
Lecture 8

7.3

This section is another chance for you to learn how to do quotients, only this
time with rings and ideals instead of groups and normal subgroups. In fact,
the normal subgroup is automatic since a ring R is an abelian group under
addition and the non-zero elements of the ring may not form a group at all.
The entire ring with identity cannot form a group because 0 has no inverse.
In that sense, we abandon the concept of normality and replace it with the
idea of ideal, which is a subring of R that has added properties, namely,
closure by multiplication by elements of R on both the left and the right. In
the same way all normal subgroups are kernels of group homomorpmisms,
all ideals are kernels of ring homomorphisms.

Once we find out how to make quotient rings, all the same theorems go
through with only having to check out the multiplication property of the
proposed homomorphism. So the proofs of the various isomorphism theo-
rems are omitted as they basically follow from the one given for the first
isomorphism theorem.

Note that, since for a group homomorphism kerφ = {0} ⇐⇒ φ is a injective,
the same is true for a ring homomophism because all the proof uses in the
group structure. Similarly, since all the subgroups of Z are of the form nZ
we need only see that mn = nm ∈ mZ to know that all the ideals are nZ.
Therefore, (exercise 7.3.3) the only homomorphic images of Z are Z/nZ.

Please use the exercises in this section to solidify your understanding of
quotients. As usual, I will do some of the unassigned problems to help you
learn.

7.3.6a: Define φ : M2(Z)→ Z by φ(

(
a b
c d

)
) = a. φ is not a homomorphism

because φ(

(
1 2
3 4

)2

) = φ(

(
7 10
15 22

)
) = 10 6= 1 · 1 = φ(

(
1 2
3 4

)
)2.
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7.3.6b: Define φ : M2(Z) → Z by φ(

(
a b
c d

)
) = a + d. φ is not a homomor-

phism because φ(

(
1 2
3 4

)2

) = φ(

(
7 10
15 22

)
) = 29 6= 52 = φ(

(
1 2
3 4

)
)2.

7.3.6b: φ : M2(Z) → Z by φ(

(
a b
c d

)
) = ad− bc. φ is not a homomorphism

because φ(2

(
1 2
3 4

)
) = φ(

(
2 4
6 8

)
) = −8 6= −4 = 2φ(

(
1 2
3 4

)
).

7.3.11: Let R be the ring of continuous real valued functions on the closed
interval [0, 1]. Define φ :→ R by φ(f) =

∫ 1

0
f(t)dt. Since

∫ 1

0
(f(t) + g(t))dt =∫ 1

0
f(t)dt +

∫ 1

0
g(t)dt, φ is a group homomorphism. But φ((t + 1)(t − 1) =∫ 1

0
(t+1)(t−1)dt =

∫ 1

0
(t2−1)dt = t3/3− t]10 = 1/3−1 = −2/3,

∫ 1

0
(t+1)dt =

t2/2 + t]10 = 1/2 + 1 = 3/2, and
∫ 1

0
(t− 1)dt = t2/2− t]10 = 1/2− 1 = −1/2.

Thus φ(t + 1)φ(t − 1) = 3/2(−1/2) = −3/4 6= −2/3. Therefore φ is not a
ring homomorphism.

7.3.19: Let I1 ⊆ I2 ⊆ · · · be a chain of ideals of a ring R. Let I =
⋃∞

1 Ii.
Since I1 ⊆ I, I is not empty. Let a, b ∈ I, r ∈ R. Then there exist positive
intergers i, j such that a ∈ Ii and b ∈ Ij. Without loss of generality, we may
assume i ≥ j, so a, b ∈ Ii. Since Ii is an ideal, for r ∈ R, a−b, ra, ar ∈ Ii ⊆ I.
Therefore I is an ideal.

7.3.23: Let S be a subring of R. LetI be an ideal of R such that S∩ I = {0}.
Let π : R → R/I be the standard epimorphism. Then π|S(S) = S is
an epimorphism by definition, where π|S is the restriction of π to S. Let
s ∈ ker(π|S), then 0 = π|S(s) = π(s), so s ∈ I. But S ∩ I = {0}, thus s = 0
and π|S is an isomorphism. Therefore S ∼= S.

