Welcome to
MATH 151 – ENGINEERING MATHEMATICS I
Sections 504, 505, 506, MWF 1:50 – 2:40 pm, HELD 113

About your instructor:
Name: Tamás Erdélyi
Office: 308 Milner Hall
Phone: 845–5308 (office)
E-mail: tamas.erdelyi@math.tamu.edu

Office Hours (in Milner 308):
M 10:00 – 11:30 am, W 10:00 – 11:30 am, and by appointment.

Weekly Recitations and Computer Labs (conducted by Daniel Godber):
- Section 504: T 9:35 – 10:25 am (BLOC 122), R 9:35 – 10:25 am (CE 136)
- Section 505: T 8:00 – 8:50 am (BLOC 126), R 8:00 – 8:50 am (CE 136)
- Section 506: T 3:55 – 4:45 pm (BLOC 122), R 3:55 – 4:45 pm (BLOC 122)

Textbook (Required Purchase):
- Calculus: Early Vectors, by James Stewart et al; published by Brooks/Cole.
The computer laboratory will also use
You will also benefit from the assistance of our MATLAB help session staff.

Web Page for Math 151:
- http://calclab.math.tamu.edu/docs/math151/

Help Session, Weekly Review Session, Computer Help Schedule:
- Help Sessions: will be linked on the Math 151 page.
- Week in Reviews: http://www.math.tamu.edu/ jwhitfeld/151WIR.html
- Computer Help: M – R 7:00 – 10:00 pm, Su 1:00 – 10:00 pm in BLOC calclabs.

Course Description:
- Credit 4. This course will cover vectors in two dimensions, differentiation and integration of functions of one variable, and applications such as work, velocity/acceleration, optimization (max/min), and curve sketching. The course meets three times in lecture and twice per week in recitation. One of your recitation meetings is designed to discuss questions over homework or lecture. The other recitation meets in the computer laboratory where the computer package MATLAB will be introduced. The goal of the laboratory portion of the course is to show how problems that are too difficult to solve by hand, can be solved with the help of the computer. The prerequisite for this course is either Math 150 (precalculus) or a good high school mathematics background that includes algebra II, analytic geometry and trigonometry.
Learning Objectives: This course is to provide students with quantitative and problem-solving skills of 2-dimensional vectors and differential calculus. At the conclusion of this course, students should be able to

• know and use techniques of limits and differentiation,
• apply techniques of differentiation to a variety of applications, including engineering applications,
• understand and apply vector operations in 2-dimensions, including dot product,
• understand the relationship between derivatives and integrals via the Fundamental Theorem of Calculus.
• use Computer Algebra Systems such as MATLAB to solve applied problems.

Concerning Tests:

Exam I: Thursday, September 30, 2010; 7:30 - 9:30 pm
Exam II: Thursday, October 28, 2010; 7:30 - 9:30 pm
Exam III: Tuesday, November 30, 2010; 7:30 - 9:30 pm
Final Exam: Tuesday, December 14, 2010, 3:30 – 5:30 pm

• Exams I, II, and III will be common to all 151 students. Rooms will be announced later on the web page for Math 151. The final examination (not a common exam) will be given in this class-room (HELD 113).

Sample Exams:

• Common exams given in earlier semesters are available on the web page for Math 151. These may give you a hint about the level of difficulty of the common exams you can expect this semester.

Grading Scheme:

• Exams I, II, and III will be worth 50% of the course grade altogether. The final will account for 25%. Laboratory grades will make up the remaining 25%. Attendance in lecture may be recorded several times throughout the semester and may play a role in deciding border-line grades. The final will be a “no calculator exam” containing problems very similar to those your instructor has worked out in his lectures. The increased weight of the final exams reflects the cumulative nature of the course. The laboratory grade will be determined by quizzes/homework (40%), computer assignments (40%), and on-line homework (20%).

• The standard grade scale is the following: [90, ∞) → A, [80, 90) → B, [70, 80) → C, [60, 70) → D, [0, 60) → F.

Weekly Quizzes:

• Weekly quizzes will be administered, which covers the previous week’s material, as your recitation instructor schedules it. It is imperative that you stay caught up with the suggested homework.

Weekly MATLAB Assignments:

• Each week, starting week 2, a MATLAB assignment will be due. Any questions about these assignments should be addressed to your recitation instructor. Visit the link below for the schedule:
 • http://www.math.tamu.edu/courses/math151/matlabsched.html
Homework:
• A weekly course schedule and a list of suggested homework problems may be found at the web page for Math 151.
• The instructor will do his best to keep the weekly schedule in his lectures. Every week students are supposed to write the solutions down to the homework problems related to the topics covered by the instructor in his lectures that week. It will help you prepare for the examinations and will reflect your understanding of the material. Your solutions to the homework problems will not be collected and graded by your lab instructor. However the quiz questions are supposed to be quite similar to some of the questions on the list of suggested homework problems.
• On-line homework is required in all math 151 classes. These on-line homework assignments can be accessed anytime of day or night, from any computer with a connection to the internet and a web browser. Any technical questions about on-line homework should be addressed to your recitation instructor. All information regarding online homework can be found at
 • http://www.math.tamu.edu/courses/eHomework/

Make-ups:
• Make-ups for exams and quizzes will only be given with documented University-approved excuses (see University Regulations).

Scholastic dishonesty will not be tolerated:
• Any instance of scholastic dishonesty will be handled as consistent with University Regulations.

Copyright Statement:
• Please, note that all written and web materials for this course are protected by copyright laws. You can xerox (or download) one copy for your own use, but multiple copies are forbidden unless written permission is obtained by your instructor.

Americans with Disabilities Act (ADA) Policy Statement:
• The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in Room 126 of the Koldus Building or call 845-1637.

Academic Integrity Statement:
• http://www.tamu.edu/aggiehonor