LOWER BOUNDS FOR THE NUMBER OF ZEROS OF COSINE POLYNOMIALS IN THE PERIOD: A PROBLEM OF LITTLEWOOD

Peter Borwein and Tamás Erdélyi

Abstract

Littlewood in his 1968 monograph "Some Problems in Real and Complex Analysis" [9, problem 22] poses the following research problem, which appears to still be open: "If the n_{m} are integral and all different, what is the lower bound on the number of real zeros of $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$? Possibly $N-1$, or not much less." Here real zeros are counted in a period. In fact no progress appears to have been made on this in the last half century. In a recent paper [2] we showed that this is false. There exists a cosine polynomial $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ with the n_{j} integral and all different so that the number of its real zeros in the period is $O\left(N^{9 / 10}(\log N)^{1 / 5}\right)$ (here the frequencies $n_{m}=n_{m}(N)$ may vary with $\left.N\right)$. However, there are reasons to believe that a cosine polynomial $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ always has many zeros on the period. Denote the number of zeros of a trigonometric polynomial T in the period $[-\pi, \pi)$ by $\mathcal{N}(T)$. In this paper we prove the following.

Theorem. Suppose the set $\left\{a_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite and the set $\left\{j \in \mathbb{N}: a_{j} \neq 0\right\}$ is infinite. Let

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j} \cos (j t)
$$

Then $\lim _{n \rightarrow \infty} \mathcal{N}\left(T_{n}\right)=\infty$.
One of our main tools, not surprisingly, is the resolution of the Littlewood Conjecture [4].

1. Introduction

Let $0 \leq n_{1}<n_{2}<\cdots<n_{N}$ be integers. A cosine polynomial of the form $T_{N}(\theta)=$ $\sum_{j=1}^{N} \cos \left(n_{j} \theta\right)$ must have at least one real zero in a period. This is obvious if $n_{1} \neq 0$, since then the integral of the sum on a period is 0 . The above statement is less obvious if $n_{1}=0$, but for sufficiently large N it follows from Littlewood's Conjecture simply. Here we mean the Littlewood's Conjecture proved by S. Konyagin [5] and independently by McGehee, Pigno, and Smith [11] in 1981. See also [4] for a book proof. It is not difficult to prove the statement in general even in the case $n_{1}=0$. One possible way is to use the identity

$$
\sum_{j=1}^{n_{N}} T_{N}\left((2 j-1) \pi / n_{N}\right)=0
$$

Key words and phrases. a problem of Littlewood, cosine polynomials, constrained coefficients, number of real zeros.

2000 Mathematics Subject Classifications: Primary: 41A17

See [6], for example. Another way is to use Theorem 2 of [12]. So there is certainly no shortage of possible approaches to prove the starting observation of this paper even in the case $n_{1}=0$.

It seems likely that the number of zeros of the above sums in a period must tend to ∞ with N. In a private communication B. Conrey asked how fast the number of zeros of the above sums in a period tend to ∞ as a function N. In [3] the authors observed that for an odd prime p the Fekete polynomial $f_{p}(z)=\sum_{k=0}^{p-1}\left(\frac{k}{p}\right) z^{k}$ (the coefficients are Legendre symbols) has $\sim \kappa_{0} p$ zeros on the unit circle, where $0.500813>\kappa_{0}>0.500668$. Conrey's question in general does not appear to be easy.

Littlewood in his 1968 monograph "Some Problems in Real and Complex Analysis" [9, problem 22] poses the following research problem, which appears to still be open: "If the n_{m} are integral and all different, what is the lower bound on the number of real zeros of $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$? Possibly $N-1$, or not much less." Here real zeros are counted in a period. In fact no progress appears to have been made on this in the last half century. In a recent paper [2] we showed that this is false. There exists a cosine polynomials $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ with the n_{m} integral and all different so that the number of its real zeros in the period is $O\left(N^{9 / 10}(\log N)^{1 / 5}\right)$ (here the frequencies $n_{m}=n_{m}(N)$ may vary with $\left.N\right)$. However, there are reasons to believe that a cosine polynomial $\sum_{m=1}^{N} \cos \left(n_{m} \theta\right)$ always has many zeros in the period. In this paper we prove the following.

