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BERNSTEIN AND MARKOV TYPE 
INEQUALITIES FOR GENERALIZED 

NON-NEGATIVE POLYNOMIALS 

TAMÂS ERDÉLYI 

ABSTRACT. Generalized polynomials are defined as products of polynomials raised 
to positive real powers. The generalized degree can be introduced in a natural way. 
Several inequalities holding for ordinary polynomials are expected to be true for gen
eralized polynomials, by utilizing the generalized degree in place of the ordinary one. 
Based on Remez-type inequalities on the size of generalized polynomials, we estab
lish Bernstein and Markov type inequalities for generalized non-negative polynomials, 
obtaining the best possible result up to a multiplicative absolute constant. 

1. Introduction. Bernstein's inequality asserts that 

(1.1) max \p'(t)\<n max \p(t)\ 
— •ïï<t<7C — TT<t<TT 

for all real trigonometric polynomials of degree at most n. The corresponding algebraic 
result is known as Markov's inequality and states that 

(1.2) max \p'(x)\ < n2 max \p(x)\ 
- 1 < J C < 1 -1<*<1 

for all real algebraic polynomial of degree at most n. These results show how fast a 
polynomial of degree at most n can change, and play a very significant role in approxi
mation theory. In the next section we introduce generalized polynomials of generalized 
degree and we extend the validity of the above inequalities for them up to a multiplica
tive constant. To prove our theorems the classical methods fail to work, and a completely 
different approach is required. 

2. Generalized non-negative polynomials: notations and definitions. Denote by 
Iln the set of all real algebraic polynomials of degree at most n. The family of all real 
trigonometric polynomials of degree at most n will be denoted by Tn. The functions 

(2.1) f=UPnj {Pnj ennj\nnj-u n>oj= 1,2,...,*) 
7 = 1 

and 

(2.2) f=i\P%(PnjeTn]\TnnU rj>0,j=l92,...,k) 
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496 TAMAS ERDELYI 

will be called generalized real algebraic polynomials and generalized real trigonometric 
polynomials, respectively, of (generalized) degree 

(2.3) tf=£w 
7=1 

To be precise, in this paper we will use the definition 

(2.4) zr = exp(rlog|z| + /rargz) (z E C, r E R, — TT < argz < 7r). 

Obviously 

(2.5) i/i = niv-
7=1 

We will denote by GRAP^ the set of all generalized real algebraic polynomials of degree 
at most N. The family of all generalized real trigonometric polynomials of degree at most 
TV will be denoted by GRTPN. We introduce the classes | GRAP\N = { \f\ : / E GRAPN} 
and | GRTP\N = {\f\:f£ GRTPN}. The function 

(2.6) f(z) = c [ I ( z - # (0 ̂  c E C, z, G C, rj > 0,7 = 1,2,...,*) 
7=1 

will be called a generalized complex algebraic polynomial of (generalized) degree 

(2.7) N=J2n-
7=1 

We have 

(2-8) \f(z)\ = \c\fl\z-Zj\r^ 
7=1 

Denote by GCAPN the set of all generalized complex algebraic polynomials of degree at 
most TV. The set { \f\ : / E GCA/V} will be denoted by | GCAP\N. 

In the trigonometric case we say that the function 

( 2 9 ) /(z) = c n ( s i n ( ( z - z 7 ) / 2 ) ) ° 

( 0 / c e C , ^ EC , r7 > 0 , 7 = 1,2,...,*) 

is a generalized complex trigonometric polynomial of (generalized) degree 

(2.10) N=l-J2n. 
Z 7=1 

We have 

(2.11) |/(z)| = | c | n | s i n ( ( z - z y ) / 2 ) ) | r ' . 
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(2.13) 

Denote the set of all generalized complex trigonometric polynomials of degree at most 
N by GC77V The set { \f\ : / G GCTPN} wil be denoted by \GCTP\N. We remark 
that iff G | GCAP\N, then restricted to the real line we have/ G | GRAP\N. Similarly, if 
/ G | GCTP\N, then restricted to the real line we have/ G | GRTP\N. These follow from 
the observations 

(2.12) \z-Zj\ =((z-Zj)(z-Zj)y/2 (zGK) 

and 

|sin((z-z,-)/2)| = | s in( (z-z 7 ) /2)s in( (z-z y ) /2) | 1 / 2 

= —j=(cosh(Imzj) — cos(z — Rez7)) 

