LOWER BOUNDS FOR THE NUMBER OF ZEROS OF COSINE POLYNOMIALS IN THE PERIOD: A PROBLEM OF LITTLEWOOD

Peter Borwein and Tamás Erdélyi

ABSTRACT. Littlewood in his 1968 monograph "Some Problems in Real and Complex Analysis" [9, problem 22] poses the following research problem, which appears to still be open: "If the n_m are integral and all different, what is the lower bound on the number of real zeros of $\sum_{m=1}^{N} \cos(n_m \theta)$? Possibly N-1, or not much less." Here real zeros are counted in a period. In fact no progress appears to have been made on this in the last half century. In a recent paper [2] we showed that this is false. There exists a cosine polynomial $\sum_{m=1}^{N} \cos(n_m \theta)$ with the n_j integral and all different so that the number of its real zeros in the period is $O(N^{9/10}(\log N)^{1/5})$ (here the frequencies $n_m = n_m(N)$ may vary with N). However, there are reasons to believe that a cosine polynomial $\sum_{m=1}^{N} \cos(n_m \theta)$ always has many zeros on the period. Denote the number of zeros of a trigonometric polynomial T in the period $[-\pi, \pi)$ by $\mathcal{N}(T)$. In this paper we prove the following.

Theorem. Suppose the set $\{a_j : j \in \mathbb{N}\} \subset \mathbb{R}$ is finite and the set $\{j \in \mathbb{N} : a_j \neq 0\}$ is infinite. Let

$$T_n(t) = \sum_{j=0}^{n} a_j \cos(jt).$$

Then $\lim_{n\to\infty} \mathcal{N}(T_n) = \infty$.

One of our main tools, not surprisingly, is the resolution of the Littlewood Conjecture [4].

1. Introduction

Let $0 \le n_1 < n_2 < \cdots < n_N$ be integers. A cosine polynomial of the form $T_N(\theta) = \sum_{j=1}^N \cos(n_j\theta)$ must have at least one real zero in a period. This is obvious if $n_1 \ne 0$, since then the integral of the sum on a period is 0. The above statement is less obvious if $n_1 = 0$, but for sufficiently large N it follows from Littlewood's Conjecture simply. Here we mean the Littlewood's Conjecture proved by S. Konyagin [5] and independently by McGehee, Pigno, and Smith [11] in 1981. See also [4] for a book proof. It is not difficult to prove the statement in general even in the case $n_1 = 0$. One possible way is to use the identity

$$\sum_{j=1}^{n_N} T_N((2j-1)\pi/n_N) = 0.$$

2000 Mathematics Subject Classifications: Primary: 41A17

Key words and phrases. a problem of Littlewood, cosine polynomials, constrained coefficients, number of real zeros.

See [6], for example. Another way is to use Theorem 2 of [12]. So there is certainly no shortage of possible approaches to prove the starting observation of this paper even in the case $n_1 = 0$.

It seems likely that the number of zeros of the above sums in a period must tend to ∞ with N. In a private communication B. Conrey asked how fast the number of zeros of the above sums in a period tend to ∞ as a function N. In [3] the authors observed that for an odd prime p the Fekete polynomial $f_p(z) = \sum_{k=0}^{p-1} \left(\frac{k}{p}\right) z^k$ (the coefficients are Legendre symbols) has $\sim \kappa_0 p$ zeros on the unit circle, where $0.500813 > \kappa_0 > 0.500668$. Conrey's question in general does not appear to be easy.

Littlewood in his 1968 monograph "Some Problems in Real and Complex Analysis" [9, problem 22] poses the following research problem, which appears to still be open: "If the n_m are integral and all different, what is the lower bound on the number of real zeros of $\sum_{m=1}^{N} \cos(n_m \theta)$? Possibly N-1, or not much less." Here real zeros are counted in a period. In fact no progress appears to have been made on this in the last half century. In a recent paper [2] we showed that this is false. There exists a cosine polynomials $\sum_{m=1}^{N} \cos(n_m \theta)$ with the n_m integral and all different so that the number of its real zeros in the period is $O(N^{9/10}(\log N)^{1/5})$ (here the frequencies $n_m = n_m(N)$ may vary with N). However, there are reasons to believe that a cosine polynomial $\sum_{m=1}^{N} \cos(n_m \theta)$ always has many zeros in the period. In this paper we prove the following.

