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Abstract. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear
combinations of of eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, e
λ1t, . . . , e

λnt} .

Motivated by a question of Michel Weber (Strasbourg) we prove the following couple of theorems.

Theorem 1. Let 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c1 = c1(p, q, a, b) > 0
and c2 = c2(p, q, a, b) depending only on p, q, a, and b such that

c1

(

n
2 +

n
∑

j=0

|λj |

) 1

q
− 1

p

≤ sup
06=P∈E(Λn)

‖P‖Lp [a,b]

‖P‖Lq [a,b]

≤ c2

(

n
2 +

n
∑

j=0

|λj |

) 1

q
− 1

p

.

Theorem 2. Let 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c1 = c1(p, q, a, b) > 0
and c2 = c2(p, q, a, b) depending only on p, q, a, and b such that

c1

(

n
2 +

n
∑

j=0

|λj |

)1+ 1

q
− 1

p

≤ sup
06=P∈E(Λn)

‖P ′‖Lp [a,b]

‖P‖Lq [a,b]
≤ c2

(

n
2 +

n
∑

j=0

|λj |

)1+ 1

q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when p ≥ 1 and

0 < q ≤ p ≤ ∞.

1. Introduction and Notation

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear combinations
of of eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+1 terms. For a real-valued function f defined
on a set A let

‖f‖L∞A := ‖f‖A := sup{|f(x)| : x ∈ A} ,

and let

‖f‖LpA :=

(∫

A
|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. Newman’s inequality (see [2] and [6] is an essentially sharp
Markov-type inequality for E(Λn) on [0, 1] in the case when each λj is non-negative.

Theorem 1.1 (Newman’s Inequality). Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative

real numbers. Then
2

3

n∑

j=0

λj ≤ sup
06=P∈E(Λn)

‖P ′‖(−∞,0]

‖P‖(−∞,0]
≤ 9

n∑

j=0

λj .

An Lp, 1 ≤ p ≤ ∞, version of the upper bound in Theorem 1.1 is established in [2], [3], and [4].
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Theorem 1.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers. Let

1 ≤ p ≤ ∞. Then

‖Q′‖Lp(−∞,0] ≤ 9




n∑

j=0

λj


 ‖Q‖Lp(−∞,0]

for every Q ∈ E(Λn).

The following Lp[a, b], 1 ≤ p ≤ ∞, analog of Theorem 1.2 has been established in [1].

Theorem 1.3. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers, 1 ≤ p ≤ ∞, a, b ∈ R,

and a < b. There is a constant c1 = c1(a, b) depending only on a and b such that

sup
06=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c1


n2 +

n∑

j=0

|λj |


 .

Theorem 1.3 was proved earlier in [4] under the additional assumptions that λj ≥ δj for each j
with a constant δ > 0 and with c1 = c1(a, b) replaced by c1 = c1(a, b, δ) depending only on a, b,
and δ. The novelty of Theorem 1.3 was the fact that

Λn := {λ0 < λ1 < · · · < λn}

is an arbitrary set of real numbers, not even the non-negativity of the exponents λj is needed.
In [5] the following Nikolskii-Markov type inequality has been proved for E(Λn) on (−∞, 0].

Theorem 1.4. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers and

0 < q ≤ p ≤ ∞. Let µ be a non-negative integer. There are constants c2 = c2(p, q, µ) > 0 and

c3 = c3(p, q, µ) depending only on p, q, and µ such that

c2




n∑

j=0

λj




µ+ 1
q
− 1

p

≤ sup
06=P∈E(Λn)

‖P (µ)‖Lp(−∞,0]

‖P‖Lq(−∞,0]
≤ c3




n∑

j=0

λj




µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and µ ≥ 0, while the upper bound holds when

µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there are constants

c2 = c2(q, µ) > 0 and c3 = c3(q, µ) depending only on q and µ such that

c2




n∑

j=0

λj




µ+ 1
q

≤ sup
06=P∈E(Λn)

|P (µ)(y)|

‖P‖Lq(−∞,y]
≤ c3




n∑

j=0

λj




µ+ 1
q

for all 0 < q ≤ ∞, µ ≥ 1, and y ∈ R.