2. New Result

Theorem 1. Suppose the set $\left\{a_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R}$ is finite and the set $\left\{j \in \mathbb{N}: a_{j} \neq 0\right\}$ is infinite. Let

$$
T_{n}(t)=\sum_{j=0}^{n} a_{j} \cos (j t)
$$

Then $\lim _{n \rightarrow \infty} \mathcal{N}\left(T_{n}\right)=\infty$.

3. Lemmas and Proofs

To prove the new result we need a few lemmas. The first two lemmas are straightforward from [4, pages 285-288] which offers an elegant book proof of the the Littlewood Conjecture first shown in [5] and [11]. The book [1] deals with a number of related topics. Littlewood [$7,8,9,10$] was interested in many closely related problems.

Lemma 3.1. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}$ be nonnegative integers and let

$$
S_{m}(t)=\sum_{j=0}^{m} A_{j} \cos \left(\lambda_{j} t\right), \quad A_{j} \in \mathbb{R}, j=0,1, \ldots, m
$$

Then

$$
\int_{-\pi}^{\pi}\left|S_{m}(t)\right| d t \geq \frac{1}{60} \sum_{j=0}^{m} \frac{\left|A_{m-j}\right|}{j+1}
$$

Lemma 3.2. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}$ be nonnegative integers and let

$$
S_{m}(T)=\sum_{j=0}^{m} A_{j} \sin \left(\lambda_{j} t\right), \quad A_{j} \in \mathbb{R}, j=0,1, \ldots, m
$$

Then

$$
\int_{-\pi}^{\pi}\left|S_{m}(t)\right| d t \geq \frac{1}{60} \sum_{j=0}^{m} \frac{\left|A_{m-j}\right|}{j+1}
$$

Lemma 3.3. Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}$ be nonnegative integers and let

$$
S_{m}(t)=\sum_{j=0}^{m} A_{j} \cos \left(\lambda_{j} t\right), \quad A_{j} \in \mathbb{R}, \quad j=0,1, \ldots, m
$$

Let $A:=\max \left\{\left|A_{j}\right|: j=0,1, \ldots, m\right\}$. Suppose S_{m} has at most $K-1$ zeros in the period $[-\pi, \pi)$ for all sufficiently large n. Then

$$
\int_{-\pi}^{\pi}\left|S_{m}(t)\right| d t \leq 2 K A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right) \leq 2 K A(5+\log m) .
$$

Proof. We may assume that $\lambda_{0}=0$, the case $\lambda_{0}>0$ can be handled similarly. Associated with S_{m} in the lemma let

$$
R_{m}(t):=A_{0} t+\sum_{j=0}^{m} \frac{A_{j}}{\lambda_{j}} \sin \left(\lambda_{j} t\right)
$$

Clearly

$$
\max _{t \in[-\pi, \pi]}\left|R_{m}(t)\right| \leq A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right)
$$

Also, for every $c \in \mathbb{R}$ the function $R_{m}-c$ has at most K zeros in the period $[-\pi, \pi)$, otherwise Rolle's Theorem implies that $S_{m}=\left(R_{m}-c\right)^{\prime}$ has at least K zeros in the period $[-\pi, \pi)$. Hence

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|S_{m}(t)\right| d t & =V_{-\pi}^{\pi}\left(R_{m}\right) \leq 2 K \max _{t \in[-\pi, \pi]}\left|R_{m}(t)\right| \\
& \leq 2 K A\left(\pi+\sum_{j=1}^{m} \frac{1}{\lambda_{j}}\right) \leq 2 K A(5+\log m)
\end{aligned}
$$

and the lemma is proved.

