
Lecture 4

As advertised, we finish chapter 2 this week and next week start chapter 3,
which is the hardest chapter on groups we will do.

2.3

Cyclic groups are among the most basic building blocks of groups. In par-
ticular, for x ∈ G, the subgroup < x > generated by x = {xn|n ∈ Z} is
cyclic by definition. The subgroup is finite if and only if |x| is finite because
| < x > | = |x|.

The book does a thorough job of explaining cyclic groups, so I have nothing
to add to the discusion. However, I do want you to see the proof of a hard
problem.

2.3.21: Let p be an odd prime and let n be a positive integer. Using the
Binomial Theorem, we see (1+p)p

n−1
= 1+

(
pn−1

1

)
p+ ...+

(
pn−1

i

)
pi+ ...+pp

n−1
.

For i ≥ n the power of p is greater than or equal to n, so we need not worry
about the binomial coefficient. What we need is a lemma:

Lemma:
(
ps

i

)
is divisible by ps−i+1 for i = i, 2, ..., s− 1.

Proof: By symmetry of the binomial coefficient, we may assume that i ≤ s−i.
If i = 1,

(
ps

1

)
= ps = ps−1+1. Assume

(
ps

i−j

)
is divisible by ps−i+j+1 for

j = 1, 2, ..., i − 1. Note that
(
ps

i

)
= ps!/(i!(ps − i)!) = ps−ipi(ps − 1)(ps −

2) . . . (ps − i + 1)/i!. i! = ptm where (p,m) = 1. Since
(
ps

i

)
is an integer

and p is a prime, we need only show that there are enough factors of p in
pi(ps−1)(ps−2)...(ps−i+1). We proceed by induction on i. If i = 1, then 1! =
1 divides every integer. Assume that j divides pj(ps−1)(ps−2)...(ps− j+ 1)
for j = 1, 2, ..., i− 1. If (i, p) = 1, then the number of factors of p in i! equals
the number of factors of p in (i− 1), which has at most as many factors of p
as in pi−1(ps− 1)(ps− 2)...(ps− i) which equals the number of factors of p in
pi−1(ps − 1)(ps − 2)...(ps − i + 1) since p does not divide i. Thus i! divides
pi(ps − 1)(ps − 2)...(ps − i+ 1).

If (i, p) 6= 1, i = ptm, where (p,m) = 1. Again, we need only show that there
are enough factors of p. We know that i−1 divides pi−1(ps−1)(ps−2)...(ps−i).
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Since p is odd, p does not divide i − 1, i − 2, ... i − p + 1. Thus, the
number of factors of p in (i− 1)! is the same as the number of factors of p in
(i− j)!, j = 2, ..., p−1 and is t less than the number of factors of p in i!. But
by induction (i−p+2)! divides pi−p+1(ps−1)(ps−2)...(ps− i+p), which has
i−p+1+a+ t+1 = i−p+a+2 factors of p where a is the number of factors
of p in (ps−1)(ps−2)...(ps−i+1). Furthermore, pi(ps−1)(ps−2)...(p2−i+1)
has i + a factors of p, so has p − 2 more. So we have gained p − 2 factors
of p for m = 1, 2, ..., p − 1 or (p − 1)(p − 2) = p2 − 3p + 2 total. Since
p ≥ 3, (p− 1)(p− 2) ≥ 2, and we have enough more. This proves the lemma.

For the first part of the problem, s = n − 1, so for i ≥ 1,
(
pn−1

i

)
pi =

pn−1+i+1+b = pn+b ≡ 0 mod pn. So (1 + p)p
n−1 ≡ 1 mod pn.

For the second part, s = n−2, so (1+p)p
n−2

= 1+pp
n−1

+ higher order terms
in p. Thus (1 + p)n−2 ≡ 1 + pn−1 6≡ 1 mod pn.

Similarly (1 + p)p
i

= 1 + pp
i
+ ... 6≡ 1 mod pn. Therefore, the order of 1 + p

is pn−1 ∈ (Z/pnZ)×.

2.4

I can’t think of anything to add to the theory the book presents as it is
basically one definition and an equivalent statement of that definition. But
using the definition or its equivalent can be daunting. Thus I’m simply going
to work some more examples in hopes of making the idea clearer.

2.4.5: Prove that S3 is generated by any two elements of order 2.

Proof: Let (ij), (jk) be any two elements of S3 of order 2. Then (ij)(jk) =
(ijk), (jk)(ij) = (ikj), (ijk)(ij) = (ik). Thus < (ij), (jk) >= S3.

2.4.10: Prove that the subgroup A of SL2(F3) generated by

(
0 −1
1 0

)
and(

1 1
1 −1

)
is isomorphic to Q8.

Proof: a4 =

(
0 −1
1 0

)4

=

(
−1 0
0 −1

)2

= I. Also, b4 =

(
1 1
1 −1

)4

=
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(
2 0
0 2

)2

= I since 22 = 1 ∈ F3. Thus |a| = |b| = 4. Note that

(
0 −1
1 0

)(
1 1
1 −1

)
=(

−1 1
1 1

)
and

(
1 1
1 −1

)(
0 −1
1 0

)
=

(
1 −1
−1 −1

)
. Thus, ab = −ba. Since Q8

has generators i, j with relations i4 = j4 = 1 and ij = −ji, there is a homo-
morphism φ : Q8 → A. Since |ab| = 4 by computation, |A| = 8. Since φ takes
generators to generators, φ is onto. Since |A| = |Q8|, φ is an isomorphism.

2.4.13: Prove that the multiplicative group of positive rational numbers Q×

is generated by A = {1/p|p is a prime}.

Proof: By the fundamental theorem of arithmetic, every integer q can be
written uniquely as pn1

1 ...p
nb
b where p1 < p2 < · · · < pb are primes. Therefore,

1/q is in the subgroup generated by A. Since < A > is a group, it is closed
under inverses, whence a ∈< A > for every positive integer a. Lastly, < A >
is closed under multiplication, so a/q ∈< A > ∀a, q ∈ Z×. Therefore,
< A >= Q×.

2.5

Recall that the normalizer of a subgroup H in G, NG(H), contains H, so
we need only check all the subgroups of G containing H to see which is the
normalizer. Note that NG(G) = G as G is the biggest subgroup of G. Also,
NG(1) = G since every element commutes with 1.

Similarly, CG(H) is a subgroup. If H is abelian, H ⊆ CG(H). If H is not
abelian, then H 6⊆ CG(H), but Z(H) ⊆ CG(H). The lattice will tell us which
subgroups are possible.

Again, I think the best thing I can do to be helpful is to work some problems.

2.5.6c: Use the given lattice to find the centralizers of each element of S3.
Since < (1 2 3) >=< (1 3 2 > is commutative and S3 is not, CG((1 2 3)) =
CG((1 3 2)) =< (1 2 3) >. Since (i j) commutes only with itself, CG((i j)) =
< (i j) >.

2.5.8a: Compute the normalizer of each subgroup of S3. From the lattice
diagram on the top of page 69, we see that there are four proper, non-trivial
subgroups for which to compute the normalizer.
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H =< (1 2 3) >: The only possible normalizers are H and G. Since
(1 2)(1 2 3)(1 2) = (1 3 2) and S3 =< (1 2), (1 2 3) >, NG(H) = G.

H =< (1 2) >: Again the only choices are H and G. Since (1 3)(1 2)(1 3) =
(2 3) /∈ H, NG(H) = H.

Similar computations show that NG(< (1 3) >) =< (1 3) > and
NG(< (2 3) >) =< (2 3) >.
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