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Abstract. We prove the right Lax-type inequality on subarcs of the unit circle of the com-

plex plane for complex algebraic polynomials of degree n having no zeros in the open unit

disk. This is done by establishing the right Bernstein-Szegő-Videnskii type inequality for real
trigonometric polynomials of degree at most n on intervals shorter than the period. The paper

is closely related to recent work by B. Nagy and V. Totik. In fact, their asymptotically sharp

Bernstein-type inequality for complex algebraic polynomials of degree at most n on subarcs
of the unit circle is recaptured by using more elementary methods. Our discussion offers a

somewhat new approach to see V.S. Videnskii’s Bernstein and Markov type inequalities for
trigonometric polynomials of degree at most n on intervals shorter than a period, two clas-

sical polynomial inequalities published first in 1960. A new Riesz-Schur type inequality for

trigonometric polynomials is also established. Combining this with Videnskii’s Bernstein-type
inequality gives Videnskii’s Markov-type inequality immediately.

1. Introduction

Let D be the open unit disk of the complex plane. Let ∂D be the unit circle of the
complex plane. Let Tn be the collection of all real trigonometric polynomials Q of degree
at most n of the form

Q(τ) = a0 +

n∑

j=1

(aj cos(jτ) + bj sin (jτ)) , aj , bj ∈ R .

Let T c
n be the collection of all complex trigonometric polynomials Q of degree at most n

of the form

Q(τ) = a0 +
n∑

j=1

(aj cos(jτ) + bj sin(jτ)) , aj, bj ∈ C .

Key words and phrases. basic polynomial inequalities, Videnskii’s Markov and Bernstein type inequal-

ities for trigonometric polynomials on subintervals of the period, asymptotically sharp Bernstein and Lax
type inequalities for complex algebraic polynomials on subarcs of the unit circle, the right Bernstein-Szegő

and Riesz-Schur type inequalities for trigonometric polynomials on subintervals of the period..
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Let Pn be the collection of all real algebraic polynomials P of degree at most n of the form

P (z) =

n∑

j=0

ajz
j , aj ∈ R .

Let Pc
n be the collection of all complex algebraic polynomials P of degree at most n of the

form

P (z) =

n∑

j=0

ajz
j , aj ∈ C .

The following inequalities are due to Bernstein. We have

max
z∈∂D

|P ′(z)| ≤ n max
z∈∂D

|P (z)| , P ∈ Pc
n ,

max
τ∈[−π,π]

|Q′(τ)| ≤ n max
τ∈[−π,π]

|Q(τ)| , Q ∈ T c
n ,

max
x∈[−1,1]

∣∣P ′(x)
√
1− x2

∣∣ ≤ n max
x∈[−1,1]

|P (x)| , P ∈ Pc
n .

We remark that most likely M. Riesz was the first who published the second inequality
above for all real trigonometric polynomials Q ∈ Tn without an extra factor 2 and with
various complete (and elegant) proofs. However, the extention of this inequality from all
real trigonometric polynomials Q ∈ Tn to all complex trigonometric polynomials Q ∈ T c

n

is a simple routine argument. The inequality

max
τ∈[−π,π]

(|Q′(τ)|2 + n2|Q(τ)|2) ≤ n2 max
τ∈[−π,π]

|Q(τ)|2 , Q ∈ Tn ,

is often referred to as the Bernstein-Szegő inequality. Note that it is valid only for all
real trigonometric polynomials Q ∈ Tn and not for all complex trigonometric polynomials
Q ∈ T c

n . Markov’s inequality asserts that

max
x∈[−1,1]

|P ′(x)| ≤ n2 max
x∈[−1,1]

|P (x)| , Q ∈ Pc
n .

Books focusing on approximation theory contain the above mentioned inequalities with
various proofs. See [16],[19], or Section 5.1 of [2], for example.

For n ∈ N, ω ∈ (0, π], and t ∈ (ω, ω), we define

B(n, ω, t) :=
d

dt

(
−2n arccos

(
sin(t/2)

sin(ω/2)

))
= 2n

(
1−

(
sin(t/2)

sin(ω/2)

)2
)−1/2

1
2 cos(t/2)

sin(ω/2)

=
n cos(t/2)

sin(ω/2)

(
1−

(
sin(t/2)

sin(ω/2)

)2
)−1/2

=
√
2n cos(t/2)(cos t− cosω)−1/2 .
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Then

(B(n, ω, t))2 =
2n2 cos2(t/2)

cos t− cosω
= n2 1 + cos t

cos t− cosω
= n2

(
1 + cosω

cos t− cosω
+ 1

)
.

