
SUMS OF MONOMIALS WITH LARGE MAHLER MEASURE

Stephen Choi and Tamás Erdélyi
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Abstract. For n ≥ 1 let

An :=

{

P : P (z) =
n
∑

j=1

zkj : 0 ≤ k1 < k2 < · · · < kn , kj ∈ Z

}

,

that is, An is the collection of all sums of n distinct monomials. These polynomials are also
called Newman polynomials. If α < β are real numbers then the Mahler measureM0(Q, [α, β])

is defined for bounded measurable functions Q(eit) on [α, β] as

M0(Q, [α, β]) := exp

(

1

β − α

∫ β

α

log |Q(eit)| dt
)

.

Let I := [α, β]. In this paper we examine the quantities

L0

n(I) := sup
P∈An

M0(P, I)√
n

and L0(I) := lim inf
n→∞

L0

n(I)

with 0 < |I| := β − α ≤ 2π.

1. Introduction

The large sieve of number theory [M-78] asserts that if

P (z) =

n
∑

k=−n

akz
k

is a trigonometric polynomial of degree at most n,

0 ≤ t1 < t2 < · · · < tm ≤ 2π ,

Key words and phrases. large sieve inequalities, Mahler measure, L1 norm, constrained coefficients,

Fekete polynomials, Littlewood polynomials, Newman polynomials, sums of monomials.
2000 Mathematics Subject Classifications. 11C08, 41A17

Typeset by AMS-TEX
1



and
δ := min{t1 − t0, t2 − t1, . . . , tm − tm−1} , t0 := tm − 2π ,

then
m
∑

j=1

∣

∣P
(

eitj
)
∣

∣

2 ≤
( n

2π
+ δ−1

)

∫ 2π

0

∣

∣P
(

eit
)
∣

∣

2
dt .

There are numerous extensions of this to Lp norm (or involving ψ
(
∣

∣P
(

eit
)
∣

∣

p)
, where ψ is

a convex function), p > 0, and even to subarcs. See [LMN-87] and [GLN-01]. There are
versions of this that estimate Riemann sums, for example, with t0 := tm − 2π,

m
∑

j=1

∣

∣P
(

eitj
)
∣

∣

2
(tj − tj−1) ≤ C

∫ 2π

0

∣

∣P
(

eit
)
∣

∣

2
dt ,

with a constant C independent of n, P , and {t1, t2, . . . , tm}. These are often called for-
ward Marcinkiewicz-Zygmund inequalities. Converse Marcinkiewicz-Zygmund inequalities
provide estimates for the integrals above in terms of the sums on the left-hand side, see
[L-98], [MR-99], [ZZ-95], [KL-04]. A particularly interesting case is that of the L0 norm.
A result in [EL-07] asserts that if {α1, α2, . . . , αn} are the n-th roots of unity, and P is a
polynomial of degree at most n, then

(1.1)

n
∏

j=1

|P (αj)|1/n ≤ 2M0(P ) ,

where

M0(P ) := exp

(

1

2π

∫ 2π

0

log |P (eit)| dt
)

is the Mahler measure of P . In [EL-07] we were focusing on showing that methods of
subharmonic function theory provide a simple and direct way to generalize previous re-
sults. We also extended (1.1) to points other than the roots of unity and exponentials of
logarithmic potentials of the form

P (z) = c exp

(
∫

log |z − t| dν(t)
)

,

where c ≥ 0 and ν is a positive Borel measure of compact support with ν(C) ≥ 0. Inequal-
ities for exponentials of logarithmic potentials and generalized polynomials were studied
by several authors, see [E-91], [E-92], [EN-92], [ELS-94], [EMN-92], [BE-95], and [EL-07],
for instance.

Let α < β be real numbers. The Mahler measure M0(Q, [α, β]) is defined for bounded
measurable functions Q(eit) defined on [α, β] as

M0(Q, [α, β]) := exp

(

1

β − α

∫ β

α

log |Q(eit)| dt
)

.
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It is well known (see [HLP-52], for instance) that

M0(Q, [α, β]) = lim
p→0+

Mp(Q, [α, β]) ,

where

Mp(Q, [α, β]) :=

(

1

β − α

∫ β

α

∣

∣Q(eit)
∣

∣

p
dt

)1/p

, p > 0 .