Proof of the theorem when $\left(a_{n}\right)_{n=0}^{\infty}$ is NOT eventually periodic. Suppose the theorem is false. Then there are $k \in \mathbb{N}$, a sequence $\left(n_{\nu}\right)_{\nu=1}^{\infty}$ of positive integers $n_{1}<n_{2}<\cdots$, and even trigonometric polynomials $Q_{n_{\nu}} \in \mathcal{T}_{k}$ with maximum norm 1 on the period such that

$$
\begin{equation*}
T_{n_{\nu}}(t) Q_{n_{\nu}}(t) \geq 0, \quad t \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

We can pick a subsequence of $\left(n_{\nu}\right)_{\nu=1}^{\infty}$ (without loss of generality we may assume that it is the sequence $\left(n_{\nu}\right)_{\nu=1}^{\infty}$ itself) that converges to a $Q \in \mathcal{T}_{k}$ uniformly on the period $[-\pi, \pi)$. That is,

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \varepsilon_{\nu}=0 \quad \text { with } \quad \varepsilon_{\nu}:=\max _{t \in[-\pi, \pi]}\left|Q(t)-Q_{n_{\nu}}(t)\right| \tag{3.2}
\end{equation*}
$$

We introduce the formal trigonometric series

$$
\sum_{j=0}^{\infty} b_{j} \cos \left(\beta_{j} t\right):=\left(\sum_{j=0}^{\infty} a_{j} \cos (j t)\right) Q(t)^{3}, \quad b_{j} \neq 0, j=0,1, \ldots
$$

and

$$
\sum_{j=0}^{\infty} d_{j} \cos \left(\delta_{j} t\right):=\left(\sum_{j=0}^{\infty} a_{j} \cos (j t)\right) Q(t)^{4}, \quad d_{j} \neq 0, j=0,1, \ldots
$$

where $\beta_{0}<\beta_{1}<\cdots$, and $\delta_{0}<\delta_{1}<\cdots$ are nonnegative integers. Since the set $\left\{a_{j}: j \in\right.$ $\mathbb{N}\} \subset \mathbb{R}$ is finite, the sets

$$
\left\{b_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R} \quad \text { and } \quad\left\{d_{j}: j \in \mathbb{N}\right\} \subset \mathbb{R}
$$

are finite as well. Hence there are $\rho, M \in(0, \infty)$ such that

$$
\begin{equation*}
\left|a_{j}\right| \leq M, \quad \rho \leq\left|b_{j}\right|,\left|d_{j}\right| \leq M, \quad j=0,1, \ldots \tag{3.3}
\end{equation*}
$$

Let

$$
K_{\nu}:=\left|\left\{j \in \mathbb{N}: 0 \leq \beta_{j} \leq n_{\nu}\right\}\right|
$$

and

$$
L_{\nu}:=\left|\left\{j \in \mathbb{N}: 0 \leq \delta_{j} \leq n_{\nu}\right\}\right|
$$

Since the sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is not eventually periodic, we have

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} K_{\nu}=\infty \quad \text { and } \quad \lim _{\nu \rightarrow \infty} L_{\nu}=\infty \tag{3.4}
\end{equation*}
$$

We claim that

$$
\begin{gather*}
K_{\nu} \leq c_{1} L_{\nu} \tag{3.5}\\
4
\end{gather*}
$$

with some $c_{1}>0$ independent of $\nu \in \mathbb{N}$. Indeed, using Parseval's formula and (3.2) - (3.4), we deduce

$$
\begin{align*}
\frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} d t & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(T_{n_{\nu}}(t) Q(t)^{2} Q_{n_{\nu}}(t)\right)^{2} d t \tag{3.6}\\
& \geq\left(K_{\nu}-3 k\right) \frac{1}{2} \rho^{2} \geq \frac{1}{4} \rho^{2} K_{\nu}
\end{align*}
$$

