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Abstract. This paper considers the trigonometric rational system

{

1,
1± sin t

cos t− a1
,
1± sin t

cos t− a2
. . .

}

on R(mod 2π) and the algebraic rational system

{

1,
1

x− a1
,

1

x− a2
, . . .

}

on the interval [−1, 1] associated with a sequence of distinct real poles (ak)
∞

k=1 ⊂ R \ [−1, 1].

Chebyshev polynomials for the rational trigonometric system are explicitly found. Chebyshev
polynomials of the first and second kinds for the algebraic rational system are also studied,

as well as orthogonal polynomials with respect to the weight function (1 − x2)−1/2. Notice
that in these situations, the “polynomials” are in fact rational functions. Several explicit

expressions for these polynomials are obtained. For the span of these rational systems, an

exact Bernstein–Szegő type inequality is proved, whose limiting case gives back the classical
Bernstein-Szegő inequality for trigonometric and algebraic polynomials. It gives, for example,

the sharp Bernstein–type inequality

|p′(x)| ≤ 1√
1− x2

n
∑

k=1

√

a2k − 1

|ak − x| max
y∈[−1,1]

∣

∣p(y)
∣

∣, x ∈ [−1, 1],

where p is any real rational function of type (n, n) with poles ak ∈ R \ [−1, 1]. An asymptoti-
cally sharp Markov–type inequality is also established, which is at most a factor of n

n−1
away

from the best possible result. With proper interpretation of
√

a2k − 1, most of the results are

established for (ak)
∞

k=1 ⊂ C \ [−1, 1] in a more general setting.
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§0. Introduction

Let K be either the interval [−1, 1] or the unit circle (which is identified as R (mod 2π)

via the mapping z = eit). A Chebyshev system {uk}Nk=0 on K is a set of N +1 continuous

functions on K, such that every nontrivial linear combination of them has at most N

distinct zeros in K. A Chebyshev polynomial

T
N
= a0u0 + a1u1 + · · ·+ a

N
u

N
(0.1)

for the system is defined by its equioscillation properties (cf. [Ach, Che, DeLo, KaSt, Lor,

Riv]). More specifically, when K is the unit circle, N must be even (N = 2n, cf. [Lor, p.

26]), T
N

has L∞(K) norm 1, and it equioscillates N times on K. That is, there are points

0 ≤ x0 < x1 < · · · < x
N−1

< 2π (0.2)

so that

T
N
(xj) = ±(−1)j max

x∈K
|T

N
(x)| = ±(−1)j , j = 0, 1, 2, . . . , N − 1. (0.3)

When K is the interval [−1, 1], T
N

again has L∞(K) norm 1, and it equioscillates N + 1

times, that is, there are points

1 ≥ x0 > x1 > · · · > x
N
≥ −1 (0.4)

so that

T
N
(xj) = (−1)j max

x∈K
|T

N
(x)| = (−1)j, j = 0, 1, 2, . . . , N. (0.5)

In this case the Chebyshev polynomial is also unique and a−1
N

T
N

can be characterized as

the only solution to the extremal problem

min
cj∈R

0≤j≤N

{
‖p‖L∞[−1,1] : p = c0u0 + c1u1 + · · ·+ c

N−1
u

N−1
+ c

N
u

N
, c

N
= 1
}

(cf. [Lor, KaSt]). So the best uniform approximation to u
N

by linear combinations of u0,

u1, . . . , uN−1
is u

N
− a−1

N
T

N
.

Typical examples of the Chebyshev systems are the trigonometric system

{1, cos t, sin t, . . . , cosnt, sinnt}, t ∈ [0, 2π) (0.6)

on the unit circle, and the algebraic polynomial system

{1, x, x2, x3, . . . , xn}, x ∈ [−1, 1] (0.7)
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on the interval [−1, 1].

For the trigonometric system (0.6), the Chebyshev polynomials are

cosnt =
(
eint + e−int

)
/2, sinnt =

(
eint − e−int

)
/(2i), (0.8)

and their linear combinations or shifts

V (t) = cos(nt− α) = cosα cosnt+ sinα sinnt. (0.9)

Note that the Chebyshev polynomials for the system (0.6) are not unique. In addition to

the equioscillation property, they satisfy various identities

(cosnt)
′
= −n sinnt, (sinnt)

′
= n cosnt, (0.10)

and

cos2 nt+ sin2 nt = 1, V ′(t)2 + n2V (t)2 = n2 max
τ∈R

|V (τ)|2, (0.11)

where V is a linear combination of cosnt and sinnt. The Bernstein–Szegő inequality asserts

that

p′(t)2 + n2p(t)2 ≤ n2 max
τ∈R

|p(τ)|2 (0.12)

for all real trigonometric polynomials p of degree at most n, that is, for all p in the real

span of (0.6), and the equality holds if and only if p is a linear combination of cosnt and

sinnt.

The Chebyshev polynomial Tn for the system (0.7) on [−1, 1] is obtained from a Cheby-

shev polynomial (cosnt) for the trigonometric system (0.6) by the transformation

x = cos t, x ∈ [−1, 1], t ∈ [0, π], (0.13)

and therefore we get

Tn(x) = cos(n arccosx), x ∈ [−1, 1]. (0.14)

This is the unique Chebyshev polynomial for the algebraic polynomial system (0.7). Indeed,

it is easy to verify that Tn equioscillates n+ 1 times on [−1, 1], since

Tn(xj) = (−1)j max
−1≤x≤1

|Tn(x)| = (−1)j , xj = cos(jπ/n), j = 0, 1, 2, . . .n.

The Chebyshev polynomial of the second kind is defined by

Un(x) = sin((n+ 1)t)/ sin t, x = cos t, x ∈ [−1, 1], t ∈ [0, π] (0.15)
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and (1−x2)1/2Un(x) satisfies the equioscillation property. The Bernstein–Szegő inequality

(0.12) can be converted to the algebraic system (0.7) by the transformation (0.13) and so

we have

(1− x2)p′(x)2 + n2p(x)2 ≤ n2 max
y∈[−1,1]

|p(y)|2 (0.16)

for all real algebraic polynomials of degree at most n, where the equality holds if and only

if p is a constant multiple of Tn in (0.14). This inequality combined with an interpolation

formula can be used to obtain the Markov inequality (cf. [Lor, Riv])

max
x∈[−1,1]

|p′(x)| ≤ n2 max
x∈[−1,1]

|p(x)| (0.17)

for all real algebraic polynomials of degree at most n. Since T ′
n(1) = n2, (0.17) is sharp.

The Chebyshev polynomials Tn also form an orthogonal system on [−1, 1] with respect to

the weight function

(1− x2)−1/2. That is,

∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

= cnδm,n, n,m = 0, 1, 2, . . . , (0.18)

where c0 = π, and cn = π/2 for n = 1, 2, 3, . . . .

