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Abstract. Two relatively long standing conjectures concerning Müntz polynomials
are resolved. The central tool is a bounded Remez type inequality for non-dense
Müntz spaces.

1. Introduction

Müntz’s beautiful, classical theorem characterizes sequences Λ := {λi}
∞

i=0 with

(1.1) 0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span{xλ0 , xλ1 , . . . } is dense in C[0, 1]. Here,
and in what follows, span{xλ0 , xλ1 , . . . } denotes the collection of finite linear com-
binations of the functions xλ0 , xλ1 , . . . with real coefficients and C[A] is the space
of all real-valued continuous functions on A ⊂ [0,∞) equipped with the uniform
norm. Throughout this paper Λ := {λi}

∞

i=0 denotes a sequence satisfying (1.1).
Müntz’s Theorem [11, 17, 24, 27] states the following.

Theorem. M(Λ) is dense in C[0, 1] if and only if
∑

∞

i=1 1/λi = ∞.

The original Müntz Theorem proved by Müntz [17] in 1914, by Szász [24] in
1916, and anticipated by Bernstein [3] was only for sequences of exponents tending
to infinity. The point 0 is special in the study of Müntz spaces. Even replacing
[0, 1] by an interval [a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. This
is, in large measure, due to Clarkson and Erdős [12] and Schwartz [22] whose
works include the result that if

∑

∞

i=1 1/λi < ∞ then every function belonging to
the uniform closure of M(Λ) on [a, b] can be extended analytically throughout the
region {z ∈ C \ (−∞, 0] : |z| < b}.

There are many variations and generalizations of Müntz’s Theorem [1, 4, 5, 6,
7, 8, 9, 16, 18, 22, 23, 25, 26]. There are also still many open problems.
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density.
Research of the first author supported, in part, by NSERC of Canada. Research of the second

author supported, in part, by NSF under Grant No. DMS-9024901 and conducted while an
NSERC International Fellow at Simon Fraser University.

Typeset by AMS-TEX

1



2 PETER BORWEIN AND TAMÁS ERDÉLYI

In Section 3 of this paper we show that the interval [0, 1] in Müntz’s Theorem can
be replaced by an arbitrary compact set A ⊂ [0,∞) of positive Lebesgue measure.
That is, if A ⊂ [0,∞) is a compact set of positive Lebesgue measure, then M(Λ) is
dense in C[A] if and only if

∑

∞

i=1 1/λi = ∞.

If A contains an interval then this follows from the already mentioned results of
Clarkson, Erdős, and Schwartz. However, their results and methods cannot handle
the case when, for example, A ⊂ [0, 1] is a Cantor type set of positive measure.

In the case that
∑

∞

i=1 1/λi < ∞, analyticity properties of the functions belonging
to the uniform closure of M(Λ) on A are also established.

Speculations about the above extension of Müntz’s Theorem are probably as old
as Müntz’s Theorem itself.

Somorjai [23] and Bak and Newman [2, 19] proved that

R(Λ) := {p/q : p, q ∈ M(Λ)}

is always dense in C[0, 1]. This surprising result says that while the set M(Λ)
of Müntz polynomials may be far from dense, the set R(Λ) of Müntz rationals is
always dense in C[0, 1] no matter what the underlying sequence Λ. In light of this
result, Newman, in 1978 [19, p. 50] raises “the very sane, if very prosaic question”.
Are the functions

k
∏

j=1

(

nj
∑

i=0

ai,jx
i2

)

, ai,j ∈ R, nj ∈ N

dense in C[0, 1] for some fixed k ≥ 2 ? In other words does the “extra multipli-
cation” have the same power that the “extra division” has in the Bak-Newman-
Somorjai result? Newman speculated that it did not.

Denote the set of the above products by Hk. Since every natural number is the
sum of four squares, H4 contains all the monomials xn, n = 0, 1, 2, . . . . However,
Hk is not a linear space, so Müntz’s Theorem itself cannot be applied. Section 4 of
this paper deals with products of Müntz spaces and answers the above question of
Newman in the negative. For

(1.2) Λj := {λi,j}
∞

i=0, 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . .

we define the sets

M(Λ1,Λ2, . . . ,Λk) :=







p =

k
∏

j=1

pj : pj ∈ M(Λj)







.