2. New Results

Motivated by a question of Michel Weber (Strasbourg) we prove the following couple of theorems.

Theorem 2.1. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c4 =
c4(p, q, a, b) > 0 and c5 = c5(p, q, a, b) depending only on p, q, a, and b such that

c4


n2 +

n∑

j=0

|λj |




1
q
− 1

p

≤ sup
06=P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq [a,b]
≤ c5


n2 +

n∑

j=0

|λj |




1
q
− 1

p

.
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Theorem 2.2. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants c6 =
c6(p, q, a, b) > 0 and c7 = c7(p, q, a, b) depending only on p, q, a, and b such that

c6


n2 +

n∑

j=0

|λj|




1+ 1
q
− 1

p

≤ sup
06=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq [a,b]
≤ c7


n2 +

n∑

j=0

|λj |




1+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when p ≥ 1 and

0 < q ≤ p ≤ ∞.

3. Lemmas

Our first lemma can be proved by a simple compactness argument and may be viewed as a simple
exercise.

Lemma 3.1. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let a, b, c ∈ R, a < b. Let

w be a not identically 0 continuous function defined on [a, b]. Let q ∈ (0,∞]. Then there exists a

0 6= T ∈ E(∆n) such that
|T (c)|

‖Tw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P (c)|

‖Pw‖Lq [a,b]
,

and there exists a 0 6= S ∈ E(∆n) such that

|S′(c)|

‖Sw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq [a,b]
.

Our next lemma is an essential tool in proving our key lemmas, Lemmas 3.3 and 3.4.

Lemma 3.2. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let a, b, c ∈ R, a < b < c.
Let q ∈ (0,∞]. Let T and S be the same as in Lemma 3.1. Then T has exactly n zeros in [a, b] by
counting multiplicities. If δn ≥ 0, then S also has exactly n zeros in [a, b] by counting multiplicities.

The heart of the proof of our theorems is the following pair of comparison lemmas. The proof
of the next couple of lemmas is based on basic properties of Descartes systems, in particular on
Descartes’ Rule of Signs, and on a technique used earlier by P.W. Smith and Pinkus. Lorentz
ascribes this result to Pinkus, although it was P.W. Smith [7] who published it. I have learned
about the method of proofs of these lemmas from Peter Borwein, who also ascribes it to Pinkus.
This is the proof we present here. Section 3.2 of [2], for instance, gives an introduction to Descartes
systems. Descartes’ Rule of Signs is stated and proved on page 102 of [2].

Lemma 3.3. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of real

numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R, a < b ≤ c. Let w be a not

identically 0 continuous function defined on [a, b]. Let q ∈ (0,∞]. Then

sup
06=P∈E(∆n)

|(P (c)|

‖Pw‖Lq [a,b]
≤ sup

06=P∈E(Γn)

|P (c)|

‖Pw‖Lq [a,b]
.

Under the additional assumption δn ≥ 0 we also have

sup
06=P∈E(∆n)

|(P ′(c)|

‖Pw‖Lq [a,b]
≤ sup

06=P∈E(Γn)

|P ′(c)|

‖Pw‖Lq [a,b]
.

Lemma 3.4. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of real

numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let a, b, c ∈ R, c ≤ a < b. Let w be a not

identically 0 continuous function defined on [a, b]. Let q ∈ (0,∞]. Then

sup
06=P∈E(∆n)

|(P (c)|

‖Pw‖Lq [a,b]
≥ sup

06=P∈E(Γn)

|P (c)|

‖Pw‖Lq [a,b]
.
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Under the additional assumption γ0 ≤ 0 we also have

sup
06=P∈E(∆n)

|(Q′(c)|

‖Qw‖Lq [a,b]
≥ sup

06=P∈E(Γn)

|Q′(c)|

‖Qw‖Lq [a,b]
.