7.3.25: Assume R is a commutative ring with 1. First we need a Lemma.

Lemma:
(
n−1
i−1

)
+
(
n−1
i

)
=
(
n
i

)
.

Proof:
(
n−1
i−1

)
+
(
n−1
i

)
= (n− 1)!/((i− 1)!(n− i)!) + (n− 1)!/(i!(n− i− 1)!) =

[(n− 1)!/(i!)(n− i)!][i+ n− i] = n!/(i!(n− i)!) =
(
n
i

)
.

Proof of the Binomial Theorem: We proceed by induction on n. If n = 1,
then (a+ b)1 = a+ b =

(
1
0

)
a+

(
1
1

)
b. If n = 2, then (a+ b)2 = a2 + 2ab+ b2 =(

2
0

)
a2 +

(
2
1

)
ab+

(
2
2

)
b2. Assume that (a+ b)i−1 = Σi−1

k=0

(
i−1
k

)
akbi−1−k.
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Then (a+b)i = (a+b)(a+b)i−1 = (a+b)(Σi−1
k=0

(
i−1
k

)
akbi−1−k) = Σi−1

k=0

(
i−1
k

)
ak+1bi−1−k

+ Σi−1
k=0

(
i−1
k

)
akbi−k = Σi−1

j=1

(
i−1
j−1

)
ajbi−j +

(
i
i

)
ai + Σi−2

k=0

(
i−1
k

)
akbi−k +

(
i−1
i−1

)
bi =(

i
0

)
ai+Σi−1

j=1

(
i−1
j−1

)
ajbi−jΣi

j=1

(
i−1
j

)
ajbi−j+

(
i
i

)
bi =

(
i
0

)
ai+Σi−1

j=1(
(
i−1
j−1

)
+
(
i−1
i

)
)aibi−j+(

i
i

)
bi = Σi

j=0

(
i
j

)
aibi−j. By induction, the Binomial Theorem is now proven.

7.3.29: Let R be a commutative ring. Let S be the set of nilpotent elements
of R, i.e., S = {x ∈ R|xn = 0 for some n ∈ Z+. 0 ∈ S so S is not empty.
Suppose a, b ∈ S. Then there exists m,n ∈ Z+ such that am = 1 = bn.
Thus, by 7.3.25 just done, (a − b)m+n = Σm+n

i=0

(
m+n

i

)
(−1)m+n−iaibm+n−i =

Σm−1
i=0

(
m+n

i

)
(−1)m+n−iaibm+n−i + Σm+n

i=m

(
m+n

i

)
(−1)m+n−iaibm+n−i = 0 + 0 = 0.

Therefore a− b ∈ S. Let a ∈ S and r ∈ R. Then (ra)m = rmam = rm · 0 = 0
and ra ∈ S. Therefore, S is an ideal of R called the nilradical of F and
denoted by N (R).

7.3.30: Suppose R is a commutative ring and let N (R) be the nilradical of
R. Let a be nilpotent in R/N (R). Then there exists a positive integer n
such that an = 0. This is equivalent to an ∈ N (R), whence there is an m
such that (an)m = 0. So a ∈ N (R), and a = 0. Therefore, 0 is the only
nilpotent element of R/N (R).

7.3.31:

(
0 1
0 0

)2

=

(
0 0
0 0

)
=

(
0 0
1 0

)2

. But

(
0 1
0 0

)
+

(
0 0
1 0

)
=

(
0 1
1 0

)
.

Since

(
0 1
1 0

)2

= I,

(
0 1
1 0

)2n+1

=

(
0 1
1 0

)
, and

(
0 1
1 0

)2n

= I. Thus(
0 1
1 0

)
is not nilpotent and the set of nilpotents in M2(R) is not an ideal.

