Lecture 11
Copyright © Sue Geller 2006

Welcome to the last week in number theory. This week we will use the Chinese Remainder theorem to solve a practical problem, namely finding exact solutions to systems of equations with rational coefficients.

First I'd like to say a few words about simplifying the computations in the Chinese Remainder Theorem. Last week you used the fact that the Euclidean Algorithm constructs a c_{i} so that $c_{i} M_{i} \equiv 1 \bmod m_{i}$, and hence $a_{i} M_{i} \equiv 0$ $\bmod m_{j}$ for $j \neq i$. This is great for proofs but not so great for computation. Remember that you are working $\bmod m_{i}$. So you can first take $M_{i} \bmod m_{i}$ and possibly guess the c_{i} and check it. For example, solve
$x \equiv 4 \bmod 5$
$x \equiv 6 \bmod 8$
$x \equiv 5 \bmod 9$.
Then $M_{1}=72, M_{2}=45, M_{3}=40$. So we need to find c_{i} such that $72 c_{1} \equiv 1$ $\bmod 5$. But $72 \equiv 2 \bmod 5$ and $2 \times 3 \equiv 1 \bmod 5$, so we can take $c_{1}=3$. Similarly, $45 \equiv 5 \bmod 8$ and $5^{2} \equiv 1 \bmod 8$, so we can take $c_{2}=5$. Lastly, $40 \equiv 4 \bmod 9$ and $28 \equiv 1 \bmod 9$ so we can take $c_{3}=7$ or even easier $c_{3}=-2$. Now we put them together and $4(3)(72)+6(5)(45)+5(-2)(40)=$ $864+1350-400=1814 \equiv 14 \bmod 360$. A quick check shows that 14 is indeed a correct answer. You will get plenty of practice in the exercises and problems. If you run into trouble, please email me.