2. New Result

Theorem 1. Suppose the set $\{a_j : j \in \mathbb{N}\} \subset \mathbb{R}$ is finite and the set $\{j \in \mathbb{N} : a_j \neq 0\}$ is infinite. Let

$$T_n(t) = \sum_{j=0}^n a_j \cos(jt).$$

Then $\lim_{n\to\infty} \mathcal{N}(T_n) = \infty$.

3. Lemmas and Proofs

To prove the new result we need a few lemmas. The first two lemmas are straightforward from [4, pages 285-288] which offers an elegant book proof of the Littlewood Conjecture first shown in [5] and [11]. The book [1] deals with a number of related topics. Littlewood [7,8,9,10] was interested in many closely related problems.

Lemma 3.1. Let $\lambda_0 < \lambda_1 < \cdots < \lambda_m$ be nonnegative integers and let

$$S_m(t) = \sum_{j=0}^m A_j \cos(\lambda_j t), \qquad A_j \in \mathbb{R}, \ j = 0, 1, \dots, m.$$

Then

$$\int_{-\pi}^{\pi} |S_m(t)| dt \ge \frac{1}{60} \sum_{j=0}^{m} \frac{|A_{m-j}|}{j+1}.$$

Lemma 3.2. Let $\lambda_0 < \lambda_1 < \cdots < \lambda_m$ be nonnegative integers and let

$$S_m(T) = \sum_{j=0}^m A_j \sin(\lambda_j t), \qquad A_j \in \mathbb{R}, \ j = 0, 1, \dots, m.$$

Then

$$\int_{-\pi}^{\pi} |S_m(t)| dt \ge \frac{1}{60} \sum_{j=0}^{m} \frac{|A_{m-j}|}{j+1}.$$

Lemma 3.3. Let $\lambda_0 < \lambda_1 < \cdots < \lambda_m$ be nonnegative integers and let

$$S_m(t) = \sum_{j=0}^m A_j \cos(\lambda_j t), \qquad A_j \in \mathbb{R}, \ j = 0, 1, \dots, m.$$

Let $A := \max\{|A_j| : j = 0, 1, ..., m\}$. Suppose S_m has at most K-1 zeros in the period $[-\pi, \pi)$ for all sufficiently large n. Then

$$\int_{-\pi}^{\pi} |S_m(t)| \, dt \le 2KA \left(\pi + \sum_{j=1}^{m} \frac{1}{\lambda_j} \right) \le 2KA(5 + \log m) \, .$$

Proof. We may assume that $\lambda_0 = 0$, the case $\lambda_0 > 0$ can be handled similarly. Associated with S_m in the lemma let

$$R_m(t) := A_0 t + \sum_{j=0}^m \frac{A_j}{\lambda_j} \sin(\lambda_j t).$$

Clearly

$$\max_{t \in [-\pi,\pi]} |R_m(t)| \le A \left(\pi + \sum_{j=1}^m \frac{1}{\lambda_j} \right).$$

Also, for every $c \in \mathbb{R}$ the function $R_m - c$ has at most K zeros in the period $[-\pi, \pi)$, otherwise Rolle's Theorem implies that $S_m = (R_m - c)'$ has at least K zeros in the period $[-\pi, \pi)$. Hence

$$\int_{-\pi}^{\pi} |S_m(t)| dt = V_{-\pi}^{\pi}(R_m) \le 2K \max_{t \in [-\pi, \pi]} |R_m(t)|$$

$$\le 2KA \left(\pi + \sum_{j=1}^{m} \frac{1}{\lambda_j}\right) \le 2KA(5 + \log m),$$

