EXTENSIONS OF THE BLOCH - PÓLYA THEOREM ON THE NUMBER OF REAL ZEROS OF POLYNOMIALS

Tamás Erdélyi

Abstract. We prove that there are absolute constants $c_{1}>0$ and $c_{2}>0$ such that for every

$$
\left\{a_{0}, a_{1}, \ldots, a_{n}\right\} \subset[1, M], \quad 1 \leq M \leq \exp \left(c_{1} n^{1 / 4}\right)
$$

there are

$$
b_{0}, b_{1}, \ldots, b_{n} \in\{-1,0,1\}
$$

such that

$$
P(z)=\sum_{j=0}^{n} b_{j} a_{j} z^{j}
$$

has at least $c_{2} n^{1 / 4}$ distinct sign changes in $(0,1)$. This improves and extends earlier results of Bloch and Pólya.

1. Introduction

Let \mathcal{F}_{n} denote the set of polynomials of degree at most n with coefficients from $\{-1,0,1\}$. Let \mathcal{L}_{n} denote the set of polynomials of degree n with coefficients from $\{-1,1\}$. In $[6]$ the authors write
"The study of the location of zeros of these classes of polynomials begins with Bloch and Pólya [2]. They prove that the average number of real zeros of a polynomial from \mathcal{F}_{n} is at most $c \sqrt{n}$. They also prove that a polynomial from \mathcal{F}_{n} cannot have more than

$$
\frac{c n \log \log n}{\log n}
$$

real zeros. This quite weak result appears to be the first on this subject. Schur [13] and by different methods Szegő [15] and Erdős and Turán [8] improve this to $c \sqrt{n \log n}$ (see also [4]). (Their results are more general, but in this specialization not sharp.)

Our Theorem 4.1 gives the right upper bound of $c \sqrt{n}$ for the number of real zeros of polynomials from a much larger class, namely for all polynomials of the form

$$
p(x)=\sum_{j=0}^{n} a_{j} x^{j}, \quad\left|a_{j}\right| \leq 1, \quad\left|a_{0}\right|=\left|a_{n}\right|=1, \quad a_{j} \in \mathbb{C} .
$$

[^0]Schur [13] claims that Schmidt gives a version of part of this theorem. However, it does not appear in the reference he gives, namely [12], and we have not been able to trace it to any other source. Also, our method is able to give $c \sqrt{n}$ as an upper bound for the number of zeros of a polynomial $p \in \mathcal{P}_{n}^{c}$ with $\left|a_{0}\right|=1,\left|a_{j}\right| \leq 1$, inside any polygon with vertices in the unit circle (of course, c depends on the polygon). This may be discussed in a later publication.

Bloch and Pólya [2] also prove that there are polynomials $p \in \mathcal{F}_{n}$ with

$$
\begin{equation*}
\frac{c n^{1 / 4}}{\sqrt{\log n}} \tag{1.1}
\end{equation*}
$$

distinct real zeros of odd multiplicity. (Schur [13] claims they do it for polynomials with coefficients only from $\{-1,1\}$, but this appears to be incorrect.)

In a seminal paper Littlewood and Offord [11] prove that the number of real roots of a $p \in \mathcal{L}_{n}$, on average, lies between

$$
\frac{c_{1} \log n}{\log \log \log n} \quad \text { and } \quad c_{2} \log ^{2} n
$$

and it is proved by Boyd [7] that every $p \in \mathcal{L}_{n}$ has at most $c \log ^{2} n / \log \log n$ zeros at 1 (in the sense of multiplicity).

Kac [10] shows that the expected number of real roots of a polynomial of degree n with random uniformly distributed coefficients is asymptotically $(2 / \pi) \log n$. He writes "I have also stated that the same conclusion holds if the coefficients assume only the values 1 and -1 with equal probabilities. Upon closer examination it turns out that the proof I had in mind is inapplicable.... This situation tends to emphasize the particular interest of the discrete case, which surprisingly enough turns out to be the most difficult." In a recent related paper Solomyak [14] studies the random series $\sum \pm \lambda^{n}$."

In fact, the paper [5] containing the "polygon result" mentioned in the above quote appeared sooner than [6]. The book [4] contains only a few related weeker results. Our Theorem 2.1 in [6] sharpens and generalizes results of Amoroso [1], Bombieri and Vaaler [3], and Hua [9] who give versions of that result for polynomials with integer coefficients.

