
Lecture 1

This week’s material should be review except possibly for sections 0.3 and
1.1. So I am going to supplement only a bit of 0.1 and 0.2. If this material
is new to you, you may be in the wrong course or need to do some remedial
work ASAP.

The biggest stumbling block for students in section 0.1 is usually the
concept of equivalence class. That may be because we are used to thinking of
elements as uniquely written, such as 1, 3.14159, e. But actually, we are used
to equivalence classes in the rational numbers, i.e., 1/2 = 2/4 = 3/6 = · · · .

Proposition 2 is telling for why an equivalence class is set, so I will give
a proof omitted by the book.

Suppose ∼ is an equivalence relation on a non-empty set A and let [a] be
the equivalence class for which a is a representative I claim the equivalence
classes form a partition of A. Let a ∈ A. Then a ∼ a, so a ∈ [a]. Thus⋃

a∈A[a] = A. Suppose c ∈ [a] ∩ [b]. Then a ∼ c and c ∼ b, whence a ∼ b.
If d ∈ [a], then d ∼ a and a ∼ b, so d ∼ b and d ∈ [b], whence [a] ⊆ [b].
By interchanging the roles of a and b, we see that [b] ⊆ [a]. Thus [a] = [b].
Therefore, the equivalence classes are disjoint and form a partition of A.

Conversely, suppose {Ai| i ∈ I} is a partition of A. Define a ∼ b if and
only if a, b ∈ Ai for some i. Since the Ai are a partition, each element of A is
in one and only one set in the partition. Thus ∼ is well-defined and a ∼ a.
If a ∼ b, then a, b ∈ Ai, so b, a ∈ Ai, whence b ∼ a. If a ∼ b and b ∼ c, then
a, b ∈ Ai and b, c ∈ Aj. Since Ai ∩ Aj 6= ∅, i = j and a ∼ c. Thus ∼ is an
equivalence relation.

The Euler Phi function is likely to be the only new idea in section 0.2.
The process to compute it is to first factor the positive integer according to
the Fundamental Theorem of Arithmetic and then apply the formula. Here
are some other examples.

95 = 5 · 19, so φ(95) = 50(5− 1)190(19− 1) = 4 · 18 = 72

96 = 253, so φ(96) = 24(2− 1)30(3− 1) = 24 · 2 = 25 = 32.

97 is prime, so φ(97) = 96.
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I’m hoping that all of you have seen modular arithmetic and know how
to compute in it. Note that the book is using a for the class of a which I
used as [a] in section 0.1. Both notations are used. I find it easier to type
the brackets than put in an overline, but easier to write the overline. Use
what works for you but be clear which you are using.

The computations here are awkward. We will learn a shortcut later when
we study orders of elements in groups. For the moment, follow the instruc-
tions in the book to get a feel for what is going on.

Suppose we are working in Z/19Z. Then [(27)123] = [8123] = [2369] =
[(218)2029] = [29] = [64 · 8] = [7 · 8] = [56] = [18] = [−1]. Yes, this is
tedious, but it always works. I tend to stay between −n/2 and n/2 for my
representatives as it makes arithmetic easier. By the way, I did the above
computation without a calculator and just picked the numbers at random.

Many of the proofs in modular arithmetic use the Fundamental Theorem
of Arithmetic, greatest common divisors and writing them as a linear com-
bination of the number and the modulus (19 in the above example), and so
the Euclidean Algorithm.

This week starts group theory. If you’ve had an abstract algebra course
before, much of this is review. If you’ve not, please work more of the prob-
lems, especially the early ones that give you a view of what is and what is
not a group or a binary operation.

I’m going to add some theorems that are done in a first course in hopes
of helping those of you for whom this is new.

Theorem 1: Let G be a group with operation ∗. Then

1. The identity element e is unique.

2. The inverse of a given x ∈ G is unique.

3. (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G.

Proof: 1. Suppose e and e′ are identities for G. The e = e ∗ e′ = e′.

2. Suppose b, c are both inverses of a. Then b = be = b(ac) = (ba)c =
ec = c.
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3. a∗ b∗ (b−1 ∗a−1) = a∗ (b∗ b−1)∗a−1 = a∗ e∗a−1 = aa−1 = e Similarly,
(b−1 ∗ a−1) ∗ a ∗ b = e. By 2., (a ∗ b)−1 = b−1 ∗ a−1.

Theorem 2: (G, ∗) is a group if and only if

1. The operation ∗ is associative on G.

2. There exists a left identity e on G, i.e., e ∗ x = x for all x ∈ G.

3. There exists a left inverse x′ for each x ∈ G.

Note: The identity and inverse must both be left or both be right but not
one of each.

Proof: x ∗ x′ = x ∗ (e ∗ x′) = x ∗ (x′ ∗ x)∗′ = (x ∗ x′)2. Let y be the left
inverse of x ∗ x′. Then e = y ∗ (x ∗ x′) = y(x ∗ x′)2 = e ∗ (x ∗ x′) = e. Thus x′

is a right inverse of x as well. So x ∗ e = x ∗ (x′ ∗x) = (x ∗x′) ∗x = e ∗x = x.
Thus G is a group.

The book alludes to making group tables for finite groups. Let’s look
and see what this tells us about some small numbered groups. If G has one
element, it must be e with e ∗ e = e. So suppose |G| = 2, so G = {e, a}. The
group table has no choice since e ∗ x = x = x ∗ e fills in three spots. This

leaves a ∗ a. But a must have an inverse, so a ∗ a = e. We get

* e a

e e a
a a e

.

Now suppose |G| = 3. We start with

* e a b

e e a b
a a
b b

Since a 6= e, a ∗ b 6= b. Thus a ∗ b = e. Since each row and column must
have each element once and only once by cancellation, the other three entries

are determined:

* e a b

e e a b
a a b e
b b e a
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The situation is more complicated for |G| = 4 since we can have a ∗ a =
e = b ∗ b = c ∗ c or only one of them, say b ∗ b = e. We only care about the

table up to relabeling, so if a ∗ a = e = b ∗ b = c ∗ c,

* e a b c

e e a b c
a a e c b
b b c e a
c c b a e

If a ∗ a 6= e, c ∗ c 6= e, then

* e a b c

e e a b c
a a b c e
b b c e a
c c e a b

The process becomes more difficult with larger |G|, so I will stop here.
Please notice that all the groups so far are abelian. Once we have Lagrange’s
Theorem, we will see that there is exactly one group of order 5, namely,
Z/5Z. So the first non-abelian group is of order 6, namely D6

∼= S3. We’ll
learn about isomorphisms next week and prove this result.

I hope you enjoy working the problems.
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