Note that B(n, π, t) = n for all t ∈ (−π, π) . The classical Bernstein inequality for trigono-
metric polynomials was extended by V.S. Videnskii, see e.g. [23] or E.19 of Section 5.1 on
page 242 in [2]. He showed that

|Q′(t)| ≤ B(n, ω, t) max
τ∈[−ω,ω]

|Q(τ)| , t ∈ (−ω, ω) ,

for every Q ∈ T c
n . There is an extension of this to “trigonometric polynomials of half-

integer degree” in [24] where it is shown that

|Q′(t)| ≤ B
(
n− 1

2
, ω, t

)
max

τ∈[−ω,ω]
|Q(τ)| , t ∈ (−ω, ω) ,

for every “trigonometric polynomials of half-integer degree” Q of the form

Q(τ) =
n∑

j=1

(
aj cos

(2j − 1)τ

2
+ bj sin

(2j − 1)τ

2

)
, aj, bj ∈ R .

Bernstein-type inequalities for trigonometric polynomials in Lp norms on subarcs of the
unit circle were established by D. Lubinsky [14], C.K. Kobindarajah and D. Lubinsky [11],
and T. Erdélyi [5].

In 1940 P. Lax [12] proved that

max
τ∈[−π,π]

|P ′(eiτ )| ≤ n

2
max

τ∈[−π,π]
|P (eiτ )|

for all polynomials P ∈ Pc
n having no zeros in the open unit disk D. Inequalities for poly-

nomials with constraints are surveyed in [2,4,6]. Markov and Bernstein type inequalities for
trigonometric polynomials on intervals shorter than the period are studied in [3,7,8,9,10]
under various constraints. Associated with an algebraic polynomial P ∈ Pc

n of the form

P (z) =
n∑

j=0

ajz
j , aj ∈ C ,

we introduce the polynomial P ∗ defined by

P ∗(z) :=

n∑

j=0

an−jz
j .

The algebraic polynomial P of the above form is called conjugate reciprocal if P = P ∗. In
1969 M.A. Malik [15] observed that

max
τ∈[−π,π]

(|P ′(eiτ )|+ |P ∗′(eiτ )|) ≤ n max
τ∈[−π,π]

|P (eiτ )|
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for every algebraic polynomial P ∈ Pc
n. See also [2,16]. It was observed by A. Kroó, see

e.g. E.16 c] on p. 438 in [2], that if P ∈ Pc
n has the property that 1/a is a zero of P

with multiplicity at least k whenever a ∈ D is a zero of P with multiplicity k (there is no
restriction on the zeros of P outside D), then

max
τ∈[−π,π]

|P ′(eiτ )| ≤ n

2
max

τ∈[−π,π]
|P (eiτ )| .

Both of the above observations generalize of Lax’s inequality. We need to observe only
that |P ′(z)| ≤ |P ∗′(z)| for every z ∈ C with |z| = 1. See e.g. page 438 of [2]. Lax-type
inequalities for rational functions with fixed poles outside the closed unit circle were proved
by X. Li, R.N. Mohapatra, and R.Z. Rodriguez [13]. This was discovered independently by
P. Borwein and T. Erdélyi [2] (Theorem 7.11, p. 329) by using similar methods. Our first
five theorems recapture some old results of Videnskii [23,24] and some recent results of V.
Totik [20,21], and B. Nagy and V. Totik [18]. Our methods of proof are somewhat different
and some of them may be viewed as somewhat more elementary. Note that Nagy and Totik
[17,18] and Totik [20,21] establish more general results on Jordan curves as well as on closed
and compact subsets of the period symmetric with respect to the origin using potential
theoretic tools. Recently Totik [22] has extended even Videnskii’s Markov-type inequality
for trigonometric polynomials to unions of disjoint closed intervals. A number of interesting
polynomial inequalities, including Remez-type inequalities, on Jordan curves are studied
in the survey [1] by V.V. Andrievskii by using potential function theory and geometric
function theory. Our Theorem 2.7 offers an extension of Malik’s inequality to subarcs of
the unit circle. This is based on our Theorem 2.6 that may be viewed as the special case of
Theorem 2.7 dealing with conjugate reciprocal algebraic polynomials only. Our Theorem
2.8 is an extension of Lax’s inequality to subarcs. Moreover, in Theorem 2.8 we assume
only that P ∈ Pc

n satisfies the following: 1/a is a zero of P with multiplicity at least k
whenever a ∈ D is a zero of P with multiplicity k (there is no restriction on the zeros of P
outside D. Our Theorem 2.9 shows that Theorem 2.8 is asymptotically sharp. Theorems
2.12 and 2.13 establish the right Schur-type inequality for trigonometric polynomials of
degree at most n. Despite their simplicity these inequalities do not seem to have appeared
in the literature before. Theorem 2.13 is then used to recapture Videnskii’s Markov-
type inequality, stated as Theorem 2.11, from Videnskii’s Bernstein-type inequality. This
approach to prove Theorem 2.11 may be viewed as somewhat new.

2. Results

Our first two theorems establish a Bernstein-Szegő-Videnskii type inequality for real
trigonometric polynomials of integer and half-integer degree on intervals shorter than the
period. They follow from the trigonometric Bernstein inequality and a general principle
discovered by Totik [21]. However, in Section 3 we will present another self-contained proof
of Theorems 2.1 and 2.2 below.