7.4

For those of you unacquainted with Zorn’s Lemma, please read the discussion
in Appendix 1, pages 907-909. The fun part is that Zorn’s Lemma is not really
a Lemma but is equivalent to a lot of other equivalent things that we use
every day such as the Axiom of Choice and the Well-ordering Principle of
the positive integers. It’s called a Lemma because it was proven from these
before it was known that these were all equivalent and unprovable from the
axioms of set theory we use. In algebra, Zorn’s lemma is very useful as it is
a way to show that a maximal element exists, possibly more that one, but at
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least one. The process usually uses set inclusion for the partial ordering. A
chain, then, is simply A1 ⊆ A2 ⊆ · · · . This proof part comes in showing that⋃
Ai has the desired property that all the Ai share. Once that is done, we

invoke Zorn’s Lemma which says that, if every chain in the partially order
set has an upper bound in the set, then the set has a maximal element. In
this section, this technique is used to show that a ring with identity has a
maximal ideal.

The idea of prime ideal is one that surprises people, but as the book notes, it
gets its name from the property of prime numbers that, if p divides ab, then
p divides a or p divides b, where p is a prime number.

Please notice that a lot of the propositions in this section require the ring
to be commutative. For all the problems in this section, we assume that the
ring R has an identity 1 6= 0.

7.4.5: Here we do not assume a ring R is commutative. Suppose M is an
ideal of R such that R/M is a field. Let M ⊆ I ⊂ R. Note that I 6= R by
assumption, so there exists r ∈ R such that r /∈ I. Since R/M is a field,
I = 0 or R/M . If I = R/M , then r ∈ I, so there exists m ∈ M such that
m + r ∈ I, whence r ∈ I since m ∈ I. Contradiction. Therefore, I = 0 and
I = M . Thus, M is maximal.

7.4.8: Let R be an integral domain. Suppose that < a >=< b > for some
a, b ∈ R. Then a = ub and b = va = vub for some u, v ∈ R. Thus vu = 1
and u, v are units of R. Conversely, if a = ub where u is a unit in R,
then rb = ru−1a ∈< a >, so < b >⊆< a >. Similarly, for ra ∈< a >,
ra = rub ∈< b >. Therefore, < a >=< b >.

7.4.11: Suppose R is commutative, and P is a prime ideal which contains no
zero divisors. Suppose a 6= 0 and that ab = 0. Then ab ∈ P , whence a ∈ P
or b ∈ P . But P contains no zero divisors, so b = 0 and R is an integral
domain.

7.4.13: Let φ : R→ S be a homomorphism of commutative rings.

7.4.13a: Suppose P is a prime ideal of S and φ−1(P ) 6= R. Suppose ab ∈
φ−1(P ). Then φ(ab) = φ(a)φ(b) ∈ P . Thus φ(a) ∈ P or φ(b) ∈ P , whence
a ∈ φ−1(P ) or b ∈ φ−1(P ). Therefore φ−1(P ) is a prime ideal of R.

Now assume that R is a subring of S and φ is the inclusion homomorphism.
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Then φ−1(P ) is either R or a prime ideal of R. But φ−1(P )=P ∩ R, so P∩
is R or a prime ideal of R.

7.4.13b: Suppose M is a maximal ideal of S and φ is surjective. By part
a, φ−1(M) is R or a prime ideal of R. Since φ is surjective, φ−1(M) 6= R.
Suppose φ−1(M) ⊆ I ⊂ R. Then M ⊆ I ⊆ S. But M is maximal, so
I = S = φ(R) or I = M . Since I 6= R, there exists r ∈ R, r /∈ I. If I = S,
then r = i, so r = i + m ∈ I for some m ∈ M . Contradiction. Therefore
I = M . Since φ−1(M) contains kerφ, φ−1(M) = I and φ−1(M) is maximal
in R.

Let φ : Z → Q by φ(n) = n, the inclusion map. φ is not surjective since
1/2 is not in the image. Since Q is a field, {0} is a maximal ideal. But
φ−1{0} = {0} is not maximal since it is contained in nZ for any n.