for every sufficiently large $\nu \in \mathbb{N}$. Also, (3.1) - (3.4) imply

$$
\begin{align*}
& \frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} d t=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(T_{n_{\nu}}(t) Q_{n_{\nu}}(t)\right)\left(T_{n_{\nu}}(t) Q(t)^{4}\right) Q_{n_{\nu}}(t) d t \tag{3.7}\\
\leq & \frac{1}{\pi}\left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right)\left(\max _{t \in[-\pi, \pi]}\left|T_{n_{\nu}}(t) Q(t)^{4}\right|\right)\left(\max _{t \in[-\pi, \pi]}\left|Q_{n_{\nu}}(t)\right|\right) \\
\leq & \frac{1}{\pi}\left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right)\left(L_{\nu} M+4 k M\right)\left(\max _{t \in[-\pi, \pi]}\left|Q_{n_{\nu}}(t)\right|\right) \\
\leq & c_{2} L_{\nu}
\end{align*}
$$

with a constant $c_{2}>0$ independent of ν for every sufficiently large $\nu \in \mathbb{N}$. Now (3.5) follows from (3.6) and (3.7). From Lemma 3.1 we deduce

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{4}\right| d t \geq c_{3} \rho \log L_{\nu}-c_{4} \tag{3.8}
\end{equation*}
$$

with some constants $c_{3}>0$ and $c_{4}>0$ independent of $\nu \in \mathbb{N}$. On the other hand, using (3.1), Lemma 3.3, (3.2), (3.3), (3.5), and (3.4), we obtain

$$
\begin{align*}
& \int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{4}\right| d t \tag{3.9}\\
\leq & \int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t)|Q(t)|^{3} d t+\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right|\left|Q(t)-Q_{n_{\nu}}(t)\right| d t \\
\leq & \left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) d t\right)\left(\max _{t \in[-\pi, \pi]}|Q(t)|^{3}\right) \\
& \quad+\left(\int_{-\pi}^{\pi}\left|T_{n_{\nu}}(t) Q(t)^{3}\right| d t\right)\left(\max _{t \in[-\pi, \pi]}\left|Q(t)-Q_{n_{\nu}}(t)\right|\right) \\
& c_{5}+c_{6}\left(\log K_{\nu}\right) \varepsilon_{\nu} \leq c_{5}+c_{6}\left(\log \left(c_{1} L_{\nu}\right)\right) \varepsilon_{\nu} \\
\leq & c_{7}+c_{6}\left(\log L_{\nu}\right) \varepsilon_{\nu}=o\left(\log L_{\nu}\right),
\end{align*}
$$

where c_{1}, c_{5}, c_{6}, and c_{7} are constants independent of $\nu \in \mathbb{N}$. Since (3.9) contradicts (3.8), the proof of the theorem is finished in the case when the sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is not eventually periodic.
Proof of the theorem when $\left(a_{n}\right)_{n=0}^{\infty}$ is eventually periodic. The theorem now follows from Lemmas 3.4 below.

To prove the theorem in the case when $\left(a_{n}\right)_{n=0}^{\infty}$ is eventually periodic we need one more lemma.

Lemma 3.4. Let $\left(a_{j}\right)_{j=0}^{\infty}$ be a an eventually periodic sequence of real numbers. Suppose the set $\left\{j \in \mathbb{N}: a_{j} \neq 0\right\}$ is infinite. Then, for all sufficiently large n, the trigonometric polynomials

$$
T_{n}(t):=\sum_{j=0}^{n} a_{j} \cos (j t)
$$

have at least $c_{8} \log n$ zeros in the period $[-\pi, \pi)$ with a constant $c_{8}>0$ depending only on $\left(a_{j}\right)_{j=0}^{\infty}$.

Proof. It is a well known classical result that for the trigonometric polynomials

$$
Q_{n}(t):=\sum_{j=1}^{n} \frac{\sin (j t)}{j}
$$

we have

$$
\left|Q_{n}(t)\right| \leq 1+\pi, \quad t \in \mathbb{R}, \quad n=1,2, \ldots
$$

