposal.

No ceiling

xf = x0 + v0tf +
1
2gtf

2 ⇒ v0 =
xf − x0

tf
− 1

2gtf .

Note: Exactly one solution. But this is an accident.
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With ceiling

Possibilities:
• Bounce path: Ball hits ceiling at 0 < tb < tf .
• Direct path: Ball never reaches ceiling (so previous
solution is OK).
◦ tb is outside (0, tf) (so ball never turns around).
∗ v > 0 always (falling).
∗ v < 0 always (rising).

◦ xmax ≥ 0. (Both of these could be true.)
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Four kinds of direct paths
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Look at direct path with x(tmax) = xmax , v(tmax) = 0.
Earlier and later, x(t) = xmax +

1
2g(t− tmax)

2.

So |t− tmax| = λ
√
x− xmax , λ ≡

√

2

g
.

So total time of any direct path is

(tf − tmax) + (tmax − 0) = λ(
√
xf − xmax +

√
x0 − xmax) .

xmax ≥ 0 ⇒ tf ≤ λ(
√
x0 +

√
xf).

Monotonic trajectories also satisfy this key inequality.
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The equality, tf = λ(
√
x0 +

√
xf),

describes a path that just grazes the
ceiling.
A bounce path must start (and end)
with higher speed, so it will come back
before the grazing path.
So bounce paths also satisfy the key
inequality

tf ≤ λ(
√
x0 +

√
xf).
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Conclusion:

• tf < λ(
√
x0 +

√
xf) ⇒ two solutions

(direct and bounce).

• tf = λ(
√
x0 +

√
xf) ⇒ one (grazing) solution.

• tf > λ(
√
x0 +

√
xf) ⇒ no solutions!

Solutions of two-point boundary-value problems may
not exist and may be nonunique.
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The time of bounce

Suppose bounce occurs at t = tb . For 0 < t < tb we
can use our 2-point no-ceiling formula

x(t) = x0 +

(

xf − x0

tf
− 1

2gtf

)

t+ 1
2gt

2

with tf = tb and xf = 0:

x(t) = x0 −
(

x0

tb
+ 1

2gtb

)

t+ 1
2gt

2.
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Similarly, for tb < t < tf we take x0 = 0 and start the
clock at tb :

x(t) =

(

xf

tf − tb
− 1

2g(tf − tb)

)

(t− tb) +
1
2g(t− tb)

2.

The velocities at tb must be equal and opposite:

0 = x′(tb − 0) + x′(tb + 0)

=

(

− x0

tb
+ 1

2gtb

)

+

(

xf

tf − tb
− 1

2g(tf − tb)

)

,
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which simplifies to

tb
3 − 3tf

2
tb
2 +

(

tf
2

2
− x0 + xf

g

)

tb +
tfx0

g
= 0,

a cubic equation to be solved for tb .
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Cubic equations

x3 + ax2 + bx+ c = 0.

1. Completing the cube: Let x = y − a
3 ; the y2 term

cancels. So we can assume the form

x3 + px+ q = 0.

Henceforth assume p and q are real.
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2. There may be three real roots, or one. (Or two,
one of which is double.)
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3. Renaissance Italian history : It is tangled.
• 16th-century mathematicians did not publish jour-
nal articles; they saved up theorems for books, often
written years later.

• Professional ethics was primitive: plagiarism, charges
of plagiarism, secrecy.

Scipione del Ferro (1465–1526):
• Taught his student Antonio Fior how to solve at
least some cubic equations.

• Left a notebook to his son-in-law.
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Niccolo Fontana “Tartaglia” (1500–1557): Discovered
the general solution and won a public competition with
del Ferro’s student to solve examples.

Girolamo Cardano (1501–1576): Wrote famous treatise
Ars Magna (1545). He had learned Tartaglia’s method
or formula by promising not to reveal it.

Lodovico Ferrari (1522–1565): Student of Cardano;
used Tartaglia’s solution of the general cubic to solve
the general quartic equation.
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Cardano wanted to cover the solution of the quartic
in his book, but it made no sense without also treat-
ing the cubic. Cardano and Ferrari learned from del
Ferro’s son-in-law that del Ferro had discovered more
about the general cubic than his inept student had re-
tained. Cardano used this as an excuse to break his
promise to Tartaglia: If del Ferro had solved the prob-
lem, Tartaglia had no right to embargo the informa-
tion. (Tartaglia did not agree.)
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4. Tartaglia’s formula in modern notation:
A solution of x3 + px+ q = 0 is

x = 3

√

−q

2
+
√
R + 3

√

−q

2
−
√
R , R =

(q

2

)2

+
(p

3

)3

.

When there is only one real root, this formula gives it.
That satisfied the Renaissance mathematicians, who
didn’t know about complex numbers.

In cases with 3 real roots, R is negative, so
√
R is
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imaginary. In the end, the imaginary parts cancel. But
the formula was gibberish in 1545. (And Maple still
has trouble graphing it.)

