Lecture 6

3.5

If you are having trouble with this section, I recommend you do problem 1 to see how things work out in practice.
3.5.2: Since $\sigma^{2}=\sigma \sigma$, if σ is written as a product of n transpositions, σ^{2} is the product of $2 n$ transpositions, whence is an even permutation.
3.5.3: Let's start with the hint: $(23)(12)(23)=(13)$ Similarly, $(i+1 i+2)(i i+$ 1) $(i+1 i+2)=(i i+2)$. Assume we have shown that $(i i+j) \in<(i i+1)>$. Then $(i+j i+j+1)(i i+j)(i+j i+j+1)=(i i+j+1)$ By induction, all transpositions are in $<(i i+1)>$, so $S_{n}=<(i i+1)>$.

5.1

Just as we went from the plane in calculus 2 to three space in calculus 3 and \mathbb{R}^{n} in linear algebra, this section makes formal what we've been doing with two components and expands it to as many components as we like. The idea of projection is the same as was used in calculus, just with any group now.

A p-group is a group whose order is a power of p. There are non-abelian p-groups, but we are going to study only abelian ones. The basic building block is then $\mathbb{Z}_{p^{n}}$, called an elementary abelian group of order p^{n}. Direct products, as studied in this section, are the main way to put them together.
5.1.2: Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups and let $G=G_{1} \times G_{2} \times \cdots \times G_{n}$. Let I be a proper, nonempty subset of $\{1,2, \ldots, n\}$, and let $J=\{1,2, \ldots, n\}-I$, the other indices. Define $G_{I}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid g_{j}=1_{G_{j}} \forall j \in J\right\}$.
5.1.2a: Define $\phi: G_{I} \rightarrow \Pi_{i \in I} G_{i}$ by $\phi\left(\left(g_{1}, \ldots, g_{n}\right)\right)=\Pi_{i \in I} \pi_{i}\left(g_{1}, \ldots, g_{n}\right)$. Since each π_{i} is a homomorphism, ϕ is a homomorphism. If $\phi\left(g_{1}, \ldots, g_{n}\right)=$ $\Pi_{i \in I} 1_{G_{i}}$, then $g_{i}=1_{G_{i}} \forall i \in I$. Since $g_{j}=1_{G_{j}} \forall j \notin I,\left(g_{1}, \ldots, g_{n}\right)=1_{G}$. Therefore, ϕ is an injection. Since ϕ is a surjection by definition of G_{I}, ϕ is an isomorphism.
5.1.2b: Let $g=\left(g_{1}, \ldots, g_{n}\right) \in G_{I}$, and let $h=\left(h_{1}, \ldots, h_{n}\right) \in G$. Since each G_{i} is a group, $h g h^{-1} \in G_{I}$ and G_{I} is normal in G. Define $\rho: G \rightarrow G_{J}$ by $\rho\left(\left(g_{1}, \ldots, g_{n}\right)=\left(h_{1}, \ldots, h_{n}\right)\right.$ where $h_{j}=g_{j} \forall j \in J$ and $h_{i}=1_{G_{i}} \forall i \in I$. By definition ρ is surjective.

$$
\begin{aligned}
& \rho\left(\left(g_{1}, \ldots, g_{n}\right)\left(p_{1}, \ldots, p_{n}\right)\right)=\rho\left(g_{1} p_{1}, \ldots, g_{n} p_{n}\right)=\left\{\begin{array}{cc}
g_{j} p_{j} & \text { if } j \in J \\
1_{G_{i}} & \text { otherwise }
\end{array}\right. \\
= & \left(\left\{\begin{array}{ll}
g_{j} & \text { if } j \in J \\
1_{G_{i}} & \text { otherwise. }
\end{array}\right)\left(\begin{array}{ll}
p_{j} & \text { if } j \in J \\
1_{G_{i}} & \text { otherwise }
\end{array}\right)=\rho\left(g_{1}, \ldots, g_{n}\right) \rho\left(p_{1}, \ldots, p_{n}\right) .\right.
\end{aligned}
$$

Thus ρ is an epimorphism. $\left(g_{1}, \ldots, g_{n}\right) \in \operatorname{ker} \rho$ if and only if $\rho\left(g_{1}, \ldots, g_{n}\right)=$ $\Pi_{j \in J} 1_{G_{j}}$ if and only if $\left(g_{1}, \ldots, g_{n}\right) \in G_{I}$. By the first isomorphism theorem $G / G_{I} \cong G_{J}$.
5.1.2c: Note that $G_{I} \cap G_{J}=1_{G}$ since $I \cap J=\emptyset$. Therefore, every element of G can be written uniquely as $x_{i} y_{j}$ where $x_{i} \in G_{I}$ and $y_{J} \in G_{J}$. Thus $\sigma: G \rightarrow G_{I} \times G_{J}$ by $\sigma\left(x_{i} y_{j}\right)=\left(x_{i}, y_{j}\right)$. By part b and $G_{I} \cap G_{J}=1_{G}, x_{i} y_{j}=$ $y_{j} x_{i}$. Thus $\sigma\left(\left(x_{i} y_{j}\right)\left(x_{i}^{\prime} y_{j}^{\prime}\right)\right)=\sigma\left(x_{i} x_{i}^{\prime} y_{i} y_{i}^{\prime}\right)=\left(x_{i} x_{i}^{\prime}, y_{i} y_{i}^{\prime}\right)=\left(x_{i}, y_{i}\right)\left(x_{i}^{\prime}, y_{i}^{\prime}\right)=$ $\sigma\left(\left(x_{i} y_{i}\right)\right) \sigma\left(\left(x_{i}^{\prime} y_{i}^{\prime}\right)\right)$. Therefore σ is a homomorphism. If $\left(x_{i} y_{i}\right) \in \operatorname{ker} \sigma$, then $\left(x_{i}, y_{i}\right)=\left(1_{G_{I}}, 1_{G_{J}}\right)$ and $x_{i}=1_{G_{I}}, y_{j}=1_{G_{J}}$, whence $x_{i} y_{j}=1_{G}$ and σ is an injection. By definition of σ, σ is onto, so σ is an isomorphism as claimed.
5.1.3: Let I and K be any disjoint, non-empty subsets of $\{1,2, \ldots, n\}$. Let G_{I} and G_{K} be as defined in problem 5.1.2. By 5.1.2b, G_{I} and G_{K} are both normal in G. Since $x y x^{-1} y^{-1} \in G_{I} \cap G_{K}=\left\{1_{G}\right\}, x y=y x$.
5.1.5. Let $H=<(i, \overline{1})>=\{(i, \overline{1}),(-1, \overline{2}),(-i, \overline{3}),(1, \overline{0})$. Then $<j, \overline{0}><i, \overline{1}><-j, \overline{0}>=<j, \overline{0}><-k, \overline{1}>=<-i, \overline{1}>\notin H$. Therefore, H is not normal in $Q_{8} \times \mathbb{Z}_{4}$.