In this paper we improve the lower bound (1.1) in the result of Bloch and Pólya to $\mathrm{cn}^{1 / 4}$. Moreover we allow a much more general coefficient constraint in our main result. Our approach is quite different from that of Bloch and Pólya.

2. New Result

Theorem 2.1. There are absolute constants $c_{1}>0$ and $c_{2}>0$ such that for every

$$
\left\{a_{0}, a_{1}, \ldots, a_{n}\right\} \subset[1, M], \quad 1 \leq M \leq \exp \left(c_{1} n^{1 / 4}\right)
$$

there are

$$
b_{0}, b_{1}, \ldots, b_{n} \in\{-1,0,1\}
$$

such that

$$
P(z)=\sum_{j=0}^{n} b_{j} a_{j} z^{j}
$$

has at least $c_{2} n^{1 / 4}$ distinct sign changes in $(0,1)$.

3. Lemmas

Let $D:=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk. Denote by \mathcal{S}_{M} the collection of all analytic functions f on the open unit disk D that satisfy

$$
|f(z)| \leq \frac{M}{1-|z|}, \quad z \in D
$$

Let $\|f\|_{A}:=\sup _{x \in A}|f(x)|$. To prove Theorem 2.1 our first lemma is the following.
Lemma 3.1. There is an absolute constants $c_{3}>0$ such that

$$
\|f\|_{[\alpha, \beta]} \geq \exp \left(\frac{-c_{3}(1+\log M)}{\beta-\alpha}\right)
$$

for every $f \in \mathcal{S}_{M}$ and $0<\alpha<\beta \leq 1$ with $|f(0)| \geq 1$ and for every $M \geq 1$.
This follows from the lemma below by a linear scaling:
Lemma 3.2. There are absolute constants $c_{4}>0$ and $c_{5}>0$ such that

$$
|f(0)|^{c_{5} / a} \leq \exp \left(\frac{c_{4}(1+\log M)}{a}\right)\|f\|_{[1-a, 1]}
$$

for every $f \in \mathcal{S}_{M}$ and $a \in(0,1]$.
To prove Lemma 3.2 we need some corollaries of the following well known result.
Hadamard Three Circles Theorem. Let $0<r_{1}<r_{2}$. Suppose f is regular in

$$
\left\{z \in \mathbb{C}: r_{1} \leq|z| \leq r_{2}\right\}
$$

For $r \in\left[r_{1}, r_{2}\right]$, let

$$
M(r):=\max _{|z|=r}|f(z)| .
$$

Then

$$
M(r)^{\log \left(r_{2} / r_{1}\right)} \leq M\left(r_{1}\right)^{\log \left(r_{2} / r\right)} M\left(r_{2}\right)^{\log \left(r / r_{1}\right)}
$$

Corollary 3.3. Let $a \in(0,1]$. Suppose f is regular inside and on the ellipse E_{a} with foci at $1-a$ and $1-a+\frac{1}{4} a$ and with major axis

$$
\left[1-a-\frac{9 a}{64}, 1-a+\frac{25 a}{64}\right] .
$$

Let \widetilde{E}_{a} be the ellipse with foci at $1-a$ and $1-a+\frac{1}{4} a$ and with major axis

$$
\left[1-a-\frac{a}{32}, 1-a+\frac{9 a}{32}\right] .
$$

Then

$$
\max _{z \in \widetilde{E}_{a}}|f(z)| \leq\left(\max _{z \in\left[1-a, 1-a+\frac{1}{4} a\right]}|f(z)|\right)^{1 / 2}\left(\max _{z \in E_{a}}|f(z)|\right)^{1 / 2}
$$

Proof. This follows from the Hadamard Three Circles Theorem with the substitution

$$
w=\frac{a}{8}\left(\frac{z+z^{-1}}{2}\right)+\left(1-a+\frac{a}{8}\right) .
$$

The Hadamard Three Circles Theorem is applied with $r_{1}:=1, r:=2$, and $r_{2}:=4$.