Using the standard way to show this, it can be easily shown that if $\left(a_{j}\right)_{j=0}^{\infty}$ is an eventually periodic sequence of real numbers, then for the functions

$$
S_{n}(t):=a_{0} t+\sum_{j=1}^{n} \frac{a_{j} \sin (j t)}{j}
$$

we have

$$
\begin{equation*}
\left|S_{n}(t)\right| \leq M, \quad t \in[-\pi, \pi), \quad n=1,2, \ldots, \tag{3.10}
\end{equation*}
$$

with a constant $M>0$ depending only on $\left(a_{j}\right)_{j=0}^{\infty}$. Observe that $S_{n}^{\prime}(t)=T_{n}(t)$, so Lemma 3.1 (a consequence of the resolution of the Littlewood Conjecture) implies that, for all sufficiently large n,

$$
\begin{equation*}
V_{-\pi}^{\pi}\left(S_{n}\right)=\int_{-\pi}^{\pi}\left|S_{n}^{\prime}(t)\right| d t=\int_{-\pi}^{\pi}\left|T_{n}(t)\right| d t \geq \eta \log n \tag{3.11}
\end{equation*}
$$

with a constant $\eta>0$ depending only on $\left(a_{j}\right)_{j=0}^{\infty}$. Combining (3.10) and (3.11) we can easily deduce that there is a $c \in[-M, M]$ such that for all sufficiently large n, the function $S_{n}-c$ has at least $(2 M)^{-1}(\eta \log n)$ distinct zeros in the period $[-\pi, \pi)$. Hence by Rolle's Theorem $T_{n}=\left(S_{n}-c\right)^{\prime}$ has at least $(2 M)^{-1}(\eta \log n)-1$ distinct zeros in the period $[-\pi, \pi)$.

We prove one more result, Theorem 3.6, closely related to Lemma 3.4. In the proof of Theorem 3.6 we need the following observation.

Lemma 3.5. Suppose $k>2 m \geq 0, k$ is even. Let

$$
z_{j}:=\exp \left(\frac{2 \pi j i}{k}\right), \quad j=0,1, \ldots, k-1
$$

be the k th roots of unity. Suppose

$$
0 \notin\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \subset \mathbb{R}
$$

and

$$
Q(z):=z^{m} \sum_{j=0}^{k-1} b_{j} z^{j}
$$

Then there is a value of $j \in\{0,1, \ldots k-1\}$ for which $\operatorname{Im}\left(Q\left(z_{j}\right)\right) \neq 0$.
Proof. If the statement of the lemma were false, then

$$
z^{m+k-1}(Q(z)-Q(1 / z))=\left(z^{k}-1\right) \sum_{\nu=0}^{2 m+k-2} \alpha_{\nu} z^{\nu}
$$

Obviously

$$
\begin{aligned}
z^{m+k-1}(Q(z)-Q(1 / z)) & =-b_{k-1}-b_{k-2} z-b_{k-3} z^{2}-\cdots-b_{0} z^{k-1}+ \\
& +b_{0} z^{2 m+k-1}+b_{1} z^{2 m+k}+b_{2} z^{2 m+k+1}+\cdots+b_{k-1} z^{2 m+2 k-2}
\end{aligned}
$$

Hence

$$
\alpha_{\nu}=-b_{k-1-\nu}, \quad \nu=0,1, \ldots, k-1
$$

and

$$
\alpha_{2 m+k-2-\nu}=b_{k-1-\nu}, \quad \nu=0,1, \ldots, k-1
$$

Then for $\nu:=m+(k / 2)-1<k-1$ we have

$$
-b_{k-1-\nu}=b_{k-1-\nu}, \quad \text { that is } \quad b_{k-1-\nu}=0
$$

a contradiction.
Theorem 3.6. Let $0 \notin\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \subset \mathbb{R},\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\} \subset \mathbb{R}$ and

$$
a_{m+l k+j}=b_{j}, \quad l=0,1, \ldots, \quad j=0,1, \ldots, k-1
$$

Suppose $k>2 m \geq 0, k$ is even. Let $n=m+l k+u$ with integers $m \geq 0, l \geq 0, k \geq 1$, and $0 \leq u \leq k-1$. Then for every sufficiently large n

$$
T_{n}(t):=\operatorname{Im}\left(\sum_{j=0}^{n} a_{j} e^{i j t}\right)
$$

has at least $c_{9} n$ zeros in $[-\pi, \pi)$, where $c_{9}>0$ is independent of n.
Proof of Theorem 3.6. Note that