It seems that (0.8) and (0.14) are essentially the only families of Chebyshev polynomials

with known explicit expressions. However, explicit formulae for the Chebyshev polynomials

for the trigonometric rational system

{
1,

1± sin t

cos t− a1
,
1± sin t

cos t− a2
, . . . ,

1± sin t

cos t− an

}
, t ∈ [0, 2π) (0.19)

and therefore also for the rational system

{
1,

1

x− a1
,

1

x− a2
,

1

x− a3
, . . . ,

1

x− an

}
, x ∈ [−1, 1] (0.20)

with distinct real poles outside [−1, 1] are implicitly contained in [Ach, p. 250]. By

constructing a finite Blaschke product (which corresponds to eint in (0.8)), we can derive

analogue Chebyshev polynomials of the first and second kinds for these systems. We

encounter a problem of language that our Chebyshev “polynomials” here are actually

rational functions. A pleasant surprise is that almost all properties parallel to (0.8)–(0.18)

hold in this case. The classical results are the limiting cases of the results on letting all

the poles go to ±∞.

In this paper, we give several expressions of the Chebyshev polynomials associated with

the rational systems with fixed poles {ak}∞k=1 ⊂ R\ [−1, 1] and the orthogonal polynomials
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with respect to the weight function (1 − x2)−1/2. A mixed recursion formula is then

obtained for the Chebyshev polynomials. Most of the results in this paper are formulated

in a more general setting, allowing arbitrary (possibly repeated) poles in C \ [−1, 1].

Highlights of this paper include an exact Bernstein–Szegő type inequality for the rational

systems (0.19) and (0.20) which generalizes the classical inequality from the trigonomet-

ric polynomials to the rational trigonometric functions (and which contains the classical

inequality as a limiting case). An asymptotically sharp Markov–type inequality for the

rational system (0.20) is also established, which is at most a factor of n
n−1

away from best
possible.

Chebyshev polynomials are ubiquitous and have numerous applications, ranging from

analysis, statistics, numerical methods, to number theory (cf. [Ach, Che, DeLo, GoVa,

IsKe, KaSt, Lor, Riv]), and so their rational analogues should also be of interest.

§1. Chebyshev Polynomials of the First and Second Kinds

We are primarily interested in the linear span of (0.20) and its trigonometric counter

part obtained with the substitution x = cos t. Denote by Pn the set of all real algebraic

polynomials of degree at most n, and let Tn be the set of all real trigonometric polynomials

of degree at most n. Let

Pn(a1, a2, . . . , an) =





p(x)
n∏

k=1

|x− ak|
: p ∈ Pn





(1.1)

and

Tn(a1, a2, . . . , an) =






p(t)
n∏

k=1

| cos t− ak|
: p ∈ Tn





, (1.2)

where {ak}nk=1 ⊂ C\[−1, 1] is a fixed set of poles. (This will be an assumption we put on

{ak}nk=1 throughout this paper.) When all poles {ak}nk=1 are distinct and real, (1.1) and

(1.2) are simply the real span of the following two systems

{
1,

1

x− a1
,

1

x− a2
, . . . ,

1

x− an

}
, (1.3)

and {
1,

1± sin t

cos t− a1
,
1± sin t

cos t− a2
, . . . ,

1± sin t

cos t− an

}
, (1.4)

respectively.
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We can construct the Chebyshev polynomials of the first and second kinds for the spaces

Pn(a1, a2, . . . , an) and Tn(a1, a2, . . . , an) as follows. Given {ak}nk=1 ⊂ C\[−1, 1], we define

the numbers {ck}nk=1 by

ak =
1

2
(ck + c−1

k ), |ck| < 1, (1.5)

that is,

ck = ak −
√

a2k − 1, |ck| < 1. (1.6)

Note that (ak +
√

a2k − 1)(ak −
√
a2k − 1) = 1. In what follows,

√
a2k − 1 will always be

defined by (1.5) or (1.6) (this specifies the choice of root). Let D = {z ∈ C : |z| < 1},

Mn(z) =

(
n∏

k=1

(z − ck)(z − c̄k)

)1/2

, (1.7)

where the square root is defined so that M∗
n(z) = znMn(z

−1) is analytic in a neighborhood

of the closed unit disk D̄, and let

fn(z) =
Mn(z)

znMn(z−1)
. (1.8)

Note that f2
n is actually a finite Blaschke product. The Chebyshev polynomials of the first

kind for the systems Pn(a1, a2, . . . , an) and Tn(a1, a2, . . . , an) are defined by

Tn(x) =
1

2

(
fn(z) + fn(z)

−1
)
, x =

1

2
(z + z−1), |z| = 1, (1.9)

and

T̃n(t) = Tn(cos t), t ∈ R, (1.10)

respectively. While the Chebyshev polynomials of the second kind for these two systems

are defined by

Un(x) =
fn(z)− fn(z)

−1

z − z−1
, x =

1

2
(z + z−1), |z| = 1, (1.11)

and

Ũn(t) = Un(cos t) sin t (1.12)

(compare with [Ach, pp. 250–251]). As we will see, these Chebyshev polynomials preserve

almost all the elementary properties of the classical trigonometric and algebraic Chebyshev

polynomials. This is the content of the next three results.
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Theorem 1.1. Let T̃n and Ũn be defined by (1.10) and (1.12) from {ak}nk=1 ⊂ C\ [−1, 1].

Then

(a) T̃n ∈ Tn(a1, a2, . . . , an) and Ũn ∈ Tn(a1, a2, . . . , an).
(b) max

−π≤t≤π
|T̃n(t)| = 1, and max

−π≤t≤π
|Ũn(t)| = 1.

(c) There are 0 = t0 < t1 < · · · < tn = π so that

T̃n(tj) = T̃n(−tj) = (−1)j , j = 0, 1, 2, . . . , n.

(d) There are 0 < s1 < s2 < · · · < sn < π so that

Ũn(sj) = −Ũn(−sj) = (−1)j−1, j = 1, 2, . . . , n.

(e) T̃n(t)
2 + Ũn(t)

2 = 1 holds for every t ∈ R.