Corollary 3.4. For every $f \in \mathcal{S}_{M}$ and $a \in(0,1]$ we have

$$
\max _{z \in \widetilde{E}_{a}}|f(z)| \leq\left(\frac{64 M}{39 a}\right)^{1 / 2}\left(\max _{z \in[1-a, 1]}|f(z)|\right)^{1 / 2} .
$$

Proof of Lemma 3.2. Let $f \in \mathcal{S}_{M}$ and $h(z)=\frac{1}{2}(1-a)\left(z+z^{2}\right)$. Observe that $h(0)=0$, and there are absolute constants $c_{6}>0$ and $c_{7}>0$ such that

$$
\left|h\left(e^{i t}\right)\right| \leq 1-c_{6} t^{2}, \quad-\pi \leq t \leq \pi
$$

and for $t \in\left[-c_{7} a, c_{7} a\right], h\left(e^{i t}\right)$ lies inside the ellipse \widetilde{E}_{a}. Now let $m:=\left\lfloor\pi /\left(c_{7} a\right)\right\rfloor+1$. Let $\xi:=\exp (2 \pi i /(2 m))$ be the first $2 m$-th root of unity, and let

$$
g(z)=\prod_{j=0}^{2 m-1} f\left(h\left(\xi^{j} z\right)\right)
$$

Using the Maximum Principle and the properties of h, we obtain

$$
\begin{aligned}
|f(0)|^{2 m} & =|g(0)| \leq \max _{|z|=1}|g(z)| \leq\left(\max _{z \in \widetilde{E}_{a}}|f(z)|\right)^{2} \prod_{k=1}^{m-1}\left(\frac{M}{c_{6}(\pi k / m)^{2}}\right)^{2} \\
& =\left(\max _{z \in \widetilde{E}_{a}}|f(z)|\right)^{2} M^{2 m-2} \exp \left(c_{8}(m-1)\right)\left(\frac{m^{m-1}}{(m-1)!}\right)^{4} \\
& <\left(\max _{z \in \widetilde{E}_{a}}|f(z)|\right)^{2}(M e)^{c_{9}(m-1)}
\end{aligned}
$$

with absolute constants c_{8} and c_{9}, and the result follows from Corollary 3.4.

4. Proof of Theorem 2.1

Proof of Theorem 2.1. Let $L \leq \frac{1}{2} n^{1 / 2}$ and

$$
\mathcal{M}(P):=\left(P\left(1-n^{-1 / 2}\right), P\left(1-2 n^{-1 / 2}\right), \ldots, P\left(1-L n^{-1 / 2}\right)\right) \in[-M \sqrt{n}, M \sqrt{n}]^{L}
$$

We consider the polynomials

$$
P(z)=\sum_{j=0}^{n-1} b_{j} a_{j} z^{j}, \quad b_{j} \in\{0,1\} .
$$

There are 2^{n} such polynomials. Let $K \in \mathbb{N}$. Using the box principle we can easily deduce that $(2 K)^{L}<2^{n}$ implies that there are two different

$$
P_{1}(z)=\sum_{j=0}^{n-1} b_{j} a_{j} z^{j}, \quad b_{j} \in\{0,1\}
$$

and

$$
P_{2}(z)=\sum_{j=0}^{n-1} \widetilde{b}_{j} a_{j} z^{j}, \quad \widetilde{b}_{j} \in\{0,1\}
$$

such that

$$
\left|P_{1}\left(1-j n^{-1 / 2}\right)-P_{2}\left(1-j n^{-1 / 2}\right)\right| \leq \frac{M \sqrt{n}}{K}, \quad j=1,2, \ldots, L
$$

Let

$$
P_{1}(z)-P_{2}(z)=\sum_{j=m}^{n-1} \beta_{j} a_{j} z^{j}, \quad \beta_{j} \in\{-1,0,1\}, \quad b_{m} \neq 0
$$

Let $0 \neq Q(z):=z^{-m}\left(P_{1}(z)-P_{2}(z)\right)$. Then Q is of the form

$$
Q(z):=\sum_{j=0}^{n-1} \gamma_{j} a_{j} z^{j}, \quad \gamma_{j} \in\{-1,0,1\}, \quad \gamma_{0} \in\{-1,1\}
$$

and, since $1-x \geq e^{-2 x}$ for all $x \in[0,1 / 2]$, we have

$$
\begin{equation*}
\left|Q\left(1-j n^{-1 / 2}\right)\right| \leq \exp \left(2 L n^{1 / 2}\right) \frac{M \sqrt{n}}{K}, \quad j=1,2, \ldots, L \tag{4.1}
\end{equation*}
$$

Also, by Lemma 3.1, there are

$$
\xi_{j} \in I_{j}:=\left[1-j n^{-1 / 2}, 1-(j-1) n^{-1 / 2}\right], \quad j=1,2, \ldots, L,
$$

such that

$$
\begin{equation*}
\left|Q\left(\xi_{j}\right)\right| \geq \exp \left(-c_{3}(1+\log M) \sqrt{n}\right), \quad j=1,2, \ldots, L \tag{4.2}
\end{equation*}
$$