Using (2.12) and (2.13) one can easily check that restricted to the real line 

\GCAP\N= ( / = n ^ / 2 : 0 < ^ É l l 2 , 0 > 0 , y = 1,2,...,/:; £ # ) < # ) 

and 

\GCTP\N = lf=YlPjj/2:0<PjeTurj>OJ= 1,2,...,/:; £ / j < 2 t f ) 

The subject of this paper is the classes | GCAP\N and | GCTP\N restricted to the real line, 
and the elements of these classes can be considered as generalized non-negative poly
nomials in the above sense. This explains the title. To express our information on the 
Lebesgue measure of the subset of [—1,1], or [—n, 7r), respectively, where the modulus 
of a generalized polynomial is not greater than 1, we introduce the notation 

GCAPN(ê)= {/ EGCAPN :m({ j cG[ - l , l ] : \f(x)\ < 1} ) > 2 -8} (0 < è < 2) 

and 

GCTPN(8)= j / G G C r P ^ : m ( { r G [ - 7 r , 7 r ) : \f(t)\ < 1}) >2TT-<$} (0 < 6 < 2TT). 

In what follows we study every function restricted to the real line. Throughout this paper 
Q will denote positive absolute constants. 

3. New Results. In this paper/' will mean either the left or the right hand side 
derivative with respect to the real variable. Our main result is the following extension of 
Bernstein's inequality. 

THEOREM 3.1. Letf G \GCTP\N be of the form (2.11) with each r7 > 1 (1 <j < k). 
Then 

max | / ( 0 | <c,N max |/(r)|, 
— 7r</<7T — TX<t<TX 

where c\ > 0 is an absolute constant. 

The problem arises how to define/ for an / G | GCTP\N. Observe that though/ may 
not exist at the zeros of/, the one-sided derivatives exist and their absolute values are 
equal to each other. This means | / | is well-defined on the real line. Using the substitution 
x — cos t, from Theorem 3.1 we immediately obtain 
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THEOREM 3.2. Letf G | GCAP\N be of the form (2.8) with each rj > 1 (1 < j < k). 
Then 

C^N 
\f'(y)\ < - 7 = = max \f(x)\ (-Ky< 1), 

where c\ > 0 is ?/ie same absolute constant as in Theorem 3.1. 

This pointwise inequality does not give any information at the endpoints. The exten
sion of Markov's inequality is established by 

THEOREM 3.3. Letf G \ GCAP\N be of the form (2.8) with each r}> 1 (1 < j < k). 
Then 

max \f(x)\ <c2N
2 max |/(x)|, 

- 1 < X < 1 -1<*<1 

where c2 > 0 is an absolute constant. 

We remark that in Theorems 3.1, 3.2 and 3.3 the condition r7 > 1(1 < j < k) is 
needed to guarantee the differentiability of/. 

4. Lemmas for Theorems 3.1, 3.2 and 3.3. To prove Theorems 3.1, 3.2 and 3.3 
we need a series of lemmas. To obtain Theorem 3.3 from Theorem 3.2, we will need 
a Chebyshev-type inequality, namely we will need to estimate the maximum modulus 
of a n / G GCAPN on [—1,1] if its maximum modulus on [—a, a], is 1 for some 0 < 
a < 1. In [2] a much more general Remez-type inequality is established for generalized 
complex algebraic polynomials. How large can the maximum modulus of an/ G GCAPN 

on [—1,1] be if the measure of the subset of [—1,1], where |/ | is not greater than 1, 
is prescribed, that i s / E GCAP^(S) for some 0 < 8 < 2? This was answered by 
Remez [5] for ordinary polynomials, and proofs are available in [3] and [4] as well. The 
following extension for generalized complex algebraic polynomials was proved in [2] 
which preserves the best possible order of magnitude. 

LEMMA 4.1. We have 

max \f(x)\ < exp(5N\/6) (0 < 6 < 1) 
— 1 <JC< 1 

and 

max t \f(x)\ < exp (^^ ) (1< 6 < 2) 

for every f G GCAPN(S). 

When 6 = l/(25N2 + 1), Theorem 4.1 yields 

COROLLARY 4.2. Let a = 1 - 1/ (5(W2 + 2). Then 

max |/(X) | < e max |/(JC)| 
— l<;t<l —a<x<a 
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for every f G GCAP^. 