Proof. It is easy to see that there are polynomials p1 ∈ Pn, p2 ∈ Pn and p3 ∈ Pn−1 so that

T̃n(t) = Tn(cos t) =
1

2

e−intM2
n(e

it) + eintM2
n(e

−it)

Mn(eit)Mn(e−it)
=

p1(cos t)∏n
k=1 | cos t− ak|

(1.13)

and

Ũn(t) = Un(cos t) sin t =
e−intM2

n(e
it)− eintM2

n(e
−it)

2iMn(eit)Mn(e−it)

=
p2(sin t)

k∏
j=1

| cos t− aj|
=

p3(cos t) sin t
k∏

j=1
| cos t− aj |

,
(1.14)

thus (a) is proved. Since |ck| < 1 and f2
n is a finite Blaschke product (cf. (1.8)), we have

|fn(z)| = 1 whenever |z| = 1. (1.15)

Now (b) follows immediately from (1.8) – (1.12) and (1.15). Note that T̃n(t) is the real

part and Ũn(t) is the imaginary part of fn(e
it), that is,

fn(e
it) = T̃n(t) + i Ũn(t), t ∈ R, (1.16)

which, together with (1.15) implies (e). To prove (c) and (d), we first note that T̃n(t) = ±1

if and only if fn(e
it) = ±1 and Ũn(t) = ±1 if and only if fn(e

it) = ±i. Since |ck| < 1, for

k = 1, 2, . . . , n, f2
n has exactly 2n zeros in the open unit disk D. Since f2

n is analytic in a

region containing the closed unit disk D̄, (c) and (d) follow by the Argument Principle. �

With the transformation x = cos t = (z + z−1)/2, and z = eit, Lemma 1.1 can be

reformulated as follows.
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Theorem 1.2. Let Tn and Un be defined by (1.9) and (1.11) from {ak}nk=1 ⊂ C \ [−1, 1].

Then

(a) Tn ∈ Pn(a1, a2, . . . , an) and Un ∈ Pn(a1, a2, . . . , an).

(b) max−1≤x≤1 |Tn(x)| = max−1≤x≤1 |
√
1− x2 Un(x)| = 1.

(c) There are 1 = x0 > x1 > · · · > xn = −1 so that

Tn(xj) = (−1)j , j = 0, 1, 2, . . . , n.

(d) There are 1 > y1 > y2 > · · · > yn > −1 so that

√
1− y2j Un(yj) = (−1)j, j = 1, 2, . . . , n.

(e) (Tn(x))
2 + (

√
1− x2 Un(x))

2 = 1, x ∈ [−1, 1].

Part (d) of Theorems 1.1 and 1.2 is the equioscillation property of the Chebyshev polyno-

mials, which extends to linear combinations of Chebyshev polynomials. In the polynomial

case this is the fact that cosα cosnt + sinα sinnt = cos(nt − α) equioscillates 2n times

on the unit circle [0, 2π]. Our next theorem characterizes the Chebyshev polynomials of

Tn(a1, a2, . . . , an) and record a monotonicity property of them.

Theorem 1.3. Let {ak}nk=1 ⊂ C \ [−1, 1]. Then (i) and (ii) below are equivalent.

(i) There is an α ∈ R so that

V = cosα T̃n + sinα Ũn,

where T̃n and Ũn are defined by (1.10) and (1.12).

(ii) V ∈ Tn(a1, a2, . . . , an) has supremum norm 1 on the unit circle and it equioscillates

2n times on the unit circle. That is, there are 0 ≤ t0 < t1 < t2 · · · < t2n−1 < 2π so

that

V (tj) = ±(−1)j , j = 0, 1, 2, . . . , 2n− 1.

Furthermore, if V is of the form in (i) (or characterized by (ii)), then

(iii) V ′ = cosα T̃ ′
n + sinα Ũ ′

n is strictly positive or strictly negative between two con-

secutive points of equioscillation, that is, between tj−1 and tj, for j = 1, 2, . . . ,

2n− 1, and between t2n−1 and 2π + t0.

Proof. (i) =⇒ (ii). By Theorem 1.1 (e) and Cauchy’s inequality, we have

| cosα T̃n + sinα Ũn|2 ≤ (cos2 α+ sin2 α)(T̃ 2
n + Ũ2

n) = 1 (1.17)
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on the real line. From Theorem 1.1 (c) and (d), we have that T̃n/Ũn oscillates between

+∞ and −∞ exactly 2n times on the unit circle, and hence it takes the value cotα exactly

2n times. At each such point, (1.17) becomes equality, namely, cosα T̃n + sinα Ũn = ±1,

and the signs change for every two consecutive such points.

(ii) =⇒ (i). Let V be as specified in part (ii) of the theorem. Let t∗ be a point

where V achieves its maximum on R, so V (t∗) = 1. We want to show that V is equal to

p = T̃n(t∗)T̃n + Ũn(t∗)Ũn. In fact, V (t∗) = p(t∗) = 1 and V ′(t∗) = p′(t∗) = 0, that means

that V − p has a double zero at t∗. There are at least 2n − 1 more zeros (we count every

zero without sign change twice) of V −p, with one between each pair of consecutive points

of equioscillation of p if the first zero of p to the right of t∗ is greater than the first zero of

V to the right of t∗. (If the first zero of V to the right of t∗ is greater than the first zero of

p to the right of t∗, then there will be one zero of p− V between each pair of consecutive

points of equioscillation of V .) This implies that V − p has at least 2n+1 zeros (counting

multiplicities), proving that V − p ≡ 0.

(iii) Let V ∈ Tn(a1, a2, . . . , an) be so that ‖V ‖L∞(R) = 1 and V equioscillates 2n times
between ±1. If there is a t∗ ∈ [0, 2π) so that |V (t∗)| < 1 and V ′(t∗) = 0. Then there is a

trigonometric polynomial q of degree n, so that

V (t)− V (t∗) =
q(t)∏n

k=1 | cos t− ak|
.

Since q has the same sign as V at those points of equioscillation, there are at least 2n

distinct zeros of q in [0, 2π). One of these zeros is t∗, where q′(t∗) = 0 since q(t∗) = 0

and V ′(t∗) = 0. Hence, by counting multiplicities, q has at least 2n+ 1 zeros in [0, 2π), so

q ≡ 0, and this is a contradiction. Therefore V ′(t) 6= 0 if |V (t)| < 1, which means that V

is strictly monotone between two consecutive points of equioscillation. �

§2. Derivatives of the Chebyshev Polynomials

In this section we calculate the derivative of the Chebyshev polynomials of the first and

second kinds. We also study the identities they satisfy. The similarity to the identities

satisfied by cosnt and sinnt is striking. These identities will help us to examine the size

of T̃ ′
n and Ũ ′

n on R and the magnitude of T ′
n and U ′

n on [−1, 1]. The results of this section

will then be applied in Section 3, where we prove the Bernstein–Szegő type inequalities

and the Markov–type inequalities.

As in (1.5) or (1.6), {ck}nk=1 is defined from {ak}nk=1 ⊂ C \ [−1, 1] by

ck = ak −
√

a2k − 1, |ck| < 1. (2.1)
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We introduce the functions

Bn(x) =

n∑

k=1

ℜ
√

a2k − 1

ak − x
and B̃n(t) = Bn(cos t) =

n∑

k=1

ℜ
√
a2k − 1

ak − cos t
, (2.2)

where the choice of
√
a2k − 1 is determined by the restriction |ck| < 1 in (2.1). Because

of their role in the Bernstein–type inequalities, we call Bn and B̃n the Bernstein factors.