Let Pn denote the collection of all algebraic polynomials of degree at most n with real coefficients.
The following sharp Nikolskii-type inequalities for Pn hold.

Lemma 3.5. Let 0 < q < p ≤ ∞, a, b ∈ R, and a < b. Suppose µ is a nonnegative integer. There

are constants c8 = c8(p, q, µ) > 0 and c9 = c9(p, q, µ) such that

c8

(
n2

b− a

)µ+1/q−1/p

≤ sup
06=P∈Pn

‖P (µ)‖Lp[a,b]

‖P‖Lq [a,b]
≤ c9

(
n2

b− a

)µ+1/q−1/p

and

c8

(
n2

b− a

)µ+1/q

≤ sup
06=P∈Pn

|P (µ)(y)|

‖P‖Lq [a,b]
≤ c9

(
n2

b− a

)µ+1/q

for both y = a and y = b.

Lemma 3.5 may be viewed well known as well, yet, it is hard to find a direct reference especially
to the lower bounds. So in the next section we present the arguments briefly deriving this lemma
from explicitly referenced results.

4. Proofs of the Lemmas

Proof of Lemma 3.1. Since ∆n is fixed, the proof is a standard compactness argument. We omit
the details. �

To prove Lemma 3.2 we need the following two facts. (a) Every f ∈ E(∆n) has at most n real
zeros by counting multiplicities. (b) If t1 < t2 < · · · < tm are real numbers and k1, k2, . . . , km are
positive integers such that

∑m
j=1 kj = n, then there is a 0 6= f ∈ E(∆n) having a zero at tj with

multiplicity kj for each j = 1, 2, . . . ,m.

Proof of Lemma 3.2. We prove the statement for T first. Suppose to the contrary that

t1 < t2 < · · · < tm

are real numbers in [a, b] such that tj is a zero of T with multiplicity kj for each j = 1, 2, . . . ,m,
k :=

∑m
j=1 kj < n, and T has no other zeros in [a, b] different from t1, t2, . . . , tm. Let tm+1 := c and

km+1 := n− k ≥ 1. Choose an 0 6= R ∈ E(∆n) such that R has a zero at tj with multiplicity kj for
each j = 1, 2, . . . ,m+1, and normalize so that T (t) and R(t) have the same sign at every t ∈ [a, b].
Let Tε := T − εR. Note that T and R are of the form

T (t) = T̃ (t)
m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both T̃ and R̃ are continuous functions on [a, b] having no zeros on [a, b]. Hence, if ε > 0 is
sufficiently small, then |Tε(t)| < |T (t)| at every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Tεw‖Lq [a,b] < ‖Tw‖Lq [a,b] .

This, together with Tε(c) = T (c), contradicts the maximality of T .
Now we prove the statement for S. Without loss of generality we may assume that S′(c) > 0.

Suppose to the contrary that t1 < t2 < · · · < tm are real numbers in [a, b] such that tj is a zero of
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S with multiplicity kj for each j = 1, 2, . . . ,m, k :=
∑m

j=1 kj < n, and S has no other zeros in [a, b]
different from t1, t2, . . . , tm. Choose a

0 6= Q ∈ span{eδn−kt, eδn−k+1t, . . . , eδnt} ⊂ E(∆n)

such that Q has a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m, and normalize so that
S(t) and Q(t) have the same sign at every t ∈ [a, b]. Note that S and Q are of the form

S(t) = S̃(t)
m∏

j=1

(t− tj)
kj and Q(t) = Q̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and Q̃ are continuous functions on [a, b] having no zeros on [a, b]. Let tm+1 := c and
km+1 := 1. Choose an

0 6= R ∈ span{eδn−k−1t, eδn−kt, . . . , eδnt} ⊂ E(∆n)

such that R has a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m+1, and normalize so that
S(t) and R(t) have the same sign at every t ∈ [a, b]. Note that S and R are of the form

S(t) = S̃(t)

m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no zeros on [a, b]. Since δn ≥ 0, it is
easy to see that Q′(c)R′(c) < 0, so the sign of Q′(c) is different from the sign of R′(c). Let U := Q
if Q′(c) < 0, and let U := R if R′(c) < 0. Let Sε := S − εU . Hence, if ε > 0 is sufficiently small,
then |Sε(t)| < |T (t)| at every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq [a,b] < ‖Sw‖Lq [a,b] .