It is a simple consequence of the Jensen formula that

M0(Q) :=M0(Q, [0, 2π]) = |c|
n
∏

k=1

max{1, |αk|}

for every polynomial of the form

Q(z) = c
n
∏

k=1

(z − αk) , c, αk ∈ C .

Finding polynomials with suitably restricted coefficients and maximal Mahler measure
has interested many authors. The class

Ln :=

{

p : p(z) =
n
∑

k=0

akz
k , ak ∈ {−1, 1}

}

of Littlewood polynomials and the class

Kn :=

{

p : p(z) =

n
∑

k=0

akz
k , ak ∈ C, |ak| = 1

}

of unimodular polynomials are two of the most important classes considered. We also let
Pn be the set of polynomials of degree n with complex coefficients. Beller and Newman
[BN-73] constructed unimodular polynomials of degree n whose Mahler measure is at least√
n − c/ logn with an absolute constant c > 0. For a prime number p, the p-th Fekete

polynomial is defined as

fp(z) :=

p−1
∑

k=1

(

k

p

)

zk ,

where
(

k

p

)

=











1, if x2 ≡ k (mod p) has a nonzero solution,

0, if p divides k ,

−1, otherwise

is the usual Legendre symbol. Since fp has constant coefficient 0, it is not a Littlewood
polynomial, but gp defined by gp(z) := fp(z)/z is a Littlewood polynomial, and has the
same Mahler measure as fp. Fekete polynomials are examined in detail in [B-02]. In
[EL-07] we proved the following result.
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Theorem 1.1. For every ε > 0 there is a constant cε such that

M0(fp, [0, 2π]) ≥
(

1

2
− ε

)√
p

for all primes p ≥ cε.

One of the key lemmas in the proof of the above theorem formulates a remarkable
property of the Fekete polynomials. A simple proof is given in [B-02, pp. 37-38], [H-82].

Lemma 1.2 (Gauss). We have

fp(z
j
p) = εp

(

j

p

)

p1/2 , j = 1, 2, . . . , p− 1 ,

and fp(1) = 0, where

zp := exp

(

2πi

p

)

is the first p-th root of unity, and

εp =

{

1, if p ≡ 1 (mod4)

i, if p ≡ 3 (mod4) .

The distribution of the zeros of Littlewood polynomials plays a key role in the study of
the Mahler measure of Littlewood polynomials. There are many papers on the distribution
of zeros of polynomials with constraints on their coefficients, see [ET-50], [BE-95], [BE-97],
[B-97], [B-02], [BEK-99], [E-08], and P-11], for example. Results of this variety have been
exploited in [EL-07] to obtain Theorem 1.1.

From Jensen’s inequality,

M0(fp, [0, 2π]) ≤M2(fp, [0, 2π]) =
√

p− 1 .

However, as it is observed in [EL-07], (1/2−ε) in Theorem 1.1 cannot be replaced by (1−ε).
Indeed if p is prime of the form p = 4m+1, then the polynomial fp is self-reciprocal, that
is, zpfp(1/z) = fp(z), and hence

fp(e
2it) = eipt

(p−3)/2
∑

k=0

ak cos((2k + 1)t), ak ∈ {−2, 2} .

A result of Littlewood [L-66] implies that

M0(fp, [0, 2π]) ≤
1

2π

∫ 2π

0

|fp(eit)| dt =
1

2π

∫ 2π

0

|fp(e2it)| dt ≤ (1− ε)
√

p− 1 ,

for some absolute constant ε > 0. A similar argument shows that the same estimate holds
when p is a prime of the form p = 4m + 3. It is an interesting open question whether or
not there is a sequence of Littlewood polynomials (fn) such that

M0(fn, [0, 2π]) ≥ (1− ε)
√
n

for all ε > 0 and sufficiently large n ≥ Nε.

In [E-11] we proved the following sieve type lower bound for the Mahler measure of
polynomials of degree at most n on subarcs of the unit circle.

4



Theorem 1.3. Let ω1 < ω2 ≤ ω1 + 2π ,

ω1 ≤ t0 < t1 < · · · < tm ≤ ω2 ,

t−1 := ω1 − (t0 − ω1) , tm+1 := ω2 + (ω2 − tm) ,

δ := max{t0 − t−1, t1 − t0, . . . , tm+1 − tm} ≤ 1

2
sin

ω2 − ω1

2
.