and the lemma is proved. \square

Proof of the theorem when $(a_n)_{n=0}^{\infty}$ is NOT eventually periodic. Suppose the theorem is false. Then there are $k \in \mathbb{N}$, a sequence $(n_{\nu})_{\nu=1}^{\infty}$ of positive integers $n_1 < n_2 < \cdots$, and even trigonometric polynomials $Q_{n_{\nu}} \in \mathcal{T}_k$ with maximum norm 1 on the period such that

$$(3.1) T_{n_{\nu}}(t)Q_{n_{\nu}}(t) \geq 0, t \in \mathbb{R}.$$

We can pick a subsequence of $(n_{\nu})_{\nu=1}^{\infty}$ (without loss of generality we may assume that it is the sequence $(n_{\nu})_{\nu=1}^{\infty}$ itself) that converges to a $Q \in \mathcal{T}_k$ uniformly on the period $[-\pi, \pi)$. That is,

(3.2)
$$\lim_{\nu \to \infty} \varepsilon_{\nu} = 0 \quad \text{with} \quad \varepsilon_{\nu} := \max_{t \in [-\pi, \pi]} |Q(t) - Q_{n_{\nu}}(t)|.$$

We introduce the formal trigonometric series

$$\sum_{j=0}^{\infty} b_j \cos(\beta_j t) := \left(\sum_{j=0}^{\infty} a_j \cos(jt)\right) Q(t)^3, \qquad b_j \neq 0, \ j = 0, 1, \dots,$$

and

$$\sum_{j=0}^{\infty} d_j \cos(\delta_j t) := \left(\sum_{j=0}^{\infty} a_j \cos(jt)\right) Q(t)^4, \qquad d_j \neq 0, \ j = 0, 1, \dots,$$

where $\beta_0 < \beta_1 < \cdots$, and $\delta_0 < \delta_1 < \cdots$ are nonnegative integers. Since the set $\{a_j : j \in \mathbb{N}\} \subset \mathbb{R}$ is finite, the sets

$$\{b_j: j \in \mathbb{N}\} \subset \mathbb{R}$$
 and $\{d_j: j \in \mathbb{N}\} \subset \mathbb{R}$

are finite as well. Hence there are $\rho, M \in (0, \infty)$ such that

(3.3)
$$|a_j| \le M, \qquad \rho \le |b_j|, |d_j| \le M, \qquad j = 0, 1, \dots.$$

Let

$$K_{\nu} := |\{j \in \mathbb{N} : 0 \le \beta_j \le n_{\nu}\}|$$

and

$$L_{\nu} := \left| \left\{ j \in \mathbb{N} : 0 \le \delta_j \le n_{\nu} \right\} \right|.$$

Since the sequence $(a_n)_{n=0}^{\infty}$ is not eventually periodic, we have

(3.4)
$$\lim_{\nu \to \infty} K_{\nu} = \infty \quad \text{and} \quad \lim_{\nu \to \infty} L_{\nu} = \infty.$$

We claim that

$$(3.5) K_{\nu} \le c_1 L_{\nu}$$

with some $c_1 > 0$ independent of $\nu \in \mathbb{N}$. Indeed, using Parseval's formula and (3.2) - (3.4), we deduce

(3.6)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} dt = \frac{1}{\pi} \int_{-\pi}^{\pi} (T_{n_{\nu}}(t) Q(t)^{2} Q_{n_{\nu}}(t))^{2} dt \\ \geq (K_{\nu} - 3k) \frac{1}{2} \rho^{2} \geq \frac{1}{4} \rho^{2} K_{\nu}$$

for every sufficiently large $\nu \in \mathbb{N}$. Also, (3.1) – (3.4) imply

$$(3.7)$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} T_{n_{\nu}}(t)^{2} Q(t)^{4} Q_{n_{\nu}}(t)^{2} dt = \frac{1}{\pi} \int_{-\pi}^{\pi} (T_{n_{\nu}}(t) Q_{n_{\nu}}(t)) (T_{n_{\nu}}(t) Q(t)^{4}) Q_{n_{\nu}}(t) dt$$