Theorem 2.1. Let n ∈ N and ω ∈ (0, π). We have

|Q′(t)|2 + (B(n, ω, t))2|Q(t)|2 ≤ (B(n, ω, t))2 max
τ∈[−ω,ω]

|Q(τ)|2 , t ∈ (−ω, ω) ,
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for every Q ∈ Tn.
A straightforward modification of the proof of Theorem 2.1 gives the following result.

Theorem 2.2. Let n ∈ N and ω ∈ (0, π). We have

|Q′(t)|2 + (B(n− 1
2 , ω, t))

2|Q(t)|2 ≤
(
B
(
n− 1

2 , ω, t
))2

max
τ∈[−ω,ω]

|Q(τ)|2 , t ∈ (−ω, ω) ,

for all functions Q of the form

Q(τ) =

n∑

j=1

(
aj cos

(2j − 1)τ

2
+ bj sin

(2j − 1)τ

2

)
, aj , bj ∈ R .

It is routine now to derive the following Bernstein-type inequality from Theorems 2.1
and 2.2. This result is due to Videnskii [23,24], our approach to prove it is somewhat
different from his.

Theorem 2.3. Let n ∈ N and ω ∈ (0, π). We have

|R′(t)| ≤ B(n, ω, t) max
τ∈[−ω,ω]

|R(τ)| , t ∈ (−ω, ω) ,

for all real trigonometric polynomials R ∈ T c
n . Furthermore, we have

|R′(t)| ≤ B
(
n− 1

2 , ω, t
)

max
τ∈[−ω,ω]

|R(τ)| , t ∈ (−ω, ω) ,

for all functions R of the form

R(τ) =
n∑

j=1

(
aj cos

(2j − 1)τ

2
+ bj sin

(2j − 1)τ

2

)
, aj, bj ∈ C .

Now we can easily prove the following Bernstein-type inequality for complex polynomials
on a subarc of the unit circle. This is due to Nagy and Totik, see Theorem 1 in [18].

Theorem 2.4. Let n ∈ N and ω ∈ (0, π). We have

|P ′(eit)| ≤ 1

2
(B(n, ω, t) + n) max

τ∈[−ω,ω]
|P (eiτ )| , t ∈ (−ω, ω) ,

for every algebraic polynomial P ∈ Pc
n.

The next theorem is stated as Theorem 2 in [18] and it shows that Theorem 2.4 is
asymptotically sharp. Its proof is presented in [18] by using potential theoretic tools. In
this paper we will show it by using quite an elementary approach.
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Theorem 2.5. For every fixed ω ∈ (0, π) and t ∈ (−ω, ω) there are nonzero polynomials
Pn ∈ Pc

n such that

|P ′
n(e

it)| ≥ (1− o(1))
1

2
(B(n, ω, t) + n) max

τ∈[−ω,ω]
|Pn(e

iτ )|

as n tends to ∞.

Our next theorem improves the Nagy-Totik inequality for conjugate reciprocal polyno-
mials of degree n.

Theorem 2.6. Let n ∈ N and ω ∈ (0, π). We have

|P ′(eit)| ≤ 1

2
B(n, ω, t) max

τ∈[−ω,ω]
|P (eiτ )|

for every conjugate reciprocal algebraic polynomial P ∈ Pc
n of degree n and for every

t ∈ (−ω, ω).

The above theorem follows simply from the Malik-type inequality below.

Theorem 2.7. Let n ∈ N and ω ∈ (0, π). We have

|P ′(eit)|+ |P ∗′(eit)| ≤ B(n, ω, t) max
τ∈[−ω,ω]

|P (eiτ )|

for every P ∈ Pc
n of degree n and for every t ∈ (−ω, ω).

Our next result is an extention of Lax’s polynomial inequality to subarcs of the unit
circle.

Theorem 2.8. Let n ∈ N and ω ∈ (0, π). Suppose P ∈ Pc
n has the property that 1/a is

a zero of P with multiplicity at least k whenever a ∈ D is a zero of P with multiplicity k
(there is no restriction on the zeros of P outside D. We have

|P ′(eit)| ≤ 1

2
B(n, ω, t) max

τ∈[−ω,ω]
|P (eiτ )|

for every t ∈ (−ω, ω).

Our next theorem tells us that the Lax-type inequality of Theorem 2.9 is asymptotically
sharp.

Theorem 2.9. For every fixed ω ∈ (0, π) and t ∈ (−ω, ω) there are nonzero polynomials
Pn ∈ Pc

n with no zeros in the open unit disk D such that

|P ′
n(e

it)| ≥ (1− o(1))
1

2
B(n, ω, t)) max

τ∈[−ω,ω]
|Pn(e

iτ )|

as n tends to ∞.