$$
\sum_{j=0}^{n} a_{j} z^{j}=\sum_{j=0}^{m-1} a_{j} z^{j}+z^{m}\left(\sum_{j=0}^{k-1} b_{j} z^{j}\right) \frac{z^{(l+1) k}-1}{z^{k}-1}+z^{m+l k} \sum_{j=0}^{u} b_{j} z^{j}=P_{1}(z)+P_{2}(z),
$$

where

$$
P_{1}(z):=\sum_{j=0}^{m-1} a_{j} z^{j}+z^{m+l k} \sum_{j=0}^{u} b_{j} z^{j}
$$

and

$$
P_{2}(z):=z^{m} \sum_{j=0}^{k-1} b_{j} z^{j} \frac{z^{(l+1) k}-1}{z^{k}-1}=Q(z) \frac{z^{(l+1) k}-1}{z^{k}-1}
$$

with

$$
Q(z):=z^{m} \sum_{j=0}^{k-1} b_{j} z^{j}
$$

By Lemma 3.5 there is a k th root of unity $\xi=e^{i \tau}$ such that $\operatorname{Im}(Q(\xi)) \neq 0$. Then for every $K>0$ there is a $\delta \in(0,2 \pi / k)$ such that $\operatorname{Im}\left(P_{2}\left(e^{i t}\right)\right)$ oscillates between $-K$ and K at least $c_{10}(l+1) k \delta$ times, where $c_{10}>0$ is a constant independent of n. Now we choose $\delta \in(0,2 \pi / k)$ for

$$
K:=1+\sum_{j=0}^{m-1}\left|a_{j}\right|+\sum_{j=0}^{k-1}\left|b_{j}\right| .
$$

Then

$$
T_{n}(t):=\operatorname{Im}\left(\sum_{j=0}^{n} a_{j} e^{i j t}\right)=\operatorname{Im}\left(P_{1}\left(e^{i t}\right)\right)+\operatorname{Im}\left(P_{2}\left(e^{i t}\right)\right)
$$

has at least one zero on each interval on which $\operatorname{Im}\left(P_{2}\left(e^{i t}\right)\right)$ oscillates between $-K$ and K, and hence it has at least $c_{10}(l+1) k \delta>c_{9} n$ zeros on $[-\pi, \pi)$, where $c_{9}>0$ is a constant independent of n.

References

1. P. Borwein, Computational Excursions in Analysis and Number Theory, Springer, New York, 2002.
2. P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. Math. (to appear).
3. B. Conrey, A. Granville, B. Poonen, and K. Soundararajan, Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble) 50 (2000), 865-889.
4. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
5. S.V. Konyagin, On a problem of Littlewood, Mathematics of the USSR, Izvestia 18 (1981), 205-225.
6. S.V. Konyagin and V.F. Lev, Character sums in complex half planes, J. Theor. Nombres Bordeaux 16 (2004), no. 3, 587-606.
7. J.E. Littlewood, On the mean values of certain trigonometrical polynomials, J. London Math. Soc. 36 (1961), 307-334.
8. J.E. Littlewood, On the real roots of real trigonometrical polynomials (II), J. London Math. Soc. 39 (1964), 511-552.
9. J.E. Littlewood, On polynomials $\sum \pm z^{m}$ and $\sum e^{\alpha_{m} i} z^{m}, z=e^{\theta i}$, J. London Math. Soc. 41 (1966), 367-376.
10. J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
11. O.C. McGehee, L. Pigno, and B. Smith, Hardy's inequality and the L_{1} norm of exponential sums, Ann. Math. 113 (1981), 613-618.
12. I.D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (P. Borwein)

E-mail address: pborwein@cecm.sfu.ca (Peter Borwein)

Department of Mathematics, Texas A\&M University, College Station, Texas 77843 (T. Erdélyi)

E-mail address: terdelyi@math.tamu.edu (Tamás Erdélyi)