In Section 4 a bounded Remez type inequality is established for M(Λ1,Λ2, . . . ,Λk)
whenever

(1.3)

∞
∑

i=1

1

λi,j

< ∞, j = 1, 2, . . . , k .

This obviously implies that if (1.2) and (1.3) hold and A ⊂ [0,∞) is a compact
set of positive Lebesgue measure then M(Λ1,Λ2, . . . ,Λk) is not dense in C[A]. In
particular, H4 is not dense in C[0, 1] which answers Newman’s problem negatively.
In addition, under the assumptions (1.2) and (1.3), our methods give an “almost
characterization” of the uniform closure of M(Λ1,Λ2, . . . ,Λk) on A in terms of
analyticity properties.
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2. Bounded Remez Type Inequality for M(Λ)

Let Pn denote the set of all algebraic polynomials of degree at most n with real
coefficients. For a fixed s ∈ (0, 1) let

Pn(s) := {p ∈ Pn : m({x ∈ [0, 1] : |p(x)| ≤ 1}) ≥ s}

where m(·) denotes linear Lebesgue measure. The classical Remez inequality con-
cerns the problem of bounding the uniform norm of a polynomial p ∈ Pn on [0, 1]
given that its modulus is bounded by 1 on a subset of [0, 1] of Lebesgue mea-
sure at least s. That is, how large can ‖p‖[0,1] (the uniform norm of p on [0, 1])
be if p ∈ Pn(s) ? The answer is given in terms of the Chebyshev polynomials.
The extremal polynomials for the above problem are the Chebyshev polynomials
±Tn(x) := ± cos(n arccosh(x)), where h is a linear function which scales [0, s] or
[1 − s, 1] onto [−1, 1]. For various proofs, extensions, and applications see [13, 14,
15, 20, 21].

We announce the following bounded Remez type inequality for M(Λ) whose
proof, which is quite difficult, will appear elsewhere.

Theorem 2.1. Suppose
∑

∞

i=1 1/λi < ∞. Let s > 0. Then there exists a constant
c depending only on Λ := {λi}

∞

i=0 and s (and not on ̺, A, or the “length” of p) so
that

‖p‖[0,̺] ≤ c‖p‖A

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }, and for every set A ⊂ [̺, 1] of Lebesgue
measure at least s.

In the above theorem, and throughout the paper, ‖p‖A := supx∈A |p(x)|.

One might note that the existence of such a bounded Remez type inequality
for a Müntz space M(Λ) is equivalent to the non-denseness of M(Λ) in C[0, 1].
We believe that this result should be a basic tool for dealing with problems about
Müntz spaces. In this paper we demonstrate the power of Theorem 2.1 by settling
two long standing conjectures as fairly straightforward corrolaries.

3. Müntz’s Theorem on Compact Sets of Positive Measure

Theorem 3.1. Suppose
∑

∞

i=1 1/λi < ∞ and A ⊂ [0,∞) is a set of positive
Lebesgue measure. Then M(Λ) is not dense in C[A]. Moreover, if the gap con-
dition

(3.1) inf{λi+1 − λi : i ∈ N} > 0

holds, then every function f ∈ C[A] from the uniform closure of M(Λ) on A is of
the form

f(x) =

∞
∑

i=0

aix
λi , x ∈ A ∩ [0, rA)
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where rA := sup{x ∈ [0,∞) : m(A ∩ (x,∞)) > 0} is the essential supremum of
A. If the gap condition (3.1) does not hold, then every function f ∈ C[A] from
the uniform closure of M(Λ) on A can still be extended analytically throughout the
region {z ∈ C \ (−∞, 0] : |z| < rA}.