$$\leq \frac{1}{\pi} \left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) dt \right) \left(\max_{t \in [-\pi, \pi]} |T_{n_{\nu}}(t) Q(t)^{4}| \right) \left(\max_{t \in [-\pi, \pi]} |Q_{n_{\nu}}(t)| \right)$$

$$\leq \frac{1}{\pi} \left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t) Q_{n_{\nu}}(t) dt \right) (L_{\nu} M + 4kM) \left(\max_{t \in [-\pi, \pi]} |Q_{n_{\nu}}(t)| \right)$$

$$\leq c_{2} L_{\nu}$$

with a constant $c_2 > 0$ independent of ν for every sufficiently large $\nu \in \mathbb{N}$. Now (3.5) follows from (3.6) and (3.7). From Lemma 3.1 we deduce

(3.8)
$$\int_{-\pi}^{\pi} |T_{n_{\nu}}(t)Q(t)^{4}| dt \ge c_{3}\rho \log L_{\nu} - c_{4}$$

with some constants $c_3 > 0$ and $c_4 > 0$ independent of $\nu \in \mathbb{N}$. On the other hand, using (3.1), Lemma 3.3, (3.2), (3.3), (3.5), and (3.4), we obtain

(3.9)
$$\int_{-\pi}^{\pi} |T_{n_{\nu}}(t)Q(t)|^{4} dt$$

$$\leq \int_{-\pi}^{\pi} T_{n_{\nu}}(t)Q_{n_{\nu}}(t)|Q(t)|^{3} dt + \int_{-\pi}^{\pi} |T_{n_{\nu}}(t)Q(t)|^{3} |Q(t) - Q_{n_{\nu}}(t)| dt$$

$$\leq \left(\int_{-\pi}^{\pi} T_{n_{\nu}}(t)Q_{n_{\nu}}(t) dt\right) \left(\max_{t \in [-\pi,\pi]} |Q(t)|^{3}\right)$$

$$+ \left(\int_{-\pi}^{\pi} |T_{n_{\nu}}(t)Q(t)|^{3} dt\right) \left(\max_{t \in [-\pi,\pi]} |Q(t) - Q_{n_{\nu}}(t)|\right)$$

$$\leq c_{5} + c_{6}(\log K_{\nu})\varepsilon_{\nu} \leq c_{5} + c_{6}(\log(c_{1}L_{\nu}))\varepsilon_{\nu}$$

$$\leq c_{7} + c_{6}(\log L_{\nu})\varepsilon_{\nu} = o(\log L_{\nu}),$$

where c_1, c_5, c_6 , and c_7 are constants independent of $\nu \in \mathbb{N}$. Since (3.9) contradicts (3.8), the proof of the theorem is finished in the case when the sequence $(a_n)_{n=0}^{\infty}$ is not eventually periodic. \square

Proof of the theorem when $(a_n)_{n=0}^{\infty}$ is eventually periodic. The theorem now follows from Lemmas 3.4 below. \square

To prove the theorem in the case when $(a_n)_{n=0}^{\infty}$ is eventually periodic we need one more lemma.

Lemma 3.4. Let $(a_j)_{j=0}^{\infty}$ be a an eventually periodic sequence of real numbers. Suppose the set $\{j \in \mathbb{N} : a_j \neq 0\}$ is infinite. Then, for all sufficiently large n, the trigonometric polynomials

$$T_n(t) := \sum_{j=0}^{n} a_j \cos(jt)$$

have at least $c_8 \log n$ zeros in the period $[-\pi, \pi)$ with a constant $c_8 > 0$ depending only on $(a_j)_{j=0}^{\infty}$.