In the proof of Theorem 2.8 we need the result below.
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Lemma 2.10. If k ≥ 0 and u ≥ k are integers,

Q(z) =

k∏

j=1

(z − rje
iϕj )(z − r−1

j e−iϕj )

u∏

j=k+1

(z − rje
iϕj ) ,

with
rj ∈ (0, 1), ϕj ∈ R , j = 1, 2, . . . , u,

then Q′(eiθ) 6= 0 for every θ ∈ R.

Our next theorem states Videnskii’s Markov-type inequality [23] on intervals shorter
than the period. An outline of its proof may also be found on pages 243-245 of [2]. The
main ideas of the proof are quite similar to those used in the proof of Theorem 2.1. We
remark that it is routine to extend the result below to the class T c

n by using the method
in the proof of Theorem 2.3.

Theorem 2.11. Let n ∈ N and ω ∈ (0, π). We have

max
τ∈[−ω,ω]

|R′(τ)| ≤ U ′
n(ω) max

τ∈[−ω,ω]
|Q(τ)| = 2n2 cot(ω/2) max

τ∈[−ω,ω]
|Q(τ)|

for every R ∈ Tn and 2n > (3 tan2(ω/2)+1)1/2, and equality holds if and only if R = cUn,
where Un ∈ Tn is of the form

Un(τ) = cos

(
2n arccos

(
sin(τ/2)

sin(ω/2

))
, τ ∈ [−ω, ω] ,

and c ∈ R.

Our next result is a Riesz-Schur type inequality for trigonometric polynomials on in-
tervals shorter than the period. This may be viewed as a new result. To formulate it,
associated with n ∈ N and ω ∈ (0, π) let

τk := 2 arcsin

((
sin

ω

2

)
cos

(4n− 2k + 1)π

4n

)
, k = 1, 2, . . . , 2n,

be the zeros of Un ∈ Tn defined in Theorem 2.11. Observe that

−ω < τ1 < τ2 < · · · < τ2n < ω .

Theorem 2.12. Let n ∈ N and ω ∈ (0, π). Assume that Q ∈ Tn,
|Q(τk)| ≤ B(n, ω, τk), k = 1, 2, . . . , 2n,

and
|Q(±ω)| ≤ 2n2 cot(ω/2) .

Then
|Q(τ)| ≤ |U ′

n(τ)|, τ ∈ [−ω, τ1] ∪ [τ2n, ω] .

Next we state a simple consequence of Theorem 2.12. It can be used to obtain Viden-
skii’s Markov-type inequality from Videnskii’s Bernstein-type inequality for trigonometric
polynomials on intervals shorter than the period. The theorem below may be viewed as a
new result as well.
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Theorem 2.13. Let n ∈ N and ω ∈ (0, π). Assume that Q ∈ Tn,

|Q(τ)| ≤ B(n, ω, τ) , τ ∈ (−ω, ω) ,

|Q(±ω)| ≤ 2n2 cot(ω/2) and 2n > (3 tan2(ω/2) + 1)1/2 .

Then

max
τ∈[−ω,ω]

|Q(τ)| ≤ 2n2 cot(ω/2) .

To deduce Theorem 2.11 from Theorem 2.3 applied to R ∈ Tn and Theorem 2.13 applied
to Q = R′ ∈ Tn we need to see only that the assumption

|Q(±ω)| = |R′(±ω)| ≤ |U ′
n(±ω)| = 2n2 cot(ω/2)

holds for all R ∈ Tn satisfying

max
τ∈[−ω,ω]

|R(τ)| = 1 .

However, this is a simple observation as the extremal polynomial R∗ ∈ Tn satisfying

|R∗′(±ω)|
maxτ∈[−ω,ω] |R∗(τ)| = sup

0 6=R∈Tn

|R′(±ω)|
maxτ∈[−ω,ω] |R(τ)|

can be characterized by equioscillating 2n + 1 times on the interval [−ω, ω], and hence it
can be identified as R∗ = ±Un.

We close this section by recalling the following Riesz-Schur type inequality proved in
[8] for trigonometric polynomials on intervals shorter than the period. However, although
it is a sharp result, it is not the “right” Riesz-Schur type inequality to derive Videnskii’s
Markov-type inequality from Videnskii’s Bernstein-type inequality for trigonometric poly-
nomials on intervals shorter than the period.

Theorem 2.14. Let n ∈ N and ω ∈ (0, π). We have

An(ω) := sup
0 6=Q∈Tn

maxτ∈[−ω,ω] |Q(τ)|
maxτ∈[−ω,ω] |Q(τ)( 12 (cos τ − cosω))1/2| =

2n+ 1

sin(ω/2)
,

and the supremum is attained if and only if

Q(τ) = c

cos

(
(2n+ 1) arccos

(
sin(τ/2)

sin(ω/2

))

(cos τ − cosω)1/2

with some 0 6= c ∈ R.

8



3. Proofs

Proof of Theorem 2.1. Let t ∈ (−ω, ω) and n ∈ N be fixed. A simple compactness argument
shows that there is a trigonometric polynomial Q∗ ∈ Tn such that

|Q∗′(t)|2 + (B(n, ω, t))2|Q∗(t)|2 = sup
Q∈Tn

(|Q′(t)|2 + (B(n, ω, t))2|Q(t)|2) ,

where the supremum is taken for all Q ∈ Tn with

max
τ∈[−ω,ω]

|Q(τ)| = 1 .