In the proof of Theorem 3.1a trigonometric Remez-type inequality, established in [2], 
will play an important role. How large can the maximum modulus of a n / G GCTPN on 
[—7T, 7r] be if the measure of the subset of [—7r, 7r], where |/ | is not greater than 1, is 
prescribed, that i s / G GCTPN(8) for some 0 < 8 < 2n? A satisfactory answer is given 
by 

LEMMA 4.3. There is an absolute constant C3 such that 

max |/(01 < exp(c3M) (0 < 6 < TT/2) 
—7T </<7T 

for every f€GCTPN(6). 

Our next lemma gives an upper bound for the number of the zeros of a trigonometric 
polynomial on an interval with prescribed length. 

LEMMA 4.4. Let p G Tn and to G R. Then p has at most 

3ft/imax_7r<,<7r \p(t)\ 

\p(to)\ 

zeros (counting multiplicities) in the interval [to — /i, to + h]. 

Though this lemma can be found in [1] (see Lemma 1), we will present its short proof 
here as well. Using Lemmas 4.3 and 4.4 we will prove 

LEMMA 4.5. Assume that p G Tn has only real zeros and at least one of any two 
adjacent zeros ofp has multiplicity at least s. Then there is an interval I such that m(T) > 
C4S'/ n and 

\P(T)\ > exp(-j) max \p(t)\ (r G /), 
—7T<?<7T 

where C4 > 0 is an absolute constant. 

In the proof of Lemma 4.5 it will be crucial to find a Qnu G Tn (0 < UJ < ir) for 
which \Qn^(x)\ < 1 on [-a;,a;], |Qn^W| < |ôn^(^r)| on [-7r,7r], and |g„,u,(7r)| is as 
large as possible. In [2] it is shown that the trigonometric polynomial 

( sin(f/2)A 
ysm(u;/2)J 

where Qinix) = cos(2n arccosx) (—1 < x < 1) is the Chebyshev polynomial of degree 
2«, solves this extremal problem. We remark that the above polynomial was used by 
V. S. Videnskii [6] to establish Markov and Bernstein type inequalities for the deriva
tive of trigonometric polynomials on an interval shorter than the period. In the proof of 
Lemma 4.5 we will need the order of magnitude of | <2w,u;(7r)| which is given by 
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LEMMA 4.6. We have 

exp(c5n(7T - LU)) < Qn,u(n) < exp(c6«(7r - a;)) (IT/ 2 < UJ < 7r), 

where 0 < c$ < C& are absolute constants. 

Approximating the exponents by rational numbers not less than 1, from Lemma 4.5 
we will conclude 

LEMMA 4.7. Assume that g G | GCTP\N has only real zeros and at least one of any 
two adjacent zeros of g has multiplicity at least 1 (in case of g G | GCTP\u the multiplicity 
may be any positive real number). Then there is an interval I such that m(I) > c^j N and 

g(r) > e~x max g(t) (r G /), 
—7r<f<7r 

where Q is the same as in Theorem 4.5. 

As we have remarked in Section 2, iff G \GCTP\N is of the form (2.11), then, re
stricted to the real line,/ G | GRTP\N is of the form 

/ = n ^ / 2 (0<PjeTurj>0J=h2,.-.,k). 

By the following two lemmas, in the proof of Theorem 3.1 we may assume that/ G 
| GCTP\N has only real zeros. 

LEMMA 4.8. Let rj > 1 be fixed real numbers for j = 1,2,...,/:. Then there exists a 
generalized non-negative real trigonometric polynomial F of the form 

F= UP]/2 (PjeTuPj(z)>0,j= 1,2,...,*, z G R) 

such that 

' ^ l =sup l / ,(7r)' =L, 
msLX-n<t<n F(t) |r| m a x - ^ ^ / C O 

where the supremum is taken for all not identically zero f G | GCTP\N of the form 

f = UPj'2 (pJ € Tu Pj(z) >0J= 1,2,...,*, z G R). 
7=1 

LEMMA 4.9. The function F, defined by Lemma 4.8, has only real zeros. 
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5. Proof of the Lemmas. 