This, together with S′
ε(c) > S′(c) > 0, contradicts the maximality of S. �

Proof of Lemma 3.3. We prove the first inequality first. We may assume that a < b < c. The
general case when a < b ≤ c follows by a standard continuity argument. Let k ∈ {0, 1, . . . , n} be
fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above cases since the general case
follows from this by a finite number of pairwise comparisons. By Lemmas 3.1 and 3.2, there is a
0 6= T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P (c)|

‖Pw‖Lq [a,b]
,

where T has exactly n zeros in [a, b] by counting multiplicities. Denote the distinct zeros of T in
[a, b] by t1 < t2 < · · · < tm, where tj is a zero of T with multiplicity kj for each j = 1, 2, . . . ,m,
and

∑m
j=1 kj = n. Then T has no other zeros in R different from t1, t2, . . . , tm. Let

T (t) =:
n∑

j=0

aje
δjt , aj ∈ R .

Without loss of generality we may assume that T (c) > 0. We have T (t) > 0 for every t > c,
otherwise, in addition to its n zeros in [a, b] (by counting multiplicities), T would have at least one
more zero in (c,∞), which is impossible. Hence

an := lim
t→∞

T (t)e−δnt ≥ 0 .
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Since E(∆n) is the span of a Descartes system on (−∞,∞), it follows from Descartes’ Rule of Signs
that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =

n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . ,m, and normalize so that
R(c) = T (c)(> 0) (this R ∈ E(Γn) is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0.
Since E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’ Rule of Signs yields,

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(T −R)(t) = ake
δkt − bke

γkt +

n∑

j=0
j 6=k

(aj − bj)e
δjt .

Since T −R has altogether at least n+ 1 zeros at t1, t2, . . . , tm, and c (by counting multiplicities),
it does not have any zero on R different from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that an−bn < 0 if k < n, and −bn < 0
if k = n, so

(T −R)(t) < 0 , t > c .

Since each of T , R, and T − R has a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m;∑m
j=1 kj = n, and T−R has a sign change (a zero with multiplicity 1) at c, we can deduce that each

of T , R, and T − R has the same sign on each of the intervals (tj , tj+1) for every j = 0, 1, . . . ,m
with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |T (t)| holds for all t ∈ [a, b] ⊂ [a, c] with strict
inequality at every t different from t1, t2, . . . , tm. Combining this with R(c) = T (c), we obtain

|R(c)|

‖Rw‖Lq [a,b]
≥

|T (c)|

‖Tw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P (c)|

‖Pw‖Lq [a,b]
.

Since R ∈ E(Γn), the first conclusion of the lemma follows from this.
Now we start the proof of the second inequality of the lemma. Although it is quite similar to

that of the first inequality, we present the details. We may assume that a < b < c and δn > 0.
The general case when a < b ≤ c and δn ≥ 0 follows by a standard continuity argument. Let
k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above cases since the general case
follows from this by a finite number of pairwise comparisons. By Lemmas 3.1 and 3.2, there is an
S ∈ E(∆n) such that

|S′(c)|

‖Sw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq [a,b]
,
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where S has exactly n zeros in [a, b] by counting multiplicities. Denote the distinct zeros of S in
[a, b] by t1 < t2 < · · · < tm, where tj is a zero of S with multiplicity kj for each j = 1, 2, . . . ,m,
and

∑m
j=1 kj = n. Then S has no other zeros in R different from t1, t2, . . . , tm. Let

S(t) =:

n∑

j=0

aje
δjt , aj ∈ R .

Without loss of generality we may assume that S(c) > 0. Since δn > 0, we have limt→∞ S(t) = ∞,
otherwise, in addition to its n zeros in (a, b), S would have at least one more zero in (c,∞), which
is impossible.