It can be shown by a standard variational method that Q∗ equioscillates in [−ω, ω] at least
2n times. That is, there are

−ω ≤ τ1 < τ2 < · · · < τ2n ≤ ω

such that
Q∗(τj) = ±(−1)j , j = 1, 2, . . . , 2n .

To see this let
E := {τ ∈ [−ω, ω] : |Q∗(τ)| = 1} .

There are E1, E2, . . . , Em such that

E =

m⋃

j=1

Ej , maxEj < minEj+1 , j = 1, 2, . . . , m− 1 ,

and
Q∗(τ) = ±(−1)j , τ ∈ Ej , j = 1, 2, . . . , m .

Since t ∈ (−ω, ω) and Q∗′(t) 6= 0, we have t /∈ E. We pick

αj ∈ (maxEj,minEj+1) , j = 1, 2, . . . , m− 1 .

If m ≤ 2n− 1, then we can choose a trigonometric polynomial R ∈ Tn of the form

R(τ) = c




m−1∏

j=1

sin
τ − αj

2


 sin2

τ − t

2
sin2n−1−m τ − π

2
,

where the constant c 6= 0 is chosen so that R(τ)Q∗(τ) > 0 for τ ∈ E1, and hence

R(τ)Q∗(τ) > 0 , τ ∈ Ej , j = 1, 2, . . . , m .

Let Qε := cε(Q
∗ − εR), where the constant cε > 0 is chosen so that

max
τ∈[−ω,ω]

|Qε(τ)| = 1 .
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If ε > 0 is sufficiently small then cε > 1, and Qε ∈ Tn contradicts the extremal property
of Q∗. Hence m ≥ 2n, that is, Q∗ equioscillates in [−ω, ω] at least 2n times, as we stated.

Now it is easy to see that one of the two cases below holds.
Case 1. Q∗ equioscillates 2n + 1 times on a larger interval [−ω̃, ω] or [−ω, ω̃] with some
ω̃ ∈ [ω, 2π − ω).
Case 2. Q∗ equioscillates 2n times on a period of length 2π.

In Case 1 without loss of generality we may assume that Q∗ equioscillates 2n+ 1 times
on [−ω, ω̃] with some ω̃ ∈ [ω, 2π − ω), the other case is analogous. Thus, there are

−ω = τ0 < τ1 < · · · < τ2n = ω̃

such that
Q∗(τj) = ±(−1)j , j = 1, 2, . . . , 2n .

Then it is a routine argument to identify Q∗ as

Q∗(τ) = ± cos

(
2n arccos

(
sin((τ − α)/2))

sin(β/2)

))
, τ ∈ [−ω, ω] ⊂ [−ω, ω̃] ,

with

α :=
ω̃ − ω

2
and β :=

ω̃ + ω

2
= ω + α < π .

Therefore

(3.1) |Q∗′(t)|2 + (B(n, β, t− α))2|Q∗(t)|2 = (B(n, β, t− α))2 .

Elementary calculus shows that

(3.2) (B(n, β, t− α))2 = (B(n, ω + α, t− α))2 ≤ (B(n, ω, t))2 , α ∈ [0, π − ω) .

To see this we have to show that

(3.3)
1 + cos(ω + α)

cos(t− α)− cos(ω + α)
≤ 1 + cosω

cos t− cosω
,

that is,

(3.4)
1 + cos(ω + α)

1 + cosω
≤ cos(t− α)− cos(ω + α)

cos t− cosω
.

However,

cos(t− α)− cos(ω + α)

cos t− cosω
=

2 sin
(
1
2(ω + t)

)
sin
(
1
2 (ω − t) + α

)

2 sin
(
1
2(ω + t)

)
sin
(
1
2(ω − t)

)

=
sin
(
( 12 (ω − t) + α

)

sin
(
1
2 (ω − t)

) .

(3.5)
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Let

f(τ) :=
sin(τ + α)

sin τ
, τ ∈ (0, π) .

Then

f ′(τ) =
− sinα

sin2 τ
,

hence f is decreasing on (0, π). Therefore t ∈ (−ω, ω) implies f(ω) ≤ f( 1
2
(ω− t)), that is,

sin(ω + α)

sinω
≤ sin

(
1
2 (ω − t) + α

)

sin
(
1
2
(ω − t)

) ,

Combining this with (3.5) we deduce that in order to prove (3.4) we have to show only

1 + cos(ω + α)

1 + cosω
≤ sin(ω + α)

sinω
.