Note that

Bn(x) =

n∑

k=1

ℜ
√

a2k − 1

ak − x
=

n∑

k=1

ℜ c−1
k − ck

(c−1
k + ck)/2− x

≥
n∑

k=1

(1− |ck|2)(1− |ck|)2
|1 + c2k − 2ckx|2

> 0

for every x ∈ [−1, 1].

The following theorem generalizes the trigonometric identities (cosnt)′ = −n sinnt,

(sinnt)′ = n cosnt, and [(cosnt)′]2 + [(sinnt)′]2 = n2, which are limiting cases (note that

if n ∈ N and t ∈ R are fixed, then lim B̃n(t) = n as all ak → ±∞).

Theorem 2.1. Let T̃n and Ũn be determined from {ak}nk=1 by (1.10) and (1.12). Then

T̃ ′
n(t) = −B̃n(t)Ũn(t), Ũ ′

n(t) = B̃n(t)T̃n(t), t ∈ R (2.3)

and

T̃ ′
n(t)

2 + Ũ ′
n(t)

2 = B̃n(t)
2, t ∈ R, (2.4)

where the Bernstein factor B̃n is defined by (2.2).

Proof. If we differentiate the Chebyshev polynomials of the first kind (cf. (1.7)–(1.10)),

we get

T̃ ′
n(t) =

1

2

(
f ′
n(e

it)− f ′
n(e

it)

f2
n(e

it)

)
ieit

= − eitf ′
n(e

it)

fn(eit)

fn(e
it)− f−1

n (eit)

2i
= −B̃n(t)Ũn(t),

since

eitf ′
n(e

it)

fn(eit)
= eit

1

2

n∑

k=1

(
1

eit − ck
+

1

eit − c̄k
− 1

eit − c−1
k

− 1

eit − c̄−1
k

)

=
1

2

n∑

k=1

eit(ck − c−1
k )

(eit − ck)(eit − c−1
k )

+
1

2

n∑

k=1

eit(c̄k − c̄−1
k )

(eit − c̄k)(eit − c̄−1
k )

=
1

2

n∑

k=1

√
a2k − 1

ak − cos t
+

1

2

n∑

k=1

√
ā2k − 1

āk − cos t
= B̃n(t)
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(cf. the definition in (2.2)). Note that in the last step, we have used the relation ck−c−1
k =

2
√
a2k − 1 and ck + c−1

k = 2ak. This proves the first part of Theorem 2.1. Similarly, for the

derivative of the Chebyshev polynomials of the second kind, we have

Ũ ′
n(t) =

1

2i

(
f ′
n(e

it) +
f ′
n(t)

f2
n(e

it)

)
ieit =

eitf ′
n(e

it)

fn(eit)
T̃n(t) = B̃n(t)T̃n(t),

and (2.4) follows from (2.3) and the identity T̃ 2
n + Ũ2

n = 1 (cf. Theorem 1.1(e)). �

The identities (2.3) and (2.4) can be coupled to get two other identities

(T̃ ′
n)

2 + B̃2
nT̃

2
n = B̃2

n and (Ũ ′
n)

2 + B̃2
nŨ

2
n = B̃2

n. (2.5)

In fact, a similar formula holds for linear combinations of T̃n and Ũn, which will be used

in the proof of the Bernstein–Szegő type inequality of Theorem 3.1.

Theorem 2.2. If V = cosα T̃n + sinα Ũn with some α ∈ R, then

(V ′)2 + B̃2
nV

2 = B̃2
n, (2.6)

holds on the real line, where α ∈ R and the Bernstein factor B̃n is defined by (2.2).

Proof. Since on the real line we have

(V ′)2 + B̃2
nV

2 = (cosα T̃ ′
n + sinα Ũn)

2 + B̃2
n(cosα T̃n + sinα Ũn)

2

= cos2 α
(
(T̃ ′

n)
2 + B̃2

nT̃
2
n

)
+ sin2 α

(
(Ũ ′

n)
2 + B̃2

nŨ
2
n

)

+ 2 cosα sinα(T̃ ′
nŨ

′
n + B̃2

nT̃nŨn),

the identities (2.3) and (2.5) yield (2.6). �

We now calculate T ′
n(1). This will be used in the proof of the Markov–type inequality

of Theorem 3.5.

Theorem 2.3. Let Tn be defined by (1.9). Then

T ′
n(1) =

(
n∑

k=1

ℜ1 + ck
1− ck

)2

and T ′
n(−1) = (−1)n

(
n∑

k=1

ℜ1− ck
1 + ck

)2

,

where the numbers ck, k = 1, 2, . . . , n, are defined by (2.1).

Proof. We prove only the first equality, the proof of the second one is similar. Since

Tn(cos t) = T̃n(t) for every t in R (cf. (1.10)), by taking the derivative with respect to t,

we have −T ′
n(cos t) sin t = T̃ ′

n(t) = −B̃n(t)Ũn(t) (cf. (2.3)). Hence

T ′
n(1) = lim

t→0
B̃n(t)

Ũn(t)

t

t

sin t
= B̃n(0)Ũ

′
n(0),

11



where Ũn(0) = 0 (cf. Theorem 1.1 (d)) is used. Note also that Ũ ′
n = B̃nT̃n (cf. (2.3)) and

T̃n(0) = 1, so we have

T ′
n(1) = B̃2

n(0) =

(
n∑

k=1

ℜ
√

a2k − 1

ak − 1

)2

=

(
n∑

k=1

ℜ1 + ck
1− ck

)2

,

where we have used the relations 2
√
a2k − 1 = c−1

k − ck and 2ak = c−1
k + ck (cf. (2.1) or

(1.5)–(1.6)). The derivative T ′
n(−1) can be calculated in exactly the same way. �

§3. Bernstein and Markov Type Inequalities

Bernstein and Markov type inequalities play a central role in approximation theory,

and have been much studied (cf. [Ach, BoEr, Che, DeLo, DuSc, Lor, PePo, Riv]). In

this section, we first prove a sharp Bernstein–Szegő type inequality with the best possible

constant for the spaces Tn(a1, a2, . . . , an) defined by (1.2), and Pn(a1, a2, . . . , an) defined

by (1.1). In the case when all the poles are distinct reals outside [−1, 1], (1.1) becomes

Pn(a1, a2, . . . , an) = span

{
1,

1

x− a1
, . . . ,

1

x− an

}
. (3.1)

The limiting case of the Bernstein–Szegő type inequality (letting the poles approach ±∞)

is the classical Bernstein–Szegő inequality. We also establish an asymptotically sharp

Markov–type inequality for the same space. (It is at most a factor n
n−1

away from the best

possible constant.)