7.4.16:Let x4 − 16 be an element of the polynomial ring E = Z[x]. We will
use the bar notation for the image in E/ < x4 − 16 >.

7.4.16a: In E/ < x4− 16 >, x4 = 16. Thus, x8 = 162 = 256 and x12 = 163 =
4096. Therefore 7x13 − 11x9 + 5x5 − 2x3 + 3 =
7 · 4096x− 11 · 256x+ 5 · 16x− 2x3 + 3 = 28672− 2816 + 80)x− 2x3 + 3 =
−2x3 + 25936x+ 3.

7.4.16b: x− 2 · (x+ 2)(x2 + 4) = x4 − 16 = 0 and x+ 2 · (x− 2)(x2 + 4) =
x4 − 16 = 0. Since the degree of x − 2 and x + 2 is 1, x− 2 6= 0 and
x+ 2 6= 0. Similarly, since the degree of (x − 2)(x+4) and (x + 2)(x2 + 4)
is 3, (x± 2)(x2 + 4) 6= 0. Therefore, x− 2 and x+ 2 are zero divisors in
E/ < x4 − 16 >.

7.5

Theorem 15 is the main content of this section. Unfortunately, the book
does not prove the theorem, probably because the proof is long, tedious, and
straightforward. But that does not excuse them. To make up for it, most of
my “lecture” on this section will be giving a complete proof of Theorem 15.

Theorem 15: Let R be a commutative ring. Let D be any nonempty
subset of R that does not contain 0, does not contain any zero-divisors, and
is closed under multiplication, i.e., for all a, b ∈ D, ab ∈ D. Then there
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is a commutative ring Q with 1 such that Q contains R as a subring and
every element of D is a unit in Q. The ring A has the follwoing additional
properties.

1. every element of Q is of the form rd−1 for some r ∈ R and d ∈ D.

2. (uniqueness of Q) The ring Q is the “smallest” ring containing R in
which all elements of D are units, in the following sense. Let S be any
commutative ring with identity and let φ : R→ S be any injective ring
homomorphism such that φ(d) is a unit for all d ∈ D. Then there is an
injective ring homomorphism Φ : Q → S such that Φ|R = φ. In other
words, any ring containing an isomorphic copy of R in which all the
elements of D become units must also contain an isomorphic copy of
Q.

Proof: Let F = {(r, d)|r ∈ R, d ∈ D}. Define the relation ∼ on F by
(r, d) ∼ (s, e) if and only if re = sd. Since rd = dr, ∼ is reflexive. If (r, d) ∼
(s, e), then re = sd, so sd = er, whence (s, e) ∼ (r, d), and ∼ is symmetric.
Suppose (r, d) ∼ (s, e) and (s, e) ∼ (t, f). Then 0 = re − sd = sf − te.
Thus, 0 = ref − sdf = dsf − dte, whence ref = dte. Since e ∈ D, e is
not a zero-divisor, so rf = dt and (r, d) ∼ (t, f). Therefore, ∼ is transitive,
whence an equivalence relations.

Let Q = F/ ∼ and denote (r, d) by r/d. Thus r/d = {(a/b | a ∈ R, b ∈
D, rb = ad}. Note that r/d = re/de for all e ∈ D since D is closed
under multiplication. To make Q into a ring we need to define addition and
multiplication. Since we are basing our construction on the rational numbers,
let’s define addition and multiplication similarly. For a/b, c/d ∈ Q, define

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd

Note that we used the fact that D is multiplicatively closed in these defini-
tions.

Now we need to show that our definitions are well-defined. Suppose a
b

= s
t

and c
d

= u
v
. Then at = bs and cv = du. To see that ad+bc

bd
= sv+tu

tv
, we need

only show that (ad+ bc)tv = (sv+ tu)bd. Then adtv+ bctv = bsdv+ dubt =
(sv + uc)dt as required. Similarly ac

bd
= su

tv
if and only if actv = bdsu. But

actv = bcst = bsdu. Therefore addition and multiplication are well-defined.
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a

b
+ (

c

d
+
e

f
) =

a

b

cf + de

df
=
adf + bcf + bde

bdf
=
ad+ bc

bd
+
e

f
= (

a

b
+
c

d
) +

e

f

Therefore addition is associative.

a

b
+
c

d
=

(ad+ bc)

bd
=

(cb+ da)

db
=
c

d
+
a

b

Therefore addition is commutative.

