1. Consider the following linear transformation from P_3 to P_4:

$$L(p(x)) = \int_0^x p(t) \, dt$$

(a) Find a basis for the kernel of L.

(b) Find a basis for the range of L.

Answer:

First, we will find the matrix representing L with respect to the basis $[1, x, x^2]$.

$$L(1) = \int_0^x 1 \, dt = \left[t\right]_0^x = x$$
$$L(x) = \int_0^x t \, dt = \left[\frac{1}{2} t^2\right]_0^x = \frac{1}{2} x^2$$
$$L(x^2) = \int_0^x t^2 \, dt = \left[\frac{1}{3} t^3\right]_0^x = \frac{1}{3} x^3$$

Thus, the matrix representing L with respect to the basis $[1, x, x^2]$ is

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

(a) The nullspace of A is $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; thus, the kernel of L is the zero polynomial $p(x) = 0$.

1
(b) The columnspace of A is the span of
\[
\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.
\]

Thus, the range of L is $\text{Span}(x, x^2, x^3)$.

2. For each of the following, determine whether the functions $f(x)$, $g(x)$ and $h(x)$ are linearly dependent or linearly independent in $C[-\pi, \pi]$. Explain your answers.

(a) $f(x) = \sin x$

 $g(x) = \cos x$

 $h(x) = \sin 2x$

(b) $f(x) = e^x + e^{-x}$

 $g(x) = e^x - e^{-x}$

 $h(x) = e^x$

Answer:

(a) Suppose that there exists c_1, c_2, c_3 such that

\[c_1 \sin x + c_2 \cos x + c_3 \sin 2x = 0 \]

If $x = 0$, we get the equation

\[c_2 = 0 \]

If $x = \frac{\pi}{2}$, we get the equation

\[c_1 = 0 \]

If $x = \frac{\pi}{4}$, we get the equation

\[\frac{c_1}{\sqrt{2}} + \frac{c_2}{\sqrt{2}} + c_3 = 0 \]

Since, $c_1 = c_2 = 0$ from above, this equation gives us $c_3 = 0$.

Thus, $c_1 = c_2 = c_3 = 0$, so the functions are linearly independent.
(b) Note that \(f(x) + g(x) = (e^x + e^{-x}) + (e^x - e^{-x}) = 2e^x = 2h(x) \).

Thus, \(f(x) + g(x) - 2h(x) = 0 \), so the functions are not linearly dependent.

3. Consider the following subspace of \(P_3 \):

\[
S = \left\{ p(x) \in P_3 \mid p(2) - p(1) = 0 \right\}
\]

Find a basis for this subspace.

Answer: Suppose that \(p(x) = ax^2 + bx + c \) is a polynomial in \(S \). Then, \(p(2) = 4a + 2b + c \) and \(p(1) = a + b + c \), so that \(p(2) - p(1) = 3a + b \). Thus, \(3a + b = 0 \), so \(b = -3a \). Thus, we can write \(p(x) \) as

\[
p(x) = ax^2 - 3ax + c = a(x^2 - 3x) + c
\]

Thus, every polynomial in \(S \) is in the span of the polynomials \(x^2 - 3x \) and \(1 \). Since these polynomials are linearly independent, they form a basis for \(S \). Thus, a basis for \(S \) is \(\{x^2 - 3x, 1\} \).

4. Suppose that \(E = [u_1, u_2] \) is a basis for \(R^2 \). Then, \(F = [u_1 + u_2, u_1 - u_2] \) is also a basis for \(R^2 \). Find the transition matrix from \(F \) to \(E \).

Answer: The transition matrix from \(F \) to \(E \) is

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\]

5. Suppose that \(A \) is a 3 \(\times \) 3 matrix with eigenvalues 1, 0, -1. What are the eigenvalues of the matrix \(A - 42I \), where \(I \) is the 3 \(\times \) 3 identity matrix?

Answer: Let \(B = A - 42I \). We want to find \(\lambda \) such that \(B - \lambda I \) is singular. Since the eigenvalues of \(A \) are 1, 0, -1, we know that \(A - I \), \(A \), and \(A + I \) are singular.

Thus, \(B + 42I = A - 42I + 42I = A \) is singular.

Similarly, \(B + 43I = A - 42I + 43I = A + I \) is singular.

And, \(B + 41I = A - 42I + 41I = A - I \) is singular.
Thus, the eigenvalues of B are $-42, -43, -41$.

6. Consider the following matrix:

$$A = \begin{pmatrix} 2 & -2 \\ 0 & 3 \end{pmatrix}$$

Compute e^A.