Because of the extremal property of S, we have S′(c) 6= 0. We show that S′(c) > 0. To see
this observe that Rolle’s Theorem implies that S′ ∈ E(∆n) has at least n − 1 zeros in [t1, tm]. If
S′(c) < 0, then S(tm) = 0 and limt→∞ S(t) = ∞ imply that S′ has at least 2 more zeros in (tm,∞)
(by counting multiplicities). Thus S′(c) < 0 would imply that S′ has at least n+1 zeros in [a,∞),
which is impossible. Hence S′(c) > 0, indeed. Also an := limt→∞ S(t)e−δnt ≥ 0 . Since E(∆n) is
the span of a Descartes system on (−∞.∞), it follows from Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . ,m, and normalize so that
R(c) = S(c)(> 0) (this R ∈ E(Γn) is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0.
Since E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(S −R)(t) = ake
δkt − bke

γkt +
n∑

j=0
j 6=k

(aj − bj)e
δjt .

Since S −R has altogether at least n+ 1 zeros at t1, t2, . . . , tm, and c (by counting multiplicities),
it does not have any zero on R different from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that an−bn < 0 if k < n, and −bn < 0
if k = n, so

(S −R)(t) < 0 , t > c .

Since each of S, R, and S − R has a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m;∑m
j=1 kj = n, and S − R has a sign change (a zero with multiplicity 1) at c, we can deduce that

each of S, R, and S−R has the same sign on each of the intervals (tj , tj+1) for every j = 0, 1, . . . ,m
with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |S(t)| holds for all t ∈ [a, b] ⊂ [a, c] with strict
inequality at every t different from t1, t2, . . . , tm. Combining this with 0 < S′(c) < R′(c) (recall
that R(c) = S(c) > 0), we obtain

|R′(c)|

‖Rw‖Lq [a,b]
≥

|S′(c)|

‖Sw‖Lq [a,b]
= sup

06=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq [a,b]
.

Since R ∈ E(Γn), the second conclusion of the lemma follows from this. �
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Proof of Lemma 3.4. The lemma follows from Lemma 3.3 by the substitution u = −t. �

Proof of Lemma 3.5. The upper bound follows as a combination of two results from [2]: Theorem
A.4.14 on page 402 and Theorem A.4.4 on page 395. For the lower bound we refer to the lower
bound in Theorem 1.4. To get the lower bound of the lemma, we can use the lower bound of
Theorem 1.4 with δj := j, j = 0, 1, . . . , n, and then we use a substitution x = e−t. �

Proof of the Theorems

Proof of Theorem 2.1. Since the right Markov-type inequality is available for E(Λn), the proof of
the upper bound of the theorem is pretty simple. For the sake of brevity let

M := c1(a, b)


n2 +

n∑

j=0

|λj |


 ,

where the constant c1(a, b) is the same as in Theorem 1.3. Let P ∈ E(Λn). Choose a point t0 ∈ [a, b]
such that |P (t0)| = maxt∈[a,b] |P (t)|. Combining the Mean Value Theorem and the Markov-type
inequality of Theorem 1.3 (we need only the case p = ∞), we obtain that

|P (u)| ≥
1

2
max
t∈[a,b]

|P (t)| , u ∈ I := [a, b] ∩ [t0 − (2M)−1, t0 + (2M)−1] .

Hence

‖P‖qLq [a,b]
=

∫ b

a
|P (t)|q dt ≥ (2M)−1

(
1

2
max
t∈[a,b]

|P (t)|

)q

,

that is,

max
t∈[a,b]

|P (t)| ≤ 2(2M)1/q‖P‖Lq [a,b] .