Now let $L:=\left\lfloor(1 / 16) n^{1 / 4}\right\rfloor$ and $2 K=\exp \left(n^{3 / 4}\right)$. Then $(2 K)^{L}<2^{n}$ holds. Also, if $\log M=O\left(n^{1 / 4}\right)$, then (4.1) implies

$$
\begin{equation*}
\left|Q\left(1-j n^{-1 / 2}\right)\right| \leq \exp \left(-(3 / 4) n^{3 / 4}\right), \quad j=1,2, \ldots, L \tag{4.3}
\end{equation*}
$$

for all sufficiently large n. Now observe that $1 \leq M \leq \exp \left(\left(64 c_{3}\right)^{-1} n^{1 / 4}\right)$ yields that

$$
\begin{align*}
\left|a_{n} x^{n}\right| & \geq|x|^{n} \geq \exp (-2(1-x)) \geq \exp \left(-2 L n^{1 / 2}\right) \tag{4.4}\\
& \geq \exp \left(-(1 / 8) n^{3 / 4}\right), \quad x \in\left[1-L n^{-1 / 2}, 1-(L / 2) n^{-1 / 2}\right]
\end{align*}
$$

and

$$
\begin{align*}
\left|a_{n} x^{n}\right| & \leq M \exp \left(-(L / 2) n^{1 / 2}\right) \tag{4.5}\\
& \leq \exp \left(-(1 / 33) n^{3 / 4}\right), \quad x \in\left[1-L n^{-1 / 2}, 1-(L / 2) n^{-1 / 2}\right]
\end{align*}
$$

for all sufficiently large n. Observe also that with $\log M \leq\left(64 c_{3}\right)^{-1} n^{1 / 4}$ (4.2) implies

$$
\begin{equation*}
\left|Q\left(\xi_{j}\right)\right|>\exp \left(-(1 / 63) n^{3 / 4}\right), \quad j=1,2, \ldots, L \tag{4.6}
\end{equation*}
$$

for all sufficiently large n. Now we study the polynomials

$$
S_{1}(z):=Q(z)-a_{n} z^{n} \quad \text { and } \quad S_{2}(z):=Q(z)+a_{n} z^{n}
$$

These are of the requested special form. It follows from (4.3) - (4.6) that either S_{1} or S_{2} has a sign change in at least half of the intervals $I_{j}, j=L, L-1, \ldots\lfloor L / 2\rfloor+2$, for all sufficiently large n, and the theorem is proved.

References

1. F. Amoroso, Sur le diamètre transfini entier d'un intervalle réel, Ann. Inst. Fourier, Grenoble 40 (1990), 885-911.
2. A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc 33 (1932), 102-114.
3. E. Bombieri and J. Vaaler, Polynomials with low height and prescribed vanishing, in Analytic Number Theory and Diophantine Problems, Birkhäuser (1987), 53-73.
4. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
5. P. Borwein and T. Erdélyi, On the zeros of polynomials with restricted coefficients, Illinois J. Math. 41 (1997), 667-675.
6. P. Borwein, T. Erdélyi, and G. Kós, Littlewood-type problems on $[0,1]$., Proc. London Math. Soc. 79 (1999), 22-46.
7. D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comput. 66 (1997), 1697-1703.
8. P. Erdős and P. Turán, On the distribution of roots of polynomials, Ann. Math. 57 (1950), 105-119.
9. L.K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin Heidelberg, New York, 1982.
10. M. Kac, On the average number of real roots of a random algebraic equation, II, Proc. London Math. Soc. 50 (1948), 390-408.
11. J.E. Littlewood and A.C. Offord, On the number of real roots of a random algebraic equation, II, Proc. Cam. Phil. Soc. 35 (1939), 133-148.
12. E. Schmidt, Über algebraische Gleichungen vom Pólya-Bloch-Typos, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1932), 321.
13. I. Schur, Untersuchungen über algebraische Gleichungen., Sitz. Preuss. Akad. Wiss., Phys.Math. Kl. (1933), 403-428.
14. B. Solomyak, On the random series $\sum \pm \lambda^{n}$ (an Erdős problem), Ann. Math. 142, 611-625.
15. G. Szegő, Bemerkungen zu einem Satz von E. Schmidt über algebraische Gleichungen., Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86-98.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843
E-mail address: terdelyi@math.tamu.edu

[^0]: 2000 Mathematics Subject Classifications: Primary: 41A17

