
Lecture 7

5.2

The fundamental theorem of abelian groups is one of the basic theorems in
group theory and was proven over a century before the more general theorem
we will not cover of which it is a special case. Basically, the theorem says
that, given a finitely generated abelian group, it can be written uniquely as a
finite product of Zs and a finite product of finite groups of one of two types.

Please ignore the discussion of Sylow theorems and p-groups. We skipped
that chapter and the discussion doesn’t really add to understanding even if
we had done the Sylow theorems.

The big part of this chapter is finding all possible finite abelian groups of a
particular order and writing them in one of two ways. The invariant factor
way has the advantage that it is truly unique, but harder to compute all of
them. The elementary divisor way is unique only up to the order of the factors
but is much easier to be sure you have all the possibilities. So I’m going to
do problem 2, the invariant factor problem, and ask you to do problem 3.
I’d prefer you do the computations from scratch rather than from my list
(which might be wrong or incomplete as a way of getting you to decide what
is right or simply because I computed wrong since this way is harder) and
then convert to do the matching. You’ll learn more that way.

5.2.2a: 270 = 2 ·33 ·5. So the possibilities for n1 are 2 ·33 ·5, 2 ·32 ·5, 2 ·3 ·5.
Then n2 = 1, 3, 3, respectively, and n3 = 1, 1, 3. These yield Z270, Z90 ×
Z3, Z30 × Z3 × Z3.

5.2.2b: 9801 = 34112. So the possibilities for n1 are 34112, 33112, 3311, 32112,
3211, 3 · 112, 3 · 11. Then n2 = 1, 3, 3 · 11, 32 or 3, 3211 or 3 · 11, 3, 3 · 11.
Thus n3 = 1, 1, 1, 1 or 3, 1 or 3, 3, 3. Finally, n4 = 1, 1, 1, 1, 1, 3, 3.
These yield Z9801, Z3267×Z3, Z297×Z33, Z1089×Z9, Z1089×Z3×Z3, Z99×
Z99, Z99 × Z33 × Z3, Z363 × Z3 × Z3 × Z3, Z33 × Z33 × Z3 × Z3.

5.2.2c: 320 = 265. So the possibilities for n1 are 265, 255, 245, 235, 225, 2 ·5.
Then n2 = 1, 2, 22 or 2, 23 or 22 or 2, 22 or 2, 2. Thus n3 = 1, 1, 1 or 2,
1 or 22 or 2, 22 or 22 or 2, 2. Therefore, n4 = 1, 1, 1, 1, 1, 1 or 1 or 2, 1 or 2
or 2, 2. Lastly, n5 is 1 until the last two which are 2, and n6 is 1 until the last
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one which is 2. These correspond to Z320, Z160×Z2, Z80×Z22 or Z80×Z2×
Z2, Z40×Z23 or Z40×Z22×Z2 or Z40×Z2×Z2×Z2, Z20×Z22×Z22 or Z20×
Z22 × Z2 × Z2 or Z20 × Z2 × Z2 × Z2 × Z2, Z10 × Z2 × Z2 × Z2 × Z2 × Z2.

5.2.2d: 105 = 3 · 5 · 7 = n1. Therefore the only abelian group of order 105 is
Z105.

5.2.2e: 44100 = 22325272. So the possibilites for n1 are 22325272, 2·325272, 223·
5272, 22325 · 72, 2232527, 2 · 3 · 5272, 2 · 325 · 72, 2 · 32527, 223 · 5 · 72, 223 ·
527, 22325 · 7, 2 · 3 · 5 · 72, 2 · 3 · 527, 2 · 325 · 7, 223 · 5 · 7, 2 · 3 · 5 · 7. Thus
n2 = 1, 2, 3, 5, 7, 6, 10, 14, 15, 21, 35, 30, 42, 70, 105, 210. These
correspond to Z44100, Z22050×Z2, Z14700×Z3, Z8820×Z5, Z6300×Z7,Z7350×
Z6, Z4410 × Z10, Z3150 × Z14, Z2940 × 15, Z2100 × Z21, Z1260 × Z35, Z1470 ×
Z30, Z1050 × Z42, Z630 × Z70, Z420 × Z105, Z210 × Z210.

5.2.5: Let G be a finite abelian group of type {n1, n2, . . . , nt}. Suppose G
contains an element of order m. If m does not divide the order of n1, then
the order of m is divisible by a prime to an power s greater than the power
t that prime divides n1. Thus G contains a cyclic group of order ps, which
contradicts the corresponding elementary factor decomposition. Thus, m
divides n1.

Conversely, if m divides n1, then the invariant factor Zn1 contains a cyclic
subgroup H of order m, whence G has an element of order m, namely any
generator of H.

5.2.8: Let A be a finite abelian group written multplicatively, and let p be a
prime. Define

Ap = {ap|a ∈ A} and Ap = {x|xp = 1}. (1)

Thus Ap and Ap are the image and kernel of the pth-power map, respecitvely.

5.2.8a: By definition Ap is an elementary abelian group. If xAp ∈ A/Ap,
then (xAp)p = xpAp = 1Ap so the order of xAp divides p. Thus A/Ap is
an elementary abelian group as well. By 5.1.7c, they both have order pn, so
they are isomorphic to Epn and thus to each other.

5.2.8b: By the fundamental theorem of abelian groups, A = H × K where
H is an abelian p-group and the order of K is not divisible by p. Thus all
subgroups of order p are subgroups of H × {1} and all subgroups of index
p are subgroups of of H direct product all of K. Therefore, we may assume
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that K = {1} and A = H is an abelian p−group as well. Consider A written
as a product of elementary factors Zps1 ×· · ·×Zpst . Every element of order p
has either 1 or an element of order p in each factor. Every subgroup of index
p has elements of order psi−1 in the ith factor. Since there are p− 1 elements
of order p in each factor and p − 1 elements of order psi − 1 in each factor,
there are the same number of subgroups of order p as there are of index p.