Answer: First, we compute the eigenvalues and eigenvectors of A. Since A is upper triangular, the entries along the diagonal are the eigenvalues. Thus, A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 3$.

For $\lambda_1 = 2$:

$$\text{nullspace}(A - 2I) = \text{nullspace} \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} = \text{Span} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Thus, the eigenvector corresponding to $\lambda_1 = 2$ is $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

For $\lambda_2 = 3$:

$$\text{nullspace}(A - 3I) = \text{nullspace} \begin{pmatrix} -1 & -2 \\ 0 & 0 \end{pmatrix} = \text{Span} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Thus, the eigenvector corresponding to $\lambda_2 = 3$ is $v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Since A has 2 distinct eigenvalues, A is diagonalizable. We can factor A as $A = XD X^{-1}$ where

$$X = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

$$X^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
This allows us to compute e^A, since $e^A = Xe^DX^{-1}$:

$$e^A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} e^2 & 0 \\ 0 & e^3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} e^2 & 2e^2 - 2e^3 \\ 0 & e^3 \end{pmatrix}$$

7. Solve the differential equation $y'' = 4y + 3y'$ with initial conditions $y(0) = 3$ and $y'(0) = 2$.

Answer: By setting $y_1 = y$ and $y_2 = y'$, we can turn this second order differential equation in a system of first order differential equations:

$$\begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

The eigenvalues for this matrix are $\lambda_1 = 4$ and $\lambda_2 = -1$ and the corresponding eigenvectors are $v_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Thus, the general solution to the system is

$$y_1 = c_1e^{4t} + c_2e^{-t}$$
$$y_2 = 4c_1e^{4t} - c_2e^{-t}$$

The initial conditions give us the equations $c_1 + c_2 = 3$ and $4c_1 - c_2 = 2$. Solving for c_1 and c_2, we get $c_1 = 1$ and $c_2 = 2$. Thus, the solution to the original second order differential equation with the given initial conditions is

$$y(t) = e^{4t} + 2e^{-t}$$
8. (a) Find the distance from the point \((1, 1, 1)\) to the plane \(2x + 2y + z = 0\).
(b) Find the distance from the point \((1, 2)\) to the line \(4x - 3y = 0\).

Answer:

(a) The vector \(\mathbf{N} = (2, 2, 1)^T\) is perpendicular to the plane, and the point \((0, 0, 0)\) is on the plane.
Consider the point \((1, 1, 1)\); call it \(P\). And consider the point \((0, 0, 0)\); call it \(Q\) (this is the point on the plane). Consider the vector \(\overrightarrow{QP}\). If we project \(\overrightarrow{QP}\) onto \(\mathbf{N}\), we get a vector whose distance is the distance from the plane to \(P\).

\[
\overrightarrow{QP} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
\]

The scalar projection of \(\overrightarrow{QP}\) onto \(\mathbf{N}\) is

\[
\alpha = \frac{\overrightarrow{QP} \cdot \mathbf{N}}{\|\mathbf{N}\|} = \frac{5}{3}
\]

Thus, the distance between the point and the plane is \(\frac{5}{3}\).

(b) To find the point on the line \(4x - 3y = 0\) that is closest to the point \((1, 2)\), we project the vector \(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\) onto the line \(4x - 3y = 0\).

A vector in the direction of the line \(4x - 3y = 0\) is \(\begin{pmatrix} 3 \\ 4 \end{pmatrix}\). The projection of \(\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\) onto \(\mathbf{w} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\) is

\[
\mathbf{p} = \frac{\mathbf{v}^T \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \mathbf{w} = \frac{11}{25} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 33/25 \\ 44/25 \end{pmatrix} = \begin{pmatrix} 1.32 \\ 1.76 \end{pmatrix}
\]

Thus, the point \((1.32, 1.76)\) is the point on the line \(4x - 3y = 0\) that is closest to the point \((1, 2)\).
9. Suppose that S is the subspace of \mathbb{R}^3 spanned by the vectors \(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \). Find a basis for S^\perp.