Theorem 3.1. Let {ak}nk=1 ⊂ C \ [−1, 1] and let the Bernstein factor B̃n be defined by

(2.2). Then

p′(t)2 + B̃n(t)
2 p(t)2 ≤ B̃n(t)

2 max
τ∈R

|p(τ)|2, t ∈ R. (3.2)

for every p in Tn(a1, a2, . . . , an), and equality holds in (3.2) if and only if t is a maximum

point of |p| (i.e. p(t) = ±‖p‖L∞(R)), or p is a linear combination of T̃n and Ũn.

If we drop the second term in the left–hand side of (3.2), we have the Bernstein–type

inequality.

Corollary 3.2. Let {ak}nk=1 be as in Theorem 3.1. Then

|p′(t)| ≤ B̃n(t)max
τ∈R

|p(τ)|, t ∈ R (3.3)

for every p ∈ Tn(a1, a2, . . . , an), where the Bernstein factor is defined by (2.2). Equality

holds in (3.3) if and only if p is a linear combination of T̃n and Ũn and p(t) = 0.
12



Proof of Theorem 3.1. Let p ∈ Tn(a1, a2, . . . , an) be arbitrary with infinite norm not larger

than 1. That is, 0 < ||p||L∞(R) < 1. It is sufficient to show that

p′(t)2 + B̃n(t)
2p(t)2 ≤ B̃n(t)

2 (3.4)

for every fixed t ∈ R. Then a scaling and limiting process imply that (3.2) holds for p with

arbitrary norm. First we claim that for every fixed t ∈ R there is an α ∈ R, so that

V = cosα T̃n + sinα Ũn (3.5)

has the same value as p at the point t, and their derivative signs at t also match, that is,

V (t) = p(t) and p′(t)V ′(t) ≥ 0. (3.6)

Indeed, since t is fixed, we may view V as a function of α. Let

φ(α) = cosα T̃n(t) + sinα Ũn(t).

Then φ(α) = cos(α− θ), where θ is determined by cos θ = T̃n(t) and sin θ = Ũn(t) (recall

that |T̃n|2 + |Ũn|2 ≡ 1 on R by Theorem 1.1 (e)). Since |p(t)| < 1, φ(α) takes the value

of p(t) twice on every translation of the interval [0, 2π). Hence there are α1 and α2 in

R so that φ(α1) = φ(α2) = p(t), and (α1 − θ) + (α2 − θ) = 2π. We thus get two linear

combinations

Vj(·) = cosαj T̃n(·) + sinαjŨn(·), j = 1, 2,

such that Vj(t) = p(t), j = 1, 2. To see that one of V1 or V2 is a suitable choice to satisfy

(3.5) and (3.6), it is sufficient to show that V ′
1(t)V

′
2(t) < 0. This can be verified quite

easily. Now V ′
j (t) = cosαj T̃

′
n(t) + sinαjŨ

′
n(t) and by (2.3) and the choice of θ, we get

V ′
j (t) = B̃n(t)[− cosαjŨn(t) + sinαjT̃n(t)] = B̃n(t) sin(αj − θ).

Consequently, V ′
1(t)V

′
2(t) = B̃n(t)

2 sin(α1−θ) sin(α2−θ).Hence V ′
1(t)V

′
2(t) = −B̃n(t)

2 sin2(α1−
θ) = −B̃n(t)

2(1− p(t)2) < 0 since (α1 − θ)+ (α2 − θ) = 2π and |p(t)| < 1. Therefore there

is a real α, so that (3.5) and (3.6) hold. ¿From now on let V be a function of the form

(3.5) satisfying (3.6) (t ∈ R is fixed). We now prove that

|p′(t)| ≤ |V ′(t)|. (3.7)

If the above does not hold, then by Theorem 1.3 (iii) we have, without loss of generality,

that p′(t) > V ′(t) > 0, hence there is a δ > 0 such that p − V > 0 on (t, t + δ) and

p − V < 0 on (t − δ, t) since p(t) − V (t) = 0. Let tj and tj+1 be the two consecutive
13



equioscillation points of V so that tj < t < tj+1 (cf. Theorem 1.3(iii)). Then V (tj) = −1

and V (tj+1) = 1, and so p− V > 0 at tj and p− V < 0 at tj+1. Thus, there are 3 zeros of

p− V in (tj , tj+1). It is easy to see that there are 2n− 1 zeros of p− V outside (tj , tj+1)

in a period of length 2π, since p−V has the same sign as V when V = ±1. This gives rise

to 3 + (2n− 1) = 2n+ 2 zeros of p− V in a period of length 2π, which is a contradiction,

since every non-zero element in Tn(a1, a2, . . . , an) has at most 2n zeros in an interval of

length 2π. This finishes the proof of (3.7).

¿From (3.6), (3.7) and Theorem 2.2, we have

p′(t)2 + B̃n(t)
2p(t)2 ≤ V ′(t)2 + B̃n(t)

2V (t)2 = B̃n(t)
2.

Thus (3.4) is proved. As pointed out earlier, this finishes the proof of (3.2).

¿From Theorem 2.3 we know that (3.2) holds with equality sign when p is a linear

combination of T̃n and Ũn. To prove the converse, let ‖p‖L∞(R) = 1, and assume that there
is a t ∈ R, such that |p(t)| < 1. By the above argument, there is an α ∈ R, so that p and

V = cosα T̃n + sinα Ũn have the same value at t, and p′V ′ is positive at t. Since both p

and V satisfy (3.2) with equality, and |p(t)| = |V (t)| < 1, we have |p′(t)| = |V ′(t)| > 0.

Therefore we may assume that p′(t) = V ′(t)(> 0) Consequently, p−V has a zero at t with

multiplicity at least 2. Since V equioscillates 2n times on K = R(mod 2π) with L∞(R)

norm 1, and ‖p‖L∞(R) = 1, it is easy to see that p−V has at least 2n−1 zeros (by counting
multiplicities) in (R \ {t}) (mod 2π). Hence p − V has at least 2n + 1 zeros (by counting

multiplicities) on [0, 2π), which yields p− V ≡ 0. �

Using the fact that p ∈ Pn(a1, a2, . . . , an) implies p(cos(·)) ∈ Tn(a1, a2, . . . , an), from
Corollary 3.2 we immediately obtain

Corollary 3.3. Let {ak}nk=1 ⊂ C \ [−1, 1]. Then for every x ∈ [−1, 1],

(1− x2)p′(x)2 +Bn(x)
2p(x)2 ≤ Bn(x)

2 max
y∈[−1,1]

|p(y)|2, x ∈ [−1, 1] (3.8)

for every p ∈ Pn (a1, a2, . . . , an) , where Bn is defined by (2.2). The above holds with

equality if and only if p(x) = ±‖p‖L∞[−1,1] or p is a constant multiple of Tn.

Again, if we drop the second term in the left–hand side of the above, we have another

form of a Bernstein–type inequality.