PROOF OF LEMMA 4.4. For the sake of brevity let m = [3nhw] + 1 with 

= max-^K^ |/?(0l 

|p('o)| 

where [x] denotes the greatest integer not exceeding x. Assume that the statement of the 
lemma is false, thus there are t\ < t2 < • • • < tv in [to — hJo + h] such that p has at least 
\ii repeated roots at tx ( 1 < / < v) and £]L} /x/ = m. We introduce the polynomial 

n(x)=f[(x-tir. 
i=\ 

By a well-known relation for the remainder of the Hermite interpolating polynomial, 
there exists a £ G [t\, tv] C |>o — K to + h] such that 

p(to)-H(t0)= -\p(m)(0«('<>), m! 

where H G EL-i and tf^fc) = p^fa) = 0 (1 < i < v, 0 < j < &; - 1), thus / / = 0. 
Hence, by ra! > (m/ e)m and 5 > l w e have 

b (m)(Ol > (m/e)w/r>(/<>)| > (m/er(3wn/m)m\p(to)\ 

= (3w/e)m-nm max |/?(0| > nm max |/>(f)| 
W —7T</<7T —7r<f<7T 

which contradicts Bernstein's inequality. Thus the lemma is proved. • 

PROOF OF LEMMA 4.6. Observe that 

2 sin2 ^ sin(7r/2) _ 1 — sin(o;/2) _ 
sin(u;/2) sin(o;/2) sin(u;/2) ' 

therefore 
C7(TT - u ) 2

 < sin(7r/2) ^ C8(TT - a ; ) 2 

a; — sin(a;/2) ~~ a; 

Hence, using the well-known formula 

&,(*) = \({x + tf - l)"2)"+ (*-(*> - l)1/2)") ( x e R \ (-1,1)), 

we get the desired inequalities by a straightforward calculation. 

PROOF OF LEMMA 4.5. Because of the periodicity we may asume that 

(5.1) P(TT)= max |/7(0|. 
— 7T<f<7r 

We define 

(5.2) Qn„(t) = Q2n(Sm^^l) with u = T: - s I (3n), 
Vsm(o;/2)/ 
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where Q2n(x) = cos(2« arccos x) (—1 < x < 1) is the Chebyshev polynomial of degree 
2n. We introduce the set 

(5.3) A = {t G [TT - s J (3/i), 7T + 5/ (3/i)] : \p(t)\ > exp(-j)p(?r)}. 

We study the trigonometric polynomial g = pQn,u £ ?2n- Assumption (5.1) and the 
inequality Qniii,(ir) > expfes/ 3) (a; = ix — sj (3n)) imply 

\q(r)\ < \p(r)\ <exp(-c55/3)Gn^(7r)p(7r) 
(5 4) 

= exp(—C95) max \q(t)\ (—UJ<T<UJ). 
—7T<f<7T 

Further, by the définition of the set A, we obtain 

\q(r)\ < exp(-ls)/7(7r)(2rt,a;(7r) 
( 5 . 5 ) = exp(-s) max |<?(0| (r G (O;,2TT - w)\A). 

- 7 T < K 7 T V 7 

Summarizing (5.4) and (5.5), we conclude 

(5.6) k ( r ) | < exp(-cio^) max \q(t)\ (r G [-7r,7r]\A). 
— TT<t<TT 

Now by Lemma 4.3, from (5.6) we easily deduce that m(A) > c\\s/ n. To finish the 
proof of the lemma we show that A is the union of at most two intervals (hence the larger 
one satisfies the requirements). Indeed, Lemma 4.4, (5.1) and the prescribed information 
on the multiplicity of the zeros of p imply that p has at most one zero (possibly with 
higher multiplicity) in {n — s/ (3/i), TT + s/ (3/i)]. Since p has only real zeros, A is the 
union of at most two intervals, indeed. Thus the lemma is proved. • 

PROOF OF LEMMA 4.7. Let g G | GCTP\N be of the form 

(5.7) g= n ^ / 2 (PjeTuPj(z)>0,j= 1,2,...,*, zeR). 

Because of the periodicity of g we may assume that 

(5.8) |g(7r)| = max \g(t)\. 
—TC<t<TT 

If each ry = Sjls is rational in the representation (5.7) of g G \GCTP\N, then the 
trigonometric polynomial 

k k 

satisfies the conditions of Lemma 4.5 with 2* instead of s. Therefore there is an interval 
/ such that m(I) > Ic^s/ n = c^j N and 

\p(r)\ > exp(-2s) max \p(t)\ (r G I). 
— 7T</<7T 
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Hence 

g(T)= \p(T)\l/{2s)>e-1 max \p(t)\ l'(2s) = max g(t) (r G I) 
—K<t<n - 7 T < K 7 T 

with m(I) > C4/ N. Since C4 > 0 is an absolute constant, we can eliminate the assumption 
that each r7 is rational in the representation (5.7) of g G | GCTP\N by a density argument. 
Thus the lemma is proved. • 

PROOF OF LEMMA 4.8. Let/• (1 = 1,2,...) be such that 

max-^K* \fi(t) I l J 

where 

/• = n ^ / 2 (^ / € Tu Pj,i(z) >0,j= 1,2,... ,*, z G R). 