Answer: S^\perp is the set of all vectors perpendicular to \(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \). Thus, S^\perp is the set of all vectors \(\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \) such that $y_1 + 2y_2 + y_3 = 0$ and $y_1 - y_2 + 2y_3 = 0$. Thus, S^\perp is the nullspace of the following matrix:

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & -1 & 2
\end{pmatrix}
\]

We can row reduce this matrix:

\[
\begin{pmatrix}
1 & 2 & 1 \\
1 & -1 & 2
\end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 5 \\ 0 & -3 & 1 \end{pmatrix}
\]

Thus,

nullspace \(\begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix} \) = Span \(\begin{pmatrix} -5 \\ 1 \\ 3 \end{pmatrix} \)

Thus, a basis for S^\perp is \(\left\{ \begin{pmatrix} -5 \\ 1 \\ 3 \end{pmatrix} \right\} \).
10. Given the following table of data points

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

find the best least squares fit by a linear function $f(x) = c_1 + c_2x$.

Answer: We would like to find a linear function of the form $y = ax + b$ that approximates the data set. Plugging in the values of the data set into the linear function, we get

\[
\begin{align*}
1 &= -a + b \\
3 &= a + b \\
3 &= 2a + b
\end{align*}
\]

This system of equations has no solutions.

We want to find the least squares solution to the system $Ax = b$ with

\[
A = \begin{pmatrix}
-1 & 1 \\
1 & 1 \\
2 & 1
\end{pmatrix}
\quad \text{and} \quad
b = \begin{pmatrix}
1 \\
3 \\
3
\end{pmatrix}.
\]

The least squares solutions are the solutions to $A^T A \hat{x} = A^T b$. First, we compute $A^T A$ and $A^T b$:

\[
A^T A = \begin{pmatrix}
6 & 2 \\
2 & 3
\end{pmatrix}
\quad \quad
A^T b = \begin{pmatrix}
8 \\
7
\end{pmatrix}
\]

Now, we can solve $A^T A \hat{x} = A^T b$:

\[
\begin{pmatrix}
6 & 2 & 8 \\
2 & 3 & 7
\end{pmatrix} \rightarrow \begin{pmatrix}
7 & 0 & 5 \\
0 & 7 & 13
\end{pmatrix}
\]

Thus, $\hat{x} = \begin{pmatrix}
5/7 \\
13/7
\end{pmatrix}$.

Thus, the best least squares linear fit to the data is $y = \frac{5}{7}x + \frac{13}{7}$.
11. Consider the following function:

\[f(x) = \begin{cases}
1 & 0 \leq x \leq \pi \\
0 & -\pi \leq x < 0
\end{cases} \]

Find the best least squares approximation to \(f(x) \) on \([-\pi, \pi]\) by a trigonometric polynomial of degree less than or equal to 2.

Answer: We compute the coefficients of the trigonometric polynomial that approximates \(f(x) \):

\[
a_0 = \left\langle f(x), \frac{1}{\sqrt{2}} \right\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2}} \, dx \\
= \frac{1}{\pi} \int_{0}^{\pi} \frac{1}{\sqrt{2}} \, dx = \frac{1}{\sqrt{2}}
\]

\[
a_n = \langle f(x), \cos(nx) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx \\
= \frac{1}{\pi} \int_{0}^{\pi} \cos(nx) \, dx \\
= \frac{1}{\pi} \left[\frac{1}{n} \sin(nx) \right]_{0}^{\pi} = 0
\]

Thus, \(a_1 = 0 \) and \(a_2 = 0 \).
\[b_n = \langle f(x), \sin(nx) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx \]
\[= \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) \, dx \]
\[= \frac{1}{\pi} \left[-\frac{1}{n} \cos(nx) \right]_0^{\pi} \]
\[= \frac{1}{\pi} \left(-\frac{1}{n} \cos(n\pi) + \frac{1}{n} \cos(0) \right) \]
\[= \begin{cases}
\frac{2}{\pi n} & n \text{ odd} \\
0 & n \text{ even}
\end{cases} \]

Thus, \(b_1 = \frac{2}{\pi} \) and \(b_2 = 0 \).

Thus, the best least squares approximation to \(f(x) \) on \([-\pi, \pi]\) by a trigonometric polynomial of degree less than or equal to 2 is

\[f(x) \approx \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) + \frac{2}{\pi} \sin x = \frac{1}{2} + \frac{2}{\pi} \sin x \]

12. The set

\[S = \{ \cos x, \sin x, \cos 2x, \sin 2x \} \]

is an orthonormal set in \(C[-\pi, \pi] \) with inner product \(\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx \).

Determine the value of each of the following.

(a) \(\langle \cos x, 2 \cos x - 3 \sin 2x \rangle \)

(b) \(\langle 2 \sin x - 3 \cos 2x, 3 \cos x + 3 \sin x + 4 \cos 2x \rangle \)

(c) \(\| \cos x + 3 \sin x - 2 \sin 2x + \cos 2x \| \)
Answer: Since S is an orthonormal set in the inner product space, we can compute the inner products by finding the coordinates for each function with respect to the basis S, and then using the normal dot product.