Corollary 3.4. Let {ak}nk=1 ⊂ C \ [−1, 1]. Then,

|p′(x)| ≤ 1√
1− x2

n∑

k=1

ℜ
√
a2k − 1

ak − x
max

y∈[−1,1]
|p(y)|, x ∈ (−1, 1) (3.9)

14



for every p ∈ Pn(a1, a2, . . . , an), where
√

a2k − 1 is determined by (2.1). Equality holds in

(3.9) if and only if p is a constant multiple of Tn and p(x) = 0.

Remark. An immediate consequence of (3.9) is that if {ak}∞k=1 ⊂ R \ [−1, 1] and

∞∑

k=1

√
a2k − 1

ak − x
< ∞ for some x ∈ (−1, 1), i.e.

∞∑

k=1

√
1− |ak|−2 < ∞,

then the real span of {
1,

1

x− a1
,

1

x− a2
,

1

x− a3
, . . .

}

is not dense in C[−1, 1] (cf. [Ach, p. 250]).

The Bernstein–type inequality (3.9) does not give good estimates of the derivatives

when x is close to ±1. The following Markov–type inequality remedies this, at least when

the poles are real.

Theorem 3.5. Let {ak}nk=1 ⊂ R \ [−1, 1]. Then

max
−1≤x≤1

|p′(x)| ≤ n

n− 1

(
n∑

k=1

1 + |ck|
1− |ck|

)2

max
−1≤x≤1

|p(x)|

holds for every p ∈ Pn(a1, a2, . . . , an), where the numbers {ck}nk=1 are defined from {ak}nk=1

by (2.1).

The following lemma will be used in the proof of Theorem 3.5.

Lemma 3.6. Let {ak}nk=1 ⊂ C\[−1, 1], let

ak(y) =

{
2ak

1+y + 1−y
1+y if 0 ≤ y ≤ 1

2ak

1−y + 1+y
1−y if − 1 ≤ y ≤ 0, k = 1, 2, . . . , n,

(3.10)

and let ck(y), k = 1, 2, . . . , n, be defined by

ak(y) =
1

2

(
ck(y) + ck(y)

−1
)
, |ck(y)| < 1. (3.11)

Then

|p′(y)| ≤ 2

1 + |y|

(
n∑

k=1

1 + ck(y)

1− ck(y)

)2

max
−1≤x≤1

|p(x)|

for every p ∈ Pn(a1, a2, . . . , an).

Proof. It can be shown by a simple variational method (cf. [KaSt]) that

sup
p

|p′(1)|
max−1≤x≤1 |p(x)|

= |T ′
n(1)| (3.12)
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and

sup
p

|p′(−1)|
max−1≤x≤1 |p(x)|

= |T ′
n(−1)|, (3.13)

where the supremums in (3.12) and (3.13) are taken for all p ∈ Pn(a1, a2, . . . , an) and

Tn is the Chebyshev polynomial defined by (1.9). Now the lemma follows from Theorem

2.3 by a linear transformation (we shift from [−1, 1] to [−1, y] if 0 ≤ y ≤ 1 or to [y, 1] if

−1 ≤ y ≤ 0). �

Applying the Bernstein–type inequality (3.9) at 0, we get

|p′(0)| ≤
n∑

k=1

√
a2k − 1

ak
max

−1≤x≤1
|p(x)| (3.14)

for every p ∈ Pn(a1, a2, . . . , an), where the values
√
a2k − 1, k = 1, 2, . . . , n, are defined by

(2.1). Note that if {ak}nk=1 ⊂ R\[−1, 1] is an arbitrary set of real poles, then (3.14) yields

|p′(0)| ≤ n max
−1≤x≤1

|p(x)| (3.15)

for every p ∈ Pn(a1, a2, . . . , an), and from this, by a linear transformation, we obtain

Corollary 3.7. Let {ak}nk=1 ⊂ R\[−1, 1] be an arbitrary set of poles. Then

|p′(y)| ≤ n

1− |y| max
−1≤x≤1

|p(x)| (3.16)

for every p ∈ Pn(a1, a2, . . . , an) and y ∈ (−1, 1).

Proof. This follows from (3.15) by a linear transformation (we shift from [−1, 1] to [2y−1, 1]

if 0 ≤ y < 1, or to [−1, 2y + 1] if −1 < y ≤ 0). �

Now we prove Theorem 3.5.

Proof of Theorem 3.5. Since {ak}nk=1 ⊂ R\[−1, 1], it follows from (3.10), (3.11), and (1.1)

that

|ak(y)| > |ak| and |ck(y)| < |ck| < 1, k = 1, 2, . . . , n (3.17)

hold for every y ∈ [−1, 1]. Therefore Lemma 3.6 yields

|p′(y)| ≤ 2

1 + |y|

(
n∑

k=1

1 + |ck(y)|
1− |ck(y)|

)2

max
−1≤x≤1

|p(x)|

≤ n

n− 1

(
n∑

k=1

1 + |ck|
1− |ck|

)2

max
−1≤x≤1

|p(x)| (3.18)
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for every p ∈ Pn(a1, a2, . . . , an) and for every y with 1− 2n−1 ≤ |y| ≤ 1. If |y| < 1− 2n−1,

then Corollary 3.7 gives

|p′(y)| ≤ n

1− |y| max
−1≤x≤1

|p(x)| (3.19)

≤ n2 max
−1≤x≤1

|p(x)| ≤
(

n∑

k=1

1 + |ck|
1− |ck|

)2

max
−1≤x≤1

|p(x)|

for every p ∈ Pn(a1, a2, . . . , an), which, together with (3.18), yields the theorem. �

§4. Chebyshev and Orthogonal Polynomials

In this section, we study some additional properties of the Chebyshev polynomials with

respect to the rational system (0.20) with distinct real poles outside [−1, 1] and their
orthogonalizations with respect to the measure (1− x2)−1/2 on [−1, 1]. We start with an

explicit partial fraction formula for the Chebyshev polynomials, then we record a contour

integral form of the Chebyshev polynomials, from which a mixed recursion formula follows.