7.1

In chapter 7 we are starting a new topic, namely, rings. Section 1 contains the
basic definitions, simple propositions, and lots of examples. Since Proposition
1 was not completely proven, I will complete the proof.

Proposition 1 (3): By (2), (−a)(−b) = a(−(−b)) = ab by Chapter 1, Propo-
sition 1 (3).

Proposition 1 (4): Suppose R has an identity 1 and another 1′. Then 1 =
1 · 1′ = 1′. Therefore the identity is unique. Furthermore, a + (−1)a =
(1+(−1))a = 0 ·a = 0, so by uniqueness of the additive inverse, −a = (−1)a.

The first few exercises are corollaries of Proposition 1 for a ring R with 1.

7.1.1: By Proposition 1 (3) with a = 1 = b, (−1)2 = (−1)(−1) = 1(1) = 1.

7.1.2: Suppose u is a unit in R. Then there exists v ∈ R such that uv =
1 = vu. Thus (−u)(−v) = uv = 1 = vu = (−v)(−u). Therfore, −u is a unit
with inverse −v.

7.1.3: Let S be a subring of R containing the identity of R. Suppose u ∈ S
is a unit in S. Then there exists v ∈ S such that uv = 1 = vu. Since
S ⊆ R, uv = 1 = vu ∈ R. Therefore, u is a unit in R.

Let R = Q and S = Z. Then 2 ∈ R is a unit in R but is not a unit in S
because 1/2 /∈ S.

Just to help out with more proofs, I’ll do another few problems.

7.1.7: The center C(R) of a ring R is {z ∈ R|zr = rz ∀r ∈ R}. Since
1r = r = r1 ∀r ∈ R, 1 ∈ C(R) and C(R) is not empty. Suppose a, b ∈ C(R).
Then, for all r ∈ R, (a + b)r = ar + br = ra + rb = r(a + b), whence
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a + b ∈ C(R). Also, abr = arb = rab, so ab ∈ C(R). Therefore C(R) is a
subring of R.

Suppose R is a division ring. If a ∈ C(R), then a−1r = (r−1a)−1 =
(ar−1)−1 = ra−1 ∀r ∈ R. Therefore, a−1 ∈ C(R). Since ar = ra ∀r ∈ R,
ar = ra ∀r ∈ C(R). Thus C(R) is commutative, whence a field.

7.1.8: If a+bi+cj+dk ∈ C(H), then (a+bi+cj+dk)(xj) = axj+bxk−cx−dxi
and (xj)(a+ bi+ cj + dk) = axj − bxk − cx+ dxi, whence bxk = −bxk and
dxi = −dxi, so b = 0 = d. Similarly, (a+cj)(xi) = axi−cxk = (xi)(a+cj) =
axi+ cxk, whence c = 0. Therefore C(H) = {a|a ∈ R}.

Let S = {a+ bi|a, b ∈ R}. Since 1 + 0i ∈ S, S is not empty. a+ bi+ c+ di =
a+ c+ (b+d)i ∈ S and (a+ bi)(c+di) = ac− bd+ (ad+ bc)i ∈ S. Therefore,
S is a subring of H. Since (c + di)(a + bi) = ac − bd + (ad + bc)i, S is
commutative but not in the center of H.

7.1.11: Suppose R is an integral domain and that x2 = 1 for some x ∈ R.
Then 0 = x2 − 1 = (x − 1)(x + 1). Since R is an integral domain, either
x− 1 = 0 or x+ 1 = 0. Therefore, x = ±1.

7.2

Polynomials and matrices are familiar, but in this section we put other things
than numbers in our matrices. For example, we might put polynomial over
the reals as entries in our matrices. But the big new thing is group rings. One
of the famous group rings is the real quaternions. Recall the quternion group,
Q, has 8 elements, ±1,±i,±j,±k. We can form the real quaternions, RQ by
using the distributive law, the usual rules for the reals, and the multiplication
in Q. For example, (3i−j)(3i+j) = 9i2 +3ij−3ji−j2 = −9+3k+3k+1 =
−8 + 6k. Notice that we had to be careful in our multiplication because
Q is not commutative. It would have been tempting, but wrong, to say
(3i− j(3i+ j) = 9i2 − j2 because ij 6= ji.

7.2.11 Since our ring is Z/3Z, α = (2 3) + 2(1 2 3) and β = 2(2 3)− (1 2 3).
Note that the Z/3Z has no effect on the cycles in S3.

7.2.11.a α + β = (1 2 3).
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7.2.11.b 2α− 3β = 2α = 2(2 3) + (1 2 3).

7.2.11.c αβ = ((2 3) + 2(1 2 3))(2(2 3)− (1 2 3)) = 2(2 3)2 − (2 3)(1 2 3) +
(1 2 3)(2 3)− 2(1 2 3)2 = 2− (1 3) + (1 2)− 2(1 3 2).

7.2.11.d βα = (2(2 3)− (1 2 3))((2 3) + 2(1 2 3)) = 2(2 3)2 + (2 3)(1 2 3)−
(1 2 3)(2 3)− 2(1 2 3)2 = 2 + (1 3)− (1 2)− 2(1 3 2).

7.2.11.e α2 = ((2 3) + 2(1 2 3))((2 3) + 2(1 2 3)) = (2 3)2 + 2(2 3)(1 2 3) +
2(1 2 3)(2 3) + (1 2 3)2 = 1 + 2(1 3) + 2(1 2) + (1 3 2).
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