However, this is equivalent to

tan
(
1
2
(ω + α)

)
≥ tan

(
1
2
ω
)
,

which obviously holds since ω/2 ≤ (ω + α)/2 < π/2. So (3.3) is justified.
Now (3.1) and (3.2) give that

|Q∗′(t)|2 + (B(n, ω, t))2|Q∗(t)|2

=|Q∗′(t)|2 + (B(n, β, t− α))2|Q∗(t)|2 + ((B(n, ω, t))2 − (B(n, β, t− α))2)|Q∗(t)|2

≤(B(n, β, t− α))2 + ((B(n, ω, t))2 − (B(n, β, t− α))2)

=(B(n, ω, t))2 .

This finishes the proof in Case 1.
In Case 2, first observe that

(B(n, ω, t))2 = n2

(
1 + cosω

cos t− cosω
+ 1

)
≥ n2 .

Hence the Bernstein-Szegő inequality implies that

|Q∗′(t)|2 + (B(n, ω, t))2|Q∗(t)|2

=|Q∗′(t)|2 + n2|Q∗(t)|2 + ((B(n, ω, t))2 − n2)|Q∗(t)|2

≤n2 + ((B(n, ω, t))2 − n2)

=(B(n, ω, t))2 .

(In fact, it is easy to see that in this case Q∗ is of the form Q∗(x) = sin(n(x − γ)) with
some γ ∈ R, so a simple calculus instead of the Bernstein-Szegő inequality already implies
the above inequality.) This finishes the proof in Case 2.
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Proof of Theorem 2.3. We prove only the first statement, the second one can be verified in
the same way. If R ∈ T c

n is a trigonometric polynomial of degree at most n and t ∈ (−ω, ω),
then pick α ∈ C with |α| = 1 so that αR′(t) = |R′(t)| . Now applying Theorem 2.1 to the
real trigonometric polynomial Q ∈ Tn defined as Q(τ) := Re(αR(τ)), we get theorem. �

Proof of Theorem 2.4. Let P ∈ Pc
n. We introduce R as

R(τ) = e−inτ/2P (eiτ ) .

If n = 2m is even, then R ∈ T c
m, while if n = 2m − 1 is odd, then R is a function of the

form

R(τ) =

n∑

j=1

(
aj cos

(2j − 1)τ

2
+ bj sin

(2j − 1)τ

2

)
, aj, bj ∈ C .

In both cases we have

R′(t) = e−int/2(−in/2)P (eit) + e−int/2P ′(eit)eiti ,

and hence
|P ′(eit)| ≤ |R′(t)|+ n

2
|P (eit)| .

The theorem now follows from Theorem 2.3. �

Proof of Theorem 2.5. Let 0 < 2ε < π − ω and ω̃ := ω + 2ε. We define

Uk(τ) := cos

(
2k arccos

(
sin(τ/2)

sin(ω̃/2

))
, τ ∈ [−ω̃, ω̃] ,

and

Vk(τ) := sin

(
2k arccos

(
sin(τ/2)

sin(ω̃/2

))
, τ ∈ [−ω̃, ω̃] .

Observe that Uk ∈ Tk, and each of the intervals between consecutive extreme points of Uk

on [−ω̃, ω̃] contains at most one extreme point of Tk defined by Tk(τ) = sin(kτ) on the
period, otherwise either Uk − Tk ∈ Tk or Uk + Tk ∈ Tk would have at least 2k+ 1 zeros in
[−ω̃, ω̃] counted with multiplicities, a contradiction. Hence, the distance between any two
consecutive extreme points of Uk is at most π/k. Let n = 2m, m = k + u, u = o(m). We
define Pn ∈ Pc

n by
e−imτPn(e

iτ ) := Qm(τ) + iRm(τ)

with Qm := Uk ∈ Tm, Rm := VkSu ∈ Tm, where Su is defined by

Su(τ) := Hu

(
sin(τ/2)

sin(ω̃/2)

)
, τ ∈ [−ω̃, ω̃] ,

with an odd Hu ∈ P2u−1. It is easy to see that the fact that Hu ∈ P2u−1 is odd ensures
that both Qm and Rm are in Tm, indeed, and hence Pn ∈ Pc

n. Let t ∈ (−ω, ω) be fixed.
Without loss of generality we may assume that t ∈ [0, ω). Let

a := at,ε,k := min{τ ≥ t : Uk(τ) = 0, τ ∈ (−ω̃, ω̃) \ (−ε, ε)} .
12



As the distance between any two consecutive extreme points of Uk is at most π/k, it is easy
to see that |t − a| ≤ 2π/k + ε. Note that Uk(a) = 0 implies |Vk(a)| = 1. Let L := Lε be
the piecewise linear continuous function defined on [−ω̃, ω̃] taking the value 1 on [−ω̃,−ε],
and the value −1 on [ε, ω̃]. Using the Weierstrass Approximation Theorem we can pick
the odd polynomial Hu ∈ P2u−1 so that

max
τ∈[−ω̃,ω̃]

|Su(τ)− L(τ)| ≤ ε .

We have
|Su(a) + 1| ≤ ε and max

τ∈[−ω̃,ω̃]
|Su(τ)| ≤ 1 + ε .