Proof. Suppose f ∈ C[A] and suppose there is a sequence {pi}
∞

i=1 ⊂ M(Λ) which
converges to f uniformly on A. Then the sequence {pi}

∞

i=1 is uniformly Cauchy on
A. Therefore, Theorem 2.1 and the definition of rA yield that {pi}

∞

i=1 is uniformly
Cauchy on every closed subinterval of [0, rA). If the gap condition (3.1) holds then
the characterization of the uniform closure of M(Λ) on A follows from the results
of Clarkson and Erdős [12]. If the gap condition (3.1) does not hold, then results
of Schwartz [22] yield the theorem. �

Theorem 3.2. Suppose A ⊂ [0,∞) is a compact set of positive Lebesgue measure.
Then M(Λ) is dense in C[A] if and only if

∑

∞

i=1 1/λi = ∞.

Proof. Suppose
∑

∞

i=1 1/λi = ∞. Let f ∈ C[A]. By Tietze’s Extension Theorem

there exists an f̃ ∈ C[0, 1] so that f̃(x) = f(x) for every x ∈ A. By Müntz’s

Theorem there is a sequence {pi}
∞

i=1 ⊂ M(Λ) which converges to f̃ uniformly on
[0, 1], hence on A. This finishes the trivial part of the theorem.

Suppose now that
∑

∞

i=1 1/λi < ∞. Then Theorem 3.1 yields that M(Λ) is not
dense in C[A]. �

4. Products of Müntz Spaces

We prove the following Remez type inequality for M(Λ1,Λ2, . . . ,Λk).

Theorem 4.1. Suppose (1.2) and (1.3) hold. Let s > 0. Then there exists a
constant c depending only on Λ1,Λ2, . . . ,Λk, s, and k (and not on ̺ or A) so that

‖p‖[0,̺] ≤ c‖p‖A

for every p ∈ M(Λ2,Λ2, . . . ,Λk) and for every set A ⊂ [̺, 1] of Lebesgue measure
at least s.

Proof. Theorem 2.1 implies that there exist constants αj > 0 depending only on
Λ1,Λ2, . . . ,Λk, s, and k so that

m({x ∈ [y, 1] : |p(x)| > α−1
j |p(y)|}) ≥ 1− y −

s

2k

for every p ∈ M(Λj) and y ∈ [0, 1 − s]. Now let p ∈ M(Λ1,Λ2, . . . ,Λk), that is,

p =
∏k

j=1 pj with pj ∈ M(Λj). Then, for every y ∈ [0, 1− s],

m({x ∈ [y, 1] : |p(x)| > (α1α2 · · ·αk)
−1|p(y)|})

≥m
(

∩k
j=1

{

x ∈ [y, 1] : |pj(x)| > α−1
j |pj(y)|

})

≥1− y − k
s

2k
= 1− y −

s

2
.
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Hence y ∈ [0, inf A] and m(A) ≥ s imply

m({x ∈ A : |p(x)| > (α1α2 · · ·αk)
−1|p(y)|}) ≥

s

2
> 0

and the theorem follows with c = α1α2 · · ·αk. �

Theorem 4.1 immediately solves Newman’s problem [19].

Corollary 4.2. Suppose (1.2) and (1.3) hold and A ⊂ [0, 1] is a set of positive
Lebesgue measure. Then M(Λ1,Λ2, . . . ,Λk) is not dense in C[A].
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1. J. M. Anderson, Müntz-Szász type approximation and the angular growth of lacunary
integral functions, Trans. Amer. Math. Soc. 169 (1972), 237–248.

2. J. Bak and D. J. Newman, Rational combinations of xλk , λk ≥ 0 are always dense in
C[0, 1], J. Approx. Theory 23 (1978), 155–157.

3. S. N. Bernstein, Collected Works: Vol 1. Constructive Theory of Functions (1905-
1930), English Translation, Atomic Energy Commission, Springfield, Va, 1958.

4. R. P. Boas, Entire Functions, Academic Press, New York, 1954.

5. P. B. Borwein, Zeros of Chebyshev polynomials in Markov Systems, J. Approx. Theory
63 (1990), 56–64.
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