(a) $\langle \cos x, 2 \cos x - 3 \sin 2x \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \\ -3 \end{pmatrix} = 2$

(b) $\langle 2 \sin x - 3 \cos 2x, 3 \cos x + 3 \sin x + 4 \cos 2x \rangle = \begin{pmatrix} 0 \\ 2 \\ -3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ 4 \\ 0 \end{pmatrix}
= 6 - 12 = -6$

(c) Since S is an orthonormal set, we can compute the norm by finding the coordinates for the function with respect to the basis S, and then using the normal norm.

$$\| \cos x + 3 \sin x - 2 \sin 2x + \cos 2x \| = \sqrt{1 + 9 + 4 + 1} = \sqrt{15}$$

13. Given the basis $\left\{ \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 18 \\ 0 \\ 0 \end{pmatrix} \right\}$ for R^3, use the Gram-Schmidt process to obtain an orthonormal basis.

Answer: We start by computing the norm of the first vector:

$$\left\| \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right\| = \sqrt{4 + 4 + 1} = 3$$

Thus, the first vector in the orthonormal basis is:
We note that the vector \(\begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \) is orthogonal to \(\mathbf{u}_1 \), so all we need to do is make the second vector have unit length. We compute its norm:

\[
\left\| \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \right\| = \sqrt{4 + 1 + 4} = 3
\]

Thus, the second vector in the orthonormal basis is:

\[
\mathbf{u}_2 = \begin{pmatrix} -2 \\ -\frac{2}{3} \\ 1 \\ 2 \end{pmatrix}
\]

The third vector is not orthogonal to either \(\mathbf{u}_1 \) or \(\mathbf{u}_2 \). Thus, we need to use the third vector to find a vector orthogonal to \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \). We start by computing the projection of the third vector onto the plane spanned by \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \):
\[
p_2 = \left< \begin{pmatrix} 18 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2/3 \\ 1/3 \end{pmatrix} \right> u_1 + \left< \begin{pmatrix} 18 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -2/3 \\ 1/3 \end{pmatrix} \right> u_2
\]
\[
= \begin{pmatrix} 8 \\ 8 \\ 4 \end{pmatrix} + \begin{pmatrix} 8 \\ -4 \\ -8 \end{pmatrix}
\]
\[
= \begin{pmatrix} 16 \\ 4 \\ -4 \end{pmatrix}
\]

Next, we compute \(\begin{pmatrix} 18 \\ 0 \\ 0 \end{pmatrix} - p_2 \):
\[
\begin{pmatrix} 18 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 16 \\ 4 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}
\]

The resulting vector, \(\begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} \) is orthogonal to \(u_1 \) and \(u_2 \). To make an orthonormal basis, we need to change this vector into unit length. We compute its norm:
\[
\left\| \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} \right\| = \sqrt{4 + 16 + 16} = \sqrt{36} = 6
\]

Thus,
\[u_3 = \begin{pmatrix} 1 \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \]

The orthonormal basis is

\[
\begin{pmatrix}
\frac{2}{3} \\
2 \\
1
\end{pmatrix}
, \quad
\begin{pmatrix}
-\frac{2}{3} \\
1 \\
\frac{2}{3}
\end{pmatrix}
, \quad
\begin{pmatrix}
\frac{1}{3} \\
\frac{2}{3} \\
\frac{2}{3}
\end{pmatrix}
\]

14. The plane \(x_1 + 2x_2 + x_3 = 0 \) is a subspace of \(\mathbb{R}^3 \). Find an orthonormal basis for this subspace.

Answer: We start by finding a basis for the subspace. Any two linearly independent vectors which lie on the plane will form a basis. One way to find a basis is to solve the equation \(x_1 + 2x_2 + x_3 = 0 \):

\[x_1 = -2x_2 - x_3 \]

Thus, for any \(\alpha \) and \(\beta \) the following is a solution:

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
\]

Thus, the vectors form \(\mathbf{x}_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \) and \(\mathbf{x}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \) form a basis for the subspace.
To find an orthonormal basis, we use the Gram-Schmidt algorithm on this basis:

$$u_1 = \frac{x_1}{\|x_1\|} = \frac{x_1}{\sqrt{4 + 1}} = \left(\begin{array}{c} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ 0 \end{array} \right)$$