It follows that

|Pn(e
iτ )|2 = |Qm(τ)|2 + |Rm(τ)|2 = |Uk(τ)|2 + |Vk(τ)|2|Su(τ)|2

≤ (1 + ε)2(|Uk(τ)|2 + |Vk(τ)|2) ≤ (1 + ε)2 , τ ∈ [−ω̃, ω̃] ,

that is,

(3.6) max
τ∈[−ω̃,ω̃]

|Pn(e
iτ )| ≤ (1 + ε) .

Also, using |Su(a) + 1| ≤ ε and |Vk(a)| = 1, we easily deduce that

ieiτP ′
n(e

iτ ) =
d

dτ
Pn(e

iτ ) =
d

dτ

(
eimτ (Qm(τ) + iRm(τ))

)

= eimτ (Q′
m(τ) + iR′

m(τ) + im(Qm(τ) + iRm(τ)))

= eimτ ((Q′
m(τ)−mRm(τ)) + i(R′

m(τ) +m(Qm(τ))) .

This, together with |Su(a) + 1| ≤ ε and |Vk(a)| = 1, implies that

|P ′
n(e

ia)| = |e−imaieiaP ′
n(e

ia)| ≥ |Re(e−imaieiaP ′
n(e

ia))|
≥ |Q′

m(a)−mRm(a)| = |U ′
k(a)−mVk(a)Su(a)|

= |B(k, a, ω̃)Vk(a) +mVk(a)−m(Su(a) + 1)Vk(a))|
≥ (B(k, a, ω̃) +m)|Vk(a)| −m|Su(a) + 1||Vk(a)|
= B(k, a, ω̃) +m−mε .

(3.7)

Now let Pn,t ∈ Pc
n be defined by

(3.8) Pn,t(e
iτ ) := Pn(e

i(τ+a−t)) , t ∈ τ ∈ R .

If ε > 0 is sufficiently small and k and n are sufficiently large, then

(3.9)
B(k, a, ω̃) +m−mε

B(k, t, ω̃) +m
is as close to 1 as we wish,
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and |t− a| ≤ 2π/k + ε < 2ε and (3.6) imply that

(3.10) max
τ∈[−ω,ω]

|Pn,t(e
iτ )| ≤ max

τ∈[−ω̃,ω̃]
|Pn(e

iτ )| ≤ (1 + ε) .

Observe that (3.8) and (3.7) imply

(3.11) |P ′
n,t(e

it)| = |P ′
n(e

ia)| = B(k, a, ω̃) .

Combining (3.9), (3.10), and (3.11), and recalling that n = 2m, m = k+u, and u = o(m),
we get the theorem. �

Proof of Theorem 2.6. If the algebraic polynomial P ∈ Pc
n of degree n is conjugate recip-

rocal then Q defined by

Q(τ) = e−inτ/2P (eiτ )

is a real trigonometric polynomial of degree n/2. Hence we can apply the Bernstein-Szegő-
Videnskii inequality of Theorem 2.1 (when n is even) or Theorem 2.2 (when n is odd) to
Qn to obtain

|P ′(eit)| = |ieitP ′(eit)| = |Q′(t)eint/2 + (in/2)eint/2Q(t)| = |Q′(t) + (in/2)Q(t)|

≤ B(n/2, ω, t) max
τ∈[−ω,ω]

|Q(τ)| = 1

2
B(n, ω, t) max

τ∈[−ω,ω]
|Q(τ)|

�

Proof of Theorem 2.7. Let P ∈ Pc
n. Let c = eiγ , where γ ∈ R will be chosen later. We

define R := cP . Then R∗ = cP ∗
n . Observe that S := R + R∗ satisfies S = S∗, and

hence it is a conjugate reciprocal algebraic polynomial of degree at most n. Observe that
R∗(z) = z−nR(z) and hence |R∗(z)| = |R(z)| for all z ∈ ∂D. Therefore

max
τ∈[−ω,ω]

|S(eiτ )| ≤ 2 max
τ∈[−ω,ω]

|R(eiτ )| = 2 max
τ∈[−ω,ω]

|P (eiτ )| .

Using Theorem 2.6 with S we conclude that

|(cP ′ + cP ∗′)(eit)| =|(R′ +R∗′)(eit)| = |S′(eit)|

≤1

2
B(n, ω, t) max

τ∈[−ω,ω]
|S(eiτ )|

≤B(n, ω, t) max
τ∈[−ω,ω]

|P (eiτ )| .

Now we choose c = eiγ with γ ∈ R so that

γ :=
1

2
arg

(
P ∗′(eit)

P ′(eit)

)

14



if P ′(eit)P ∗′(eit) 6= 0 , and γ ∈ R can be arbitrary if P ′(eit)P ∗′(eit) = 0 . We conclude that

|P ′(eit)|+ |P ∗′(eit)| = |(cP ′ + cP ∗′)(eit)| = |(R′ +R∗′)(eit)| = |S′(eit)|
≤ B(n, ω, t) max

τ∈[−ω,ω]
|S(eiτ )|

≤ B(n, ω, t) max
τ∈[−ω,ω]

|P (eiτ )| .