Rafael Bombelli (1526–1573): Was led by this formula
to discover complex numbers. If he knew a root, he
could prove that the formula was consistent, but he
didn’t yet know how to use it when the root was un-
known. (Note: If you already know one root, you can
find the other two by factoring and you don’t need the
formula.)
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Example: (Boyer, A History of Mathematics)

x3 = 15x+ 4 ⇒ x =
3

√

2 +
√
−121 +

3

√

2−
√
−121.

But it’s also easy to see that x = 4 is a solution. If

formula is right, 3

√

2±
√
−121 must equal 2 ± ib ; but

also its cube must equal 2 + 11i :

23 − 3 · 2b2 = 2, 3 · 22b− b3 = 11.

b = 1 satisfies both equations!
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Unfortunately, expressing 3
√
x+ iy as a + ib in general

requires trigonometric functions.
3
√
reiθ = 3

√
r eiθ/3.

5. The trig solution — François Viète (1540–1603):
• Introduced letters for variables.
• Proved many trig identities such as

cos3 θ − 3
4 cos θ − 1

4 cos(3θ) = 0.

• Used that one to solve cubics:
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Write general cubic as y3 + 3m2py +m3q = 0
(m arbitrary). Substitute y = cos θ and get

3m2p = − 3
4 , − 1

4 cos(3θ) = m3q.

Solve the first equation for m, then the second equa-
tion for θ (using a table or approximate algorithm for
inverse cosines; there is no free lunch). Computing the
cosine, we get y. (The triple nature of the root is re-
lated to the multivaluedness of the inverse cosine.)
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In the ceiling problem, our cubic equation

tb
3 − 3tf

2
tb
2 +

(

tf
2

2
− x0 + xf

g

)

tb +
tfx0

g
= 0

always has three real roots; the relevant one is the one
in the middle.

Tweaking Viète’s method a little, we get
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tb =
tf

2
+

1√
3

√

tf2 + 2λ2(x0 + xf)

× sin

[

1

3
sin−1 3

√
3λ2 tf(x0 − xf)

[t2f + 2λ2(x0 + xf)]3/2

]

where λ2 =
2

g
.
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6. Numerical methods: For most practical purposes
it is better to solve cubic equations numerically (e.g.,
Newton’s method). That’s why we didn’t learn
Tartaglia’s formula (or Viète’s) in high school.

But in the quantum mechanics application it is nice to
have a formula that can be differentiated with respect
to parameters (such as x0).
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• Papa Bear’s formula (Newton) is too crass and
crude.

• Mama Bear’s formula (Tartaglia) is elegant but
useless.

• Baby Bear’s formula (Viète) is just right!
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Quantum mechanics

Propagator

Suppose a particle starts at x0 at time 0.
Then at time tf , |U(tf, xf, x0)|2 is the probability den-
sity that it will be observed at xf .

ih̄
∂U

∂t
= − h̄2

2m

∂2U

∂x2
+ V (x)U (x0 fixed).

U(0, x, x0) is completely concentrated at x0 .
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Semiclassical prescription

Let x(t) be a solution of the classical equation of
motion (“path”).

Lagrangian: L(t, x, x0) =
m

2

(

dx

dt

)2

− V (x).

Action: S(tf, xf, x0) =

∫ tf

0

L[x(t)] dt.

Amplitude: A(tf, xf, x0) =

√

∣

∣

∣

∣

∂2S

∂xf ∂x0

∣

∣

∣

∣

.
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U(tf, xf, x0) ≈
∑ 1√

2πih̄
A(tf, xf, x0)e

iS(tf,xf,x0)/h̄

summed over all classical paths that start at x0 at
time 0 and arrive at xf at time tf .
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Free particle

x(t) = x0 +
xf − x0

tf
t is the only such path.

L =
m

2

(

xf − x0

tf

)2

, S =
m

2

(xf − x0)
2

tf
,

A2 =
m

tf
, U0 =

√

m

2πih̄tf
eim(xf−x0)

2/2h̄tf (exact).
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Wall (reflecting boundary but no gravity)
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Method of images

U(tf, xf, x0) = U0(tf, xf, x0)− U0(tf, xf,−x0) (exact).
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Falling body (no ceiling)

Udirect(tf, xf, x0) =
√

m

2πih̄tf
eim(xf−x0)

2/2h̄tfeimg(x0+xf)tf/2h̄e−img2tf
3/24h̄

(exact).
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Ceiling
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√
x0 +

√
xf)

bounce

directtb(t, xf, x0)
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For tf < λ(
√
x0 +

√
xf), U ≈ Udirect + Ubounce .

A2
bounce =

∣

∣

∣

∣

∂2S

∂xf ∂x0

∣

∣

∣

∣

, Sbounce =

∫ tb

0

Ldt+

∫ tf

tb

Ldt.

∂

∂x0
=

∂

∂xb

∂xb

∂x0
+ · · · , etc.,

and that is why we need a formula for the root of the
cubic.
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For tf > λ(
√
x0 +

√
xf), there are no classical paths, so

this approximation gives U ≈ 0.
For tf ≈ λ(

√
x0 +

√
xf), the approximation is poor.

Remedy: Construct a semiclassical approximation for
the propagator when the particle starts with a known
initial momentum (instead of position). This is a sim-
ple instance of “Maslov theory”. It involves intricate
classical mechanics (many cases) but no cubic equa-
tions.
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