Proof. It is a well known classical result that for the trigonometric polynomials

$$Q_n(t) := \sum_{j=1}^n \frac{\sin(jt)}{j}$$

we have

$$|Q_n(t)| \le 1 + \pi$$
, $t \in \mathbb{R}$, $n = 1, 2, \dots$

Using the standard way to show this, it can be easily shown that if $(a_j)_{j=0}^{\infty}$ is an eventually periodic sequence of real numbers, then for the functions

$$S_n(t) := a_0 t + \sum_{j=1}^n \frac{a_j \sin(jt)}{j}$$

we have

$$(3.10) |S_n(t)| \le M, t \in [-\pi, \pi), n = 1, 2, \dots,$$

with a constant M > 0 depending only on $(a_j)_{j=0}^{\infty}$. Observe that $S'_n(t) = T_n(t)$, so Lemma 3.1 (a consequence of the resolution of the Littlewood Conjecture) implies that, for all sufficiently large n,

(3.11)
$$V_{-\pi}^{\pi}(S_n) = \int_{-\pi}^{\pi} |S_n'(t)| dt = \int_{-\pi}^{\pi} |T_n(t)| dt \ge \eta \log n$$

with a constant $\eta > 0$ depending only on $(a_j)_{j=0}^{\infty}$. Combining (3.10) and (3.11) we can easily deduce that there is a $c \in [-M, M]$ such that for all sufficiently large n, the function $S_n - c$ has at least $(2M)^{-1}(\eta \log n)$ distinct zeros in the period $[-\pi, \pi)$. Hence by Rolle's Theorem $T_n = (S_n - c)'$ has at least $(2M)^{-1}(\eta \log n) - 1$ distinct zeros in the period $[-\pi, \pi)$. \square

We prove one more result, Theorem 3.6, closely related to Lemma 3.4. In the proof of Theorem 3.6 we need the following observation.

Lemma 3.5. Suppose $k > 2m \ge 0$, k is even. Let

$$z_j := \exp\left(\frac{2\pi ji}{k}\right), \quad j = 0, 1, \dots, k-1,$$

be the kth roots of unity. Suppose

$$0 \notin \{b_0, b_1, \dots, b_{k-1}\} \subset \mathbb{R}$$

and

$$Q(z) := z^m \sum_{j=0}^{k-1} b_j z^j \,.$$

Then there is a value of $j \in \{0, 1, ..., k-1\}$ for which $Im(Q(z_j)) \neq 0$.

Proof. If the statement of the lemma were false, then

$$z^{m+k-1}(Q(z)-Q(1/z))=(z^k-1)\sum_{\nu=0}^{2m+k-2}\alpha_{\nu}z^{\nu}.$$

Obviously

$$z^{m+k-1}(Q(z) - Q(1/z)) = -b_{k-1} - b_{k-2}z - b_{k-3}z^2 - \dots - b_0z^{k-1} + b_0z^{2m+k-1} + b_1z^{2m+k} + b_2z^{2m+k+1} + \dots + b_{k-1}z^{2m+2k-2}.$$

Hence

$$\alpha_{\nu} = -b_{k-1-\nu}, \qquad \nu = 0, 1, \dots, k-1,$$

and

$$\alpha_{2m+k-2-\nu} = b_{k-1-\nu}, \qquad \nu = 0, 1, \dots, k-1.$$

Then for $\nu := m + (k/2) - 1 < k - 1$ we have

$$-b_{k-1-\nu} = b_{k-1-\nu}$$
, that is $b_{k-1-\nu} = 0$,

a contradiction. \square

Theorem 3.6. Let $0 \notin \{b_0, b_1, \dots, b_{k-1}\} \subset \mathbb{R}, \{a_0, a_1, \dots, a_{m-1}\} \subset \mathbb{R}$ and

$$a_{m+lk+j} = b_j$$
, $l = 0, 1, \dots, j = 0, 1, \dots, k-1$.

Suppose $k > 2m \ge 0$, k is even. Let n = m + lk + u with integers $m \ge 0$, $l \ge 0$, $k \ge 1$, and $0 \le u \le k - 1$. Then for every sufficiently large n

$$T_n(t) := \operatorname{Im} \left(\sum_{j=0}^n a_j e^{ijt} \right)$$

has at least c_9n zeros in $[-\pi, \pi)$, where $c_9 > 0$ is independent of n.