The rest of the section will be devoted to orthogonality. Many aspects of orthogonal

rationals and their applications can be found in the literature, for examples, in [Ach,

BGHN, Djrb, VaVa, Wal]. The novelty of our approach is that we derive the orthogonal

polynomials from the Chebyshev “polynomials” (cf. §1).
If (ak)

∞
k=1 is a sequence of real numbers outside [−1, 1], then the related (ck)

∞
k=1 ⊂

(−1, 1) is defined by

ak =
1

2
(ck + c−1

k ), ck = ak −
√

a2k − 1, ck ∈ (−1, 1), (4.1)

where the choice
√

a2k − 1 is determined by ck ∈ (−1, 1), and the associated Chebyshev

polynomials of the first and second kinds are defined by (cf. (1.9) and (1.11))

Tn(x) =
1

2

(
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

)
(4.2)

and

Un(x) =
1

z − z−1

(
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

)
, (4.3)

respectively, where Mn(z) =
∏n

k=1(z − ck) and x = (z + z−1)/2. First we can easily get

the partial fraction forms of the Chebyshev polynomials.
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Proposition 4.1. Let {ak}nk=1 ⊂ C \ [−1, 1] be a sequence of distinct numbers such that

its nonreal elements are paired by complex conjugation, and Tn and Un be the Chebyshev

polynomials of first and second kinds defined by (1.9) and (1.11), respectively. Then

Tn(x) = A0,n +
A1,n

x− a1
+ · · ·+ An,n

x− an
(4.4)

and

Un(x) =
B1,n

x− a1
+ · · ·+ Bn,n

x− an
, (4.5)

where

A0,n =
(−1)n

2
(c−1

1 . . . c−1
n + c1 . . . cn), (4.6)

Ak,n =

(
c−1
k − ck

2

)2 n∏

j=1
j 6=k

1− ckcj
ck − cj

, k = 1, 2, . . . , n, (4.7)

and

Bk,n =
c−1
k − ck

2

n∏

j=1
j 6=k

1− ckcj
ck − cj

, k = 1, 2, . . . , n. (4.8)

Proof. It follows from Theorem 1.1 (a) and Theorem 1.2 (a) that Tn and Un can be

written as the partial fraction form of (4.4) and (4.5). Now it is quite easy to calculate the

coefficients Ak,n and Bk,n. For example,

A0,n = lim
x→∞

Tn(x) = lim
z→0

1

2

(
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

)

=
(−1)n

2
(c−1

1 . . . c−1
n + c1 . . . cn),

and for k = 1, 2, . . . , n,

Ak,n = lim
x→ak

(x− ak)Tn(x)

= lim
z→ck

1

4
(z − ck)(1− c−1

k z−1)

(
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

)

=

(
c−1
k − ck

2

)2 n∏

j=1
j 6=k

1− ckcj
ck − cj

, k = 1, 2, . . . , n.

The coefficients Bk,n can be calculated in the same fashion. �

We now give a contour integral expression for Tn, which can be used to derive a mixed

recursion formula.
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Lemma 4.2. Let {ak}nk=1 ⊂ C \ [−1, 1]. Let Tn be defined by (1.9). Then we have

Tn(x) =
1

2πi

∫

γ




n∏

j=1

(t− cj)(t− c̄j)

(1− cjt)(1− c̄jt)




1/2

t− x

t2 − 2tx+ 1
dt, x ∈ [−1, 1],

where γ is a circle centered at the origin, with radius 1 < r < min{|c−1
j | : 1 ≤ j ≤ n}, and

the square root is chosen to be an analytic function of t inside gamma.

Proof. Recalling that with the transformation x = (z + z−1)/2, we have

Tn(x) =
1

2

(
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

)

=
1

2πi

∫

γ

1

2

Mn(z)

znMn(z−1)

(
1

t− z
+

1

t− z−1

)
dt

=
1

2πi

∫

γ

Mn(z)

znMn(z−1)

t− x

t2 − 2tx+ 1
dt,

where γ is a circle slightly larger than the unit circle as in the statement of this lemma. �

It is now quite simple to obtain a mixed recursion formula for the Chebyshev polynomials

associated with rational systems. To do this, we need some notation. Let Sn denote the

Chebyshev polynomials with respect to the rational system

{
1,

1

x− a1
, . . . ,

1

x− an−2
,

1

x− an

}
, (4.9)

missing the function 1
x−an−1

, so by Lemma 4.2

Sn(x) =
1

2πi

∫

γ

n∏

j=1
j 6=n−1

t− cj
1− cjt

t− x

t2 − 2tx+ 1
dt. (4.10)

We remark that if n is fixed, then in order to define Tn and Sn correctly, one needs only

to assume that an−1 is real, and that the nonreal poles in {a1, . . . , an−2, an} are paired by

complex conjugation. However, in order to define Tn and Sn correctly for all n = 1, 2, . . . ,

the assumption that (ak)
∞
k=1 ⊂ R \ [−1, 1] is needed. This remark is valid for most results

in this section. Sometimes this assumption is adopted for the purpose of simplicity. We

have
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Lemma 4.3. Let (Tk)
∞
k=0 and (Sn)

∞
n=1 be defined from (ak)

∞
k=1 ⊂ R \ [−1, 1] by (4.2) and

(4.10). Then,

Tn = Tn−2 +
cncn−1 − 1

cn − cn−1
(Tn−1 − Sn), n = 2, 3, . . . , (4.11)

where (ck)
∞
k=1 is defined from {ak}∞k=1 by (4.1).

Proof. By the contour integral formulae in Lemma 4.2 and (4.10),

Tn−2(x) +
cncn−1 − 1

cn − cn−1
(Tn−1 − Sn)

=
1

2πi

∫

γ

n−2∏

j=1

t− cj
1− tcj

[
1 +

cncn−1 − 1

cn − cn−1

(
t− cn−1

1− tcn−1
− t− cn

1− tcn

)]
t− x

t2 − 2tx+ 1
dt

=
1

2πi

∫

γ

n−2∏

j=1

t− cj
1− tcj

[
(t− cn−1)(t− cn)

(1− tcn−1)(1− tcn)

]
t− x

t2 − 2tx+ 1
dt,

which, again by the contour integral expression in Lemma 4.2, is Tn(x). �

The ordinary Chebyshev polynomials cos(n arccosx), n = 0, 1, . . . , are orthogonal with
respect to the weight function (1 − x2)−1/2 on [−1, 1]. For Chebyshev polynomials Tn,

n = 0, 1, . . . , defined by (4.2), they are not orthogonal. However they are almost orthogonal

in the sense of the following two theorems, and they can be modified to orthogonalize the

rational systems

{
1,

1

x− a1
,

1

x− a2
, . . .

}
and

{
1

x− a1
,

1

x− a2
, . . .

}
,

respectively, where (ak)
∞
k=1 ⊂ R \ [−1, 1] is a sequence of distinct numbers.

Lemma 4.4. Let (Tk)
∞
k=1 be defined from (ak)

∞
k=1 ⊂ R \ [−1, 1] by (4.2). Then

∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

=
π

2
(−1)n+m(1 + c21 . . . c

2
m)cm+1 . . . cn, 0 ≤ m ≤ n,

where {ck}∞k=1 ⊂ (−1, 1) is related to (ak)
∞
k=1 by (4.1), and the empty product is understood

to be 1 for m = 0 or n.