Without loss of generality we may assume that 

max \Pu(t)\ = l ( /= 1,2,...,*, 1= 1,2,...). 
—7T<r<7T 

Then there is a subsequence {/w} and polynomials P, G T\ such that 

lim max | (PjJm - Pj)(t)\ = 0 (j = 1,2,..., *). 
AM—^OO —7T < f < 7 T 

Now it is easy to check that 

F=n^>'/ 

satisfies the requirements of the lemma. • 

PROOF OF LEMMA 4.9. Assume to the contrary that there is a nonreal a such that 
Pm(a) = 0 for some 1 < m < k. Then 

/ . ( £sin2((z-7r)/2) \\ml2 k 
F£(z) = Pm(z)\ 1 - —T( } , . ' } . v I I Pj \z) 

with a sufficiently small e > 0 contradicts the maximality of F. (Observe that F does not 
take its maximum on [—7r, 7r] at 7r, since /^(7r) does not vanish because of its maximality.) 
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6. Proof of the Theorems. 

PROOF OF THEOREM 3.1. Iff £ \GCTP\N is of the form (2.11) with each r, > 1, 
then it can be written as 

(6.1) / = JlPj'2 (PjtTu Pj(z)>0J= U U G R ) 

with each r; > 1. Because of the periodicity of |/ ' | it is sufficient to prove that 

(6.2) 1/(701 <cxN max \f(t)\. 
- 7 r < f < 7 T 

To show this, by Lemmas 4.8 and 4.9 we may assume that/ has only real zeros, hence 
/ € \GCTP\N is of the form (2.11) with each r} > 1. Because of the periodicity of | / | 
we may assume that 

(6.3) | /(TT)| = max \f'(t)\. 
— TC<t<7C 

Since/ G | GCTP\N has only real zeros and each r7 > 1 in its representation (6.1), a rou
tine application of Rolle's Theorem and a simple calculation show that | / | G | GCTP\N 

has only real zeros, and at least one of any two adjacent zeros of | / | has multiplicity at 
least 1, thus g = | / | satisifies the conditions of Lemma 4.7. Denote the endpoints of the 
interval / coming from Lemma 4.7 by a and b. From Lemma 4.7 we deduce 

max | / ' (0 | = | / 0 r ) | < -r^— f" | / (r) | dt<- f" |/(f)| dt 
-7r<f<7r D — a J a C4 J a 

<cnN\f{b)-f(a)\<cxN max | /(0| 
—7T<f<7T 

which proves the theorem. • 

PROOF OF THEOREM 3.2. If/ e | GCAP\N is of the form (2.8) with each r}> 1, then 
it can be written as 

(6.4) f=Y[Prs'2 (Pjen2, Pj(z)>0J= l f 2 , . . . , * , * G R ) 

with each r; > 1. Hence it is easy to see that g(z) = /(cosz) G | GCTP\N is of the form 
(2.11) with each r} > 1 if z is real. Applying Theorem 3.1 to g, we obtain Theorem 3.2 
immediately. • 

PROOF OF THEOREM 3.3. Let a be the same as in Corollary 4.2. From Theorem 3.1 
and Corollary 4.2 we easily obtain 

(6.5) max |/(JC)| < ci3W
2 max \f(x)\ < cueN2 max \f(x)\ 

-a<x<a —1<*<1 -a<x<a 

for every/ 6 | GCAP\N of the form (2.8) with each r7- > 1. The theorem can be obtained 
from (6.5) by a linear transformation. • 
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7. Immediate consequences. In this section c(m) denotes a suitable constant de
pending only on m. From Theorems 3.1, 3.2 and 3.3, by induction on m, we easily obtain 
the following. 

COROLLARIES. We have 

max \f{m\t)\ < c(m)Nm max \f(t)\ 
—TT<t<-K —7T<?<7T 

for every f G | GCTP\u such that each Zj in (2.11) is real and each rj in (2.11) is either 
positive integer or real greater than m. Further, the inequalities 

( N \m 

\f(m)(y)\ < c(m) - = = = max |/(x)| ( - 1 < y < 1 ) 

and 
max |/(m)(x)| < c(m)N2m max \f(x)\ 

— 1<JC<1 — 1 <JC< 1 

hold for every f G | GCAP\N such that each Zj in (2.8) is real and each rj in (2.8) is either 
positive integer or real greater than m. 
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