There is an absolute constant c1 > 0 such that

m
∑

j=0

tj+1 − tj−1

2
log |P (eitj )| ≤

∫ ω2

ω1

log |P (eit)| dt+ c1E(N, δ, ω1, ω2)

for every polynomial P of the form

P (z) =

N
∑

j=0

bjz
j , bj ∈ C , b0bN 6= 0 ,

where

E(N, δ, ω1, ω2) := (ω2 − ω1)Nδ +Nδ2 log(1/δ) +
√

N logR

(

δ log(1/δ) +
δ2

ω2 − ω1

)

and
R := |b0bN |−1/2 max

t∈R

|P (eit)| .

Observe that R appearing in the above theorem can be easily estimated by

R ≤ |b0bN |−1/2(|b0|+ |b1|+ · · ·+ |bN |) .

As a reasonably straightforward consequence of our sieve-type inequality above, the
lower bound for the Mahler measure of Fekete polynomials below follows.

Theorem 1.4. There is an absolute constant c2 > 0 such that

M0(fp, [α, β]) ≥ c2
√
p

for all prime numbers p and for all α, β ∈ R such that

4π

p
≤ (log p)3/2

p1/2
≤ β − α ≤ 2π .

It looks plausible that Theorem 1.4 holds whenever 4π/p ≤ β − α ≤ 2π , but we do not
seem to be able to handle the case 4π/p ≤ β − α ≤ (log p)3/2p−1/2 in this paper.

In [E-12] we proved the following.
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Theorem 1.5. There are constants c3(q, ε) depending only on q > 0 and ε > 0 such that

M0(fp, [α, β]) ≤Mq(fp, [α, β]) ≤ c3(q, ε)
√
p ,

whenever 2p−1/2+ε ≤ β − α ≤ 2π.

For n ≥ 1 let

An := {P : P (z) =

n
∑

j=1

zkj : 0 ≤ k1 < k2 < · · · < kn , kj ∈ Z} ,

that is, An is the collection of all sums of n distinct monomials. Let I := [α, β]. We define

L1
n(I) := sup

P∈An

M1(P, [α, β])√
n

and L1(I) := lim inf
n→∞

L1
n(I) ≤ Σ(I) := sup

n∈N

L1
n(I).

In the case of I = [0, 2π] the problem of calculating Σ(I) appears in a paper of Bourgain
[B-93]. Deciding whether Σ([0, 2π]) < 1 or Σ([0, 2π]) = 1 would be a major step toward
confirming or disproving other important conjectures. Karatsuba [K-98] observed that

Σ([0, 2π]) ≥ 1/
√
2 ≥ 0.707. Indeed, taking, for instance,

Pn(z) =

n−1
∑

k=0

z2
k

, n = 1, 2, . . . ,

it is easy to see that

(1.2) M4(Pn, [0, 2π])
4 = 2n(n− 1) + n ,

and as
n =M2(Pn, [0, 2π])

2 ≤M1(Pn, [0, 2π])
2/3M4(Pn, [0, 2π])

4/3 ,

the inequality

(1.3) M1(Pn, [0, 2π]) ≥
√

n2

2n− 1
≥

√
n√
2

follows. Similarly, if Sn := {a1 < a2 < · · · < an} is a Sidon set (that is, Sn is a subset of
integers such that no integer has two essentially distinct representations as the sum of two
elements of Sn), then the polynomials

Pn(z) =
∑

a∈Sn

za , n = 1, 2, . . . ,

satisfy (1.2) and (1.3).
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Improving Karatsuba’s result, by using a probabilistic method Aistleitner [A-13] proved
that Σ([0, 2π]) ≥ √

π/2 ≥ 0.886. We note that P. Borwein and Lockhart [BL-01] investi-
gated the asymptotic behavior of the mean value of normalized Lp norms of Littlewood
polynomials for arbitrary p > 0. Using the Lindeberg Central Limit Theorem and domi-
nated convergence, they proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mp(f, [0, 2π]))
p

np/2
= Γ

(

1 +
p

2

)

.

An analogue of this result does not seem to be known for p = 0 (the Mahler measure).
However, it follows simply from the p = 1 case of the the result in [BL-01] quoted above

that Σ([0, 2π]) ≥
√

π/8 ≥ 0.626. Moreover, this can be achieved by taking the sum of
approximately half of the monomials of {x0, x1, . . . , x2n} and letting n tend to ∞.