Since a
b

= ae
be

= a
b
e
e
, e

e
is the identity for any e ∈ D.

Since a
b

+ 0
c

= (ac+0b)
bc

= ac
bc

= a
b
, 0

c
is the additive inverse of a

b
for any c ∈ D.

Therefore Q is an additive group.

a

b
(
c

d

e

f
) =

a

b

ce

df
=
ace

bdf
=
ac

bd

e

f
= (

a

b

c

d
)
e

f

Therefore, multiplication is associative.

Since a
b
c
d

= ac
bd

= ca
db

= c
d
a
b
, multiplication is commutative and we need only

check one of the distributive laws.

a

b
(
c

d
+
e

f
) =

a

b

(cf + de)

df
=
a(cf + de)

bdf
=
acf + ade

bdf
=
abcf + abde

b2df
=
ac

bd
+
ae

bf
=
a

b

c

d
+
a

b

e

f

Therefore Q is a commutative ring with identity.

Define i : R → Q by i(r) = rd
d

for some d ∈ D. Then i(r + s) = (r+s)d
d

=
(rd+sd)d

d2
= rd

d
+ sd

d
= i(r) + i(s). Also, i(rs) = rsd

d
= rsd2

d2
= r

d
s
d

= i(r)i(s).
Therefore i is a homomorphism. If 0

d
= i(r) = rd

d
, then 0 = 0 · d = rd2. Since

d is not a zero-divisor, neither is d2. Thus r = 0 and i is injective.

Let d, e ∈ D. The de
e

e
de

= de
de

, the identity. Thus each d ∈ D has an inverse
in Q, whence each element of Q can be written as rd−1 with r ∈ R, d ∈ D.

It remains to prove the uniqueness property. Let S be a commutative ring
with identity, and let φ : R → S be a monomorphism such that φ(d) is a
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unit in S for all d ∈ D. Then define Φ(rd−1) = φ(r)φ(d)−1. If rd−1 = se−1,
then in R, re = sd. Thus φ(r)φ(e) = φ(re) = φ(sd) = φ(s)φ(d), whence
φ(r)φ(d)−1 = φ(s)φ(e)−1. Therefore Φ is well-defined.

Φ(rd−1 + se−1) = Φ((re + sd)(de)−1) = φ(re + sd)φ(de)−1 = (φ(re) +
φ(sd))φ(d)−1φ(e)−1 = (φ(r)φ(e) + φ(s)φ(d))φ(d)−1φ(e)−1 = φ(r)φ(d−1) +
φ(s)φ(e)−1 = Φ(rd−1) + Φ(se−1). Also, Φ((rd−1)(se−1)) = Φ(rs(de)−1) =
φ(rs)φ(de)−1 = φ(r)φ(d)−1φ(s)φ(e−1) = Φ(rd−1)Φ(se−1). Therefore, Φ is a
homomorphism. If 0 = Φ(rd−1) = φ(r)φ(d−1), then 0 = φ(r), whence r = 0.
Therefore Φ is a monomorhpism as required.

Actually, the above is problem 7.5.1.

7.5.2: Let R be an integral domain, and let D be a non-empty subset of
R that is closed under multiplication. Define i : D−1R → Q, where Q is
the field of fractions of R, by i(rd−1) = rd−1 under the isomorphism which
identifies R with its isomorphic image in Q. By definition of addition and
multiplication in Q, i is a homomorphism. If 0 = i(rd−1) = rd−1, then r = 0,
whence 0d−1 = 0. Thus i is injective. So D−1R is isomorphic to a subring of
a field, whence an integral domain.
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