Therefore

‖P‖pLp[a,b]
=

∫ b

a
|P (t)|p−q|P (t)|q dt ≤

(
max
t∈[a,b]

|P (t)|

)p−q ∫ b

a
|P (t)|q dt ≤

≤ 2p−q(2M)(p−q)/q‖P‖p−q
Lq [a,b]

‖P‖qLq [a,b]
≤ 2p−q(2M)(p−q)/q‖P‖pLq [a,b]

,

that is,

‖P‖Lp[a,b] ≤ 2 · (2M)1/q−1/p‖P‖Lq [a,b] ,

which finishes the proof of the upper bound of the theorem.
Now we turn to the proof of the lower bound. In the light of the upper bound of the theorem it

is sufficient to prove the lower bound of it only in the case when p = ∞. Assume that

λ0 < λ1 < · · · < λm < 0 ≤ λm+1 < λm+2 < · · · < λn .

We distinguish four cases.

Case 1:
∑n

j=m+1 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2. In this case the lower bound of Theorem 1.4 with µ = 0

gives the lower bound of the theorem.

Case 2:
∑m

j=0 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2. In this case the lower bound of Theorem 1.4 with µ = 0

gives the lower bound of the theorem after the substitution u = −t.

Case 3: 1
2

∑n
j=0 |λj | ≤ n2 and m ≤ n/2. We apply Lemma 3.3 with n−m− 1 in place of n, with

Γn−m−1 = {γ0 < γ1 < · · · < γn−m+1} := {λm+1 < λm+2 < · · · < λn} ,

∆n−m−1 := {δ0 < δ1 < · · · < δn−m−1} , δj := jε , j = 0, 1, . . . , n−m− 1 ,

(if ε > 0 is sufficiently small, then the assumptions are satisfied), and c := b. By letting ε > 0 tend
to 0, the lower bound of the theorem follows from Lemma 3.5 with µ = 0.
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Case 4: 1
2

∑n
j=0 |λj | ≤ n2 and m ≥ n/2. We apply Lemma 3.4 with m in place of n, with

∆m = {δ0 < δ1 < · · · < δm} := {λ0 < λ1 < · · · < λm} ,

Γm := {γ0 < γ1 < · · · < γm} , γj := jε , j = 0, 1, . . . ,m ,

(if ε > 0 is sufficiently small, then the assumptions are satisfied), and c := a. By letting ε > 0 tend
to 0, the lower bound of the theorem follows from Lemma 3.5 with µ = 0. �

Proof of Theorem 2.2. The upper bound of the theorem can be obtained by combining Theorem
1.3 and the upper bound of Theorem 2.1.

Now we turn to the proof of the lower bound. In the light of the upper bound of Theorem 2.1
it is sufficient to prove the lower bound of the theorem only in the case when p = ∞. Assume that

λ0 < λ1 < · · · < λm < 0 ≤ λm+1 < λm+2 < · · · < λn .

We distinguish four cases.

Case 1:
∑n

j=m+1 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2. In this case the lower bound of Theorem 1.4 with µ = 1

gives the lower bound of the theorem.

Case 2:
∑m

j=0 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2. In this case the lower bound of Theorem 1.4 with µ = 1

gives the lower bound of the theorem after the substitution u = −t.

Case 3: 1
2

∑n
j=0 |λj | ≤ n2 and m ≤ n/2. We apply Lemma 3.3 with n−m− 1 in place of n, with

Γn−m−1 = {γ0 < γ1 < · · · < γn−m+1} := {λm+1 < λm+2 < · · · < λn} ,

∆n−m−1 := {δ0 < δ1 < · · · < δn−m−1} , δj := jε , j = 0, 1, . . . , n−m− 1 ,

(if ε > 0 is sufficiently small, then the assumptions are satisfied), and c := b. By letting ε tend to
0, the lower bound of the theorem follows from Lemma 3.5 with µ = 1.

Case 4: 1
2

∑n
j=0 |λj | ≤ n2 and m ≥ n/2. We apply Lemma 3.4 with m in place of n, with

∆m = {δ0 < δ1 < · · · < δm} := {λ0 < λ1 < · · · < λm} ,

Γm := {γ0 < γ1 < · · · < γm} , γj := jε , j = 0, 1, . . . ,m ,

(if ε > 0 is sufficiently small, then the assumptions are satisfied), and c := a. By letting ε tend to
0, the lower bound of the theorem follows from Lemma 3.5 with µ = 1. �
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