Let Qn(z) :=
∑n

k=1 ak,nz
2k

. In [CE-13] we showed that

lim
n→∞

Mp(Qn)√
n

= Γ
(

1 +
p

2

)1/p

,

and we have recaptured Aistleitner’s result Σ([0, 2π]) ≥ Γ(3/2) =
√
π/2 ≥ 0.886, as the

special case p = 1.
Littlewood asked how small the ratio

M4(Q, [0, 2π])

M2(Q, [0, 2π])
=
M4(Q, [0, 2π])√

n+ 1

can be for polynomials Q ∈ Ln as the degree tends to infinity. As it is remarked in [JKS-

13], since 1988, the least known asymptotic value of this ratio has been 4

√

7/6 which was
conjectured to be minimum. In [JKS-13] this conjecture was disproved by showing that
there is a sequence (Qnk

) of Littlewood polynomials Qnk
∈ Lnk

, derived from the Fekete
polynomials, for which

lim
k→∞

M4(Qnk
, [0, 2π])√

nk + 1
< 4

√

22/19 .

Hence, it follows by a simple application of Hölder’s inequality that

lim inf
k→∞

M1(Qnk
, [0, 2π])√

nk + 1
≥
√

19/22 > 0.929 .

In this paper we examine the size of

L0
n(I) := sup

P∈An

M0(P, [α, β])√
n

and L0(I) := lim inf
n→∞

L0
n([α, β])

with 0 < |I| := β − α ≤ 2π.
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2 New Results

Theorem 2.1. There are polynomials Sn ∈ An ∩ PN with N = 2n+ o(n) such that

M0(Sn, [0, 2π]) ≥
(

1

2
√
2
+ o(1)

) √
n , n ∈ N .

That is,

L0([0, 2π]) ≥ 1

2
√
2
.

Theorem 2.2. There are polynomials Sn ∈ An ∩ PN with N = 2n + o(n), an absolute
constant c4 > 0, and a constant c5(ε) > 0 depending only on ε > 0 such that

M0(Sn, [α, β]) ≥ c4
√
n

for all n ∈ N and α, β ∈ R such that

4π

n
≤ (logn)3/2

n1/2
≤ β − α ≤ 2π ,

while

M1(Sn, [α, β]) ≤ c5(ε)
√
n

for all n ∈ N and α, β ∈ R such that (n/2)−1/2+ε ≤ β − α ≤ 2π.

Theorem 2.3. There are polynomials Pn ∈ Ln such that

M0(Pn, [0, 2π]) ≥
(

1

2
+ o(1)

) √
n , n ∈ N .

Theorem 2.4. There are polynomials Pn ∈ Ln, and absolute constant c4 > 0, and a
constant c5(ε) > 0 depending only on ε > 0 such that

M0(Pn, [α, β]) ≥ c4
√
n

for all n ∈ N and α, β ∈ R such that

4π

n
≤ (logn)3/2

n1/2
≤ β − α ≤ 2π ,

while

M1(Pn, [α, β]) ≤ c5(ε)
√
n

for all n ∈ N and α, β ∈ R such that (n/2)−1/2+ε ≤ β − α ≤ 2π.
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3. Lemmas

Theorem 1.3 will be used as a key lemma in the proof of Theorem 2.2. Theorem 1.5
will play a key role in the proof of Theorem 2.2. In addition to these we need the following
lemmas. We present the short proof of each lemma right after the lemma. The new results
stated in Section 2 will be proved in Section 4.

Lemma 3.1. We have
(

p−1
∏

k=0

|Q(zkp )|
)1/p

≤ 2N/pM0(Q)

for all polynomials Q of degree N with complex coefficients.

Proof. Let

Q(z) = c

N
∏

k=1

(z − αk) , c, αk ∈ C .

Note that
|αp

k − 1|1/p ≤ (2|αk|p)1/p = 21/p|αk| , |αk| ≥ 1 ,

while
|αp

k − 1|1/p ≤ 21/p , |αk| < 1 .

Multiplying these inequalities for k = 1, 2, . . . , N , we obtain

(

p−1
∏

k=0

|Q(zkp )|
)1/p

= c

(

N
∏

k=1

|αp
k − 1|

)1/p

≤ 2N/pc

N
∏

k=1

max{|αk|, 1} ≤ 2N/pM0(Q) .

�

For r ∈ {1, 3}, let π(x