Proof. Fix 0 ≤ m ≤ n. By (4.2) and using the transformation x = (z + z−1)/2, we have

∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

=
1

4

∫

γ+

[
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

] [
Mm(z)

zmMm(z−1)
+

zmMm(z−1)

Mm(z)

]
dz

iz
,
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where γ+ is the upper half unit circle. On expanding the product in the integrand, keeping

two terms over the upper half circle, and converting the other two terms to the lower half

circle γ−, we get
∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

=
π

2

1

2πi

∫

γ

[
Mn(z)

znMn(z−1)

Mm(z)

zmMm(z−1)
+

Mn(z)

znMn(z−1)

zmMm(z−1)

Mm(z)

]
dz

z

=
π

2
[ ]

∣∣∣∣
z=0

=
π

2

[
(−1)n+mc1 . . . cnc1 . . . cm + (−1)n−mcm+1 . . . cn

]
,

which is the same as stated in Lemma 4.4. �

Some partial orthogonality still holds for Tn (cf. [Ach, p. 250]). First we calculate the

following integral.

Lemma 4.5. Let (Tk)
∞
k=0 be defined from (ak)

∞
k=1 ⊂ R\[−1, 1] by (4.2) and a ∈ R\[−1, 1].

Then ∫ 1

−1

Tn(x)
1

x− a

dx√
1− x2

=
2π

c− c−1

n∏

j=1

c− cj
1− ccj

, (4.12)

where c ∈ (−1, 1) is defined by a = (c+ c−1)/2.

Proof. Let γ+ be the upper half unit circle, and apply the transformation x = (z+z−1)/2,

we get
∫ 1

−1

Tn(x)
1

x− a

dx√
1− x2

=
1

2

∫

γ+

[
Mn(z)

znMn(z−1)
+

znMn(z
−1)

Mn(z)

]
2

c+ c−1 − z − z−1

dz

iz

=
1

2i

∫

γ

Mn(z)

znMn(z−1)

2dz

(c− z)(c−1 − z)
.

Hence

∫ 1

−1

Tn(x)
1

x− a

dx√
1− x2

=
πMn(z)

znMn(z−1)

2

c−1 − z

∣∣∣∣
z=c

=
2π

c−1 − c

n∏

j=1

c− cj
1− ccj

. �

Corollary 4.6. Let (Tn)
∞
n=0 be defined from (ak)

∞
k=1 by (4.2). Then

∫ 1

−1

Tn(x)
dx√
1− x2

= (−1)nπc1 . . . cn (4.13)

and ∫ 1

−1

Tn(x)
1

x− ak

dx√
1− x2

= 0, k = 1, 2, . . . , n, (4.14)

21



where (ck)
∞
k=1 is related to (ak)

∞
k=1 by (4.1).

Proof. The proof of the second part is a direct application of (4.12). To prove (4.13), we

can either repeat the proof of Lemma 4.5, or we simply divide both sides of (4.12) by a

and let a → ∞, and notice that a = (c+ c−1)/2 implies c−1/a → 2. �

Given a sequence (ak)
∞
k=1 ⊂ R \ [−1, 1], we define

R0 = 1, Rn = Tn + cnTn−1 n ≥ 1 (4.15)

and

R∗
0 =

1√
π
, R∗

n =

√
2

π(1− c2n)
(Tn + cnTn−1) (4.16)

(cf. (4.2) and (4.3)). The following theorem indicates that these simple linear combinations

of Tn and Tn−1, n = 1, 2, . . . , give the orthogonalization of the rational system

{
1,

1

x− a1
,

1

x− a2
. . .

}
, (4.17)

where (ak)
∞
k=1 ⊂ R \ [−1, 1] is a sequence of distinct numbers.

Theorem 4.7. Let (R∗
n)

∞
n=0 be defined by (4.15) and (4.16). Then

∫ 1

−1

R∗
n(x)R

∗
m(x)

dx√
1− x2

= δm,n (4.18)

holds for n,m = 0, 1, 2, . . . .

Proof. Let m ≤ n. By Corollary 4.6,

∫ 1

−1

Rn(x)
1

x− ak

dx√
1− x2

= 0

holds for k = 0, 1, . . . , n− 1. Also by Corollary 4.6,

∫ 1

−1

Rn(x)
dx√
1− x2

=

∫ 1

−1

(Tn(x) + cnTn−1(x))
dx√
1− x2

= (−1)nc1 . . . cn + cn(−1)n−1c1 . . . cn−1 = 0.

This implies that ∫ 1

−1

Rn(x)Rm(x)
dx√
1− x2

= 0, m < n.
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When m = n, we have

∫ 1

−1

Rn(x)
2 dx√

1− x2
=

∫ 1

−1

Rn(x)Tn(x)
dx√
1− x2

=

∫ 1

−1

(Tn(x) + cnTn−1(x))Tn(x)
dx√
1− x2

,

which, by Lemma 4.4, is

π

2
(1 + c21 . . . c

2
n)−

π

2
cn(1 + c21 . . . c

2
n−1)cn =

π

2
(1− c2n).

Therefore, R∗
n =

√
2(1− c2n)/πRn is the n–th orthonormal polynomial. �

It is also easy to orthogonalize the system

{
1

x− a1
,

1

x− a2
,

1

x− a3
, . . .

}
(4.19)

with respect to the weight function 1/
√
1− x2 on [−1, 1] (where compared with (4.17), the

constant function 1 is removed). In fact we only need to take the linear combination of Tn

and Tn−1 so that the partial fraction form (cf. (4.4) and (4.5)) does not have the constant

term.

Corollary 4.8. Let (ak)
∞
k=1 ⊂ R \ [−1, 1], and define (ck)

∞
k=1 ⊂ (−1, 1) by (4.1). If

(Tn)
∞
n=1 is defined by (4.2), and (rn)

∞
n=1 is defined by

rn = cn(1 + c21 . . . c
2
n−1)Tn + (1 + c21 . . . c

2
n)Tn−1, (4.20)

then rn is an element in the real span of the system (4.19) and

∫ 1

−1

rn(x)rm(x)
dx√
1− x2

=
π

2
(1− c2n)(1 + c21 . . . c

2
n−1)(1 + c21 . . . c

2
n) δn,m

holds for n,m = 0, 1, 2, . . . .

The proof of the above is very similar to that of Theorem 4.7, and we can safely omit it.

¿From the definition of Rn and rn, and Proposition 4.1, we can get their explicit partial

fraction forms.

Finally, by applying [PiZi, Theorem 1.1], and noticing that (4.9) and (4.20) are both

Chebyshev systems (cf. [SaSt]), we have

Corollary 4.9. Assume (ak)
∞
k=1 ⊂ R \ [−1, 1]. Let (Tn)

∞
n=1, (Rn)

∞
n=1, and (rn)

∞
n=1 be

defined by (4.2),(4.15), and (4.19). Then for every n = 1, 2, 3, . . . , Tn and Rn have

exactly n zeros in [−1, 1], rn has exactly n − 1 zeros in [−1, 1], and their zeros strictly

interlace the zeros of Tn−1, Rn−1, and rn−1, respectively.
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