�

Proof of Theorem 2.8. This follows from Theorem 2.7. We need to observe only that
|P ′(z)| ≤ |P ∗′(z)| for every z ∈ ∂D. This statement may be found on page 438 of [2], as a
hint to an exercise. It may be proved as follows. Let c ∈ C with |c| < 1. Without loss of
generality we may assume that P has no zeros on the unit circle; and then the statement
in the general case follows by a continuity argument. Observe that |P (z)| = |P ∗(z)| for
all z ∈ ∂D, and hence Rouche’s Theorem implies that P ∗ and Q := P ∗ − cP have the
same number of zeros in the open unit disk D (by counting multiplicities). Now observe
that if P satisfies the assumption of the theorem, then Q := P ∗ − cP is of the form
specified in Theorem 2.10. Hence Q′ := P ∗′ − cP ′ does not vanish on the unit circle,
and |P ′(z)| ≤ |P ∗′(z)| follows for all z ∈ ∂D, as we stated. This finishes the proof of the
theorem. �

Proof of Theorem 2.9. Let n = 2m and let Tm ∈ Tm be defined by

Tm(τ) = cos

(
2m arccos

(
sin(τ/2)

sin(ω/2)

))
, τ ∈ [−ω, ω] .

Let Pn ∈ Pn be defined by
Pn(e

iτ ) = eimτTm(τ) .

Then Pn has all its zeros on the unit circle, in fact on the subarc {eiτ : τ ∈ [−ω, ω]} of the
unit circle, and

|P ′
n(e

it)| = B(m,ω, t) =
1

2
B(n, ω, t) max

τ∈[−ω,ω]
|Pn(e

iτ )|

at every t for which P (eit) = 0. It is left to the reader to see how the above observation
implies that Theorem 2.8 is asymptotically sharp for all ω ∈ (0, π) and t ∈ (−ω, ω) as n
tends to ∞. �

Proof of Lemma 2.10. A simple calculation shows that

Re

(
eiθQ′(eiθ)

Q(eiθ)

)
=

k∑

j=1

(rj + r−1
j − 2 cos(ϕj − θ))2

(1− 2rj cos(ϕj − θ) + r2j )(1− 2r−1
j cos(ϕj − θ) + r−2

j )

+

u∑

j=k+1

1− rj cos(ϕj − θ)

1− 2rj cos(ϕj − θ) + r2j

>0 .
15
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Proof of Theorem 2.12. As

U ′
n(τk) = (−1)kB(n, ω, τk), k = 1, 2, . . . , 2n ,

the main assumptions of the theorem may be read as

|Q(τk)| ≤ |U ′
n(τk)|, k = 1, 2, . . . , 2n ,

and
|Q(±ω)| ≤ |U ′

n(±ω)| .

Suppose to the contrary that |Q(τ)| > |U ′
n(τ)| for some τ ∈ [−ω, τ1] ∪ [τ2n, ω]. Replacing

Q(·) with −Q(±·), if necessary, without loss of generality we may assume that τ ∈ [τ2n, ω]
and Q(τ) > U ′

n(τ). But then 0 6= R := Q − (1 + ε)U ′
n with a sufficiently small ε > 0 has

at least one zero on each of the intervals (τ1, τ2), (τ2, τ3), . . . , (τ2n−1, τ2n), (τ2n, τ), and
(τ, τ1 + 2π), and hence at least 2n + 1 zeros in the period [−π, π), a contradiction. Thus
the conclusion of the theorem holds. �

Proof of Lemma 2.13. As it is observed in [23] or on page 244 of [2] see Step 1), the
assumption

2n > (3 tan2(ω/2) + 1)1/2

implies that U ′′(τ) > 0 for τ ∈ [τ2n, ω], and U ′′(τ) < 0 for τ ∈ [−ω, τ1] . Hence U ′
n

is increasing on [τ2n, ω] , and decreasing on [−ω, τ1]. This, together with Theorem 2.12,
yields that if Q ∈ Tn satisfies the assumptions of the theorem, then

|Q(τ)| ≤ |U ′
n(τ)| ≤ |U ′

n(±ω)| , τ ∈ [−ω, τ1] ∪ [τ2n, ω] .

On the other hand, since B(n, ω, τ) is increasing on [0, ω) and decreasing on (−ω, 0], we
have

|Q(τ)| ≤ B(n, ω, τ) ≤ B(n, ω, τ1) = |U ′
n(τ1)| = |U ′

n(τ2n)| ≤ |U ′
n(ω)| , τ ∈ [τ1, τ2n] .

Combining the previous two inequalities with

|U ′
n(ω)| = 2n2 cot(ω/2)

gives the theorem. �
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6. T. Erdélyi, Extremal properties of polynomials, in “A Panorama of Hungarian Mathematics in
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