The projection of x_2 onto u_1 is

$$p_1 = \langle x_2, u_1 \rangle u_1 = \frac{2}{\sqrt{5}} \left(\begin{array}{c} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ 0 \end{array} \right) = \left(\begin{array}{c} -\frac{4}{5} \\ \frac{2}{5} \\ 0 \end{array} \right)$$

Then, $x_2 - p_1$ is orthogonal to u_1.

$$x_2 - p_1 = \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right) - \left(\begin{array}{c} -\frac{4}{5} \\ \frac{2}{5} \\ 0 \end{array} \right) = \left(\begin{array}{c} -\frac{1}{5} \\ \frac{2}{5} \\ 1 \end{array} \right)$$

We compute the magnitude of $x_2 - p_1$:

$$\|x_2 - p_1\| = \sqrt{\frac{1}{25} + \frac{4}{25} + 1} = \frac{\sqrt{30}}{5}$$

Thus,

$$u_2 = \frac{x_2 - p_1}{\|x_2 - p_1\|} = \frac{5}{\sqrt{30}} \left(\begin{array}{c} -\frac{1}{5} \\ -\frac{2}{5} \\ 1 \end{array} \right) = \left(\begin{array}{c} -\frac{1}{\sqrt{30}} \\ -\frac{2}{\sqrt{30}} \\ \frac{5}{\sqrt{30}} \end{array} \right)$$
Thus, an orthonormal basis for the subspace is

\[
\left\{ \begin{pmatrix} -\frac{2}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{30}} \\ -\frac{2}{\sqrt{30}} \\ \frac{5}{\sqrt{30}} \end{pmatrix} \right\}
\]

Note: There are infinitely many possible orthonormal bases for the plane. To check that the answer you have is a correct answer, just check that the two vectors are both in the plane (by checking that they satisfy the equation for the plane \(x_1 + 2x_2 + x_3 = 0\)), that each vector has unit length, and that the dot product of the two vectors is 0.

15. Consider the linear transformation

\[L(\mathbf{x}) = \text{the projection of } \mathbf{x} \text{ onto the vector } \begin{pmatrix} 1 \\ 2 \end{pmatrix}\]

(a) Find the matrix \(A\) representing \(L\) with respect to the standard basis.

(b) Find the matrix \(B\) representing \(L\) with respect to the basis \([\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix}]\).

(c) Find the matrix \(S\) such that \(B = S^{-1}AS\).

\textbf{Answer:}

(a) We start by applying \(L\) to each of the standard basis vectors:

\[
L\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{2}{5} \end{pmatrix}
\]

\[
L\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{5} \\ \frac{4}{5} \end{pmatrix}
\]
These vectors become the columns of A. Thus, the matrix representing L with respect to the standard basis is

$$A = \begin{pmatrix}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{pmatrix}$$

(b) We apply L to each of the basis vectors:

$$L\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{5}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$L\begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Now, we change each of these vectors into the basis $E = \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \right]$:

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{pmatrix}_E = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix}_E = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

These vectors become the columns of B. Thus, the matrix representing L with respect to the basis E is

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

(c) The matrix S such that $B = S^{-1}AS$ is the transition matrix from the basis E to the standard basis. Thus,

$$S = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$
16. Let \(\mathbf{u}_1, \mathbf{u}_2, \) and \(\mathbf{u}_3 \) form an orthonormal basis for \(\mathbb{R}^3 \), and let \(\mathbf{u} \) be a unit vector in \(\mathbb{R}^3 \). If \(\mathbf{u}^T \mathbf{u}_1 = \frac{1}{3} \) and \(\mathbf{u}^T \mathbf{u}_2 = \frac{2}{3} \), determine the value of \(|\mathbf{u}^T \mathbf{u}_3| \).

Answer: Let \(\begin{pmatrix} a \\ b \\ c \end{pmatrix} \) be \(\mathbf{u} \) in the basis \(\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \} \). Since this basis is orthonormal, and since \(\mathbf{u}^T \mathbf{u}_1 = \frac{1}{3} \) and \(\mathbf{u}^T \mathbf{u}_2 = \frac{2}{3} \), we know that \(a = \frac{1}{3} \) and \(b = \frac{2}{3} \). Since \(\mathbf{u} \) is a unit vector, we know that \(\sqrt{a^2 + b^2 + c^2} = 1 \). Thus,

\[
\sqrt{\frac{1}{9} + \frac{4}{9} + c^2} = 1
\]

Solving, we get \(c^2 = \frac{4}{9} \). Thus, \(|\mathbf{u}^T \mathbf{u}_3| = |c| = \frac{2}{3} \).