Proof of Theorem 3.6. Note that

$$\sum_{j=0}^{n} a_j z^j = \sum_{j=0}^{m-1} a_j z^j + z^m \left(\sum_{j=0}^{k-1} b_j z^j \right) \frac{z^{(l+1)k} - 1}{z^k - 1} + z^{m+lk} \sum_{j=0}^{u} b_j z^j = P_1(z) + P_2(z) ,$$

where

$$P_1(z) := \sum_{j=0}^{m-1} a_j z^j + z^{m+lk} \sum_{j=0}^{u} b_j z^j$$

and

$$P_2(z) := z^m \sum_{j=0}^{k-1} b_j z^j \frac{z^{(l+1)k} - 1}{z^k - 1} = Q(z) \frac{z^{(l+1)k} - 1}{z^k - 1},$$

with

$$Q(z) := z^m \sum_{j=0}^{k-1} b_j z^j \, .$$

By Lemma 3.5 there is a kth root of unity $\xi = e^{i\tau}$ such that $\operatorname{Im}(Q(\xi)) \neq 0$. Then for every K > 0 there is a $\delta \in (0, 2\pi/k)$ such that $\operatorname{Im}(P_2(e^{it}))$ oscillates between -K and K at least $c_{10}(l+1)k\delta$ times, where $c_{10} > 0$ is a constant independent of n. Now we choose $\delta \in (0, 2\pi/k)$ for

$$K := 1 + \sum_{j=0}^{m-1} |a_j| + \sum_{j=0}^{k-1} |b_j|.$$

Then

$$T_n(t) := \operatorname{Im}\left(\sum_{j=0}^n a_j e^{ijt}\right) = \operatorname{Im}(P_1(e^{it})) + \operatorname{Im}(P_2(e^{it}))$$

has at least one zero on each interval on which $\operatorname{Im}(P_2(e^{it}))$ oscillates between -K and K, and hence it has at least $c_{10}(l+1)k\delta > c_9n$ zeros on $[-\pi,\pi)$, where $c_9 > 0$ is a constant independent of n. \square

References

- 1. P. Borwein, Computational Excursions in Analysis and Number Theory, Springer, New York, 2002.
- 2. P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. Math. (to appear).
- 3. B. Conrey, A. Granville, B. Poonen, and K. Soundararajan, Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble) **50** (2000), 865–889.
- 4. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

- S.V. Konyagin, On a problem of Littlewood, Mathematics of the USSR, Izvestia 18 (1981), 205–225.
- 6. S.V. Konyagin and V.F. Lev, *Character sums in complex half planes*, J. Theor. Nombres Bordeaux **16** (2004), no. 3, 587–606.
- 7. J.E. Littlewood, On the mean values of certain trigonometrical polynomials, J. London Math. Soc. **36** (1961), 307–334.
- 8. J.E. Littlewood, On the real roots of real trigonometrical polynomials (II), J. London Math. Soc. **39** (1964), 511–552.
- 9. J.E. Littlewood, On polynomials $\sum \pm z^m$ and $\sum e^{\alpha_m i} z^m$, $z = e^{\theta i}$, J. London Math. Soc. **41** (1966), 367–376.
- 10. J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
- 11. O.C. McGehee, L. Pigno, and B. Smith, Hardy's inequality and the L_1 norm of exponential sums, Ann. Math. 113 (1981), 613–618.
- 12. I.D. Mercer, *Unimodular roots of special Littlewood polynomials*, Canad. Math. Bull. **49** (2006), no. 3, 438–447.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (P. Borwein)

 $E ext{-}mail\ address: pborwein@cecm.sfu.ca}$ (Peter Borwein)

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843 (T. ERDÉLYI)

E-mail address: terdelyi@math.tamu.edu (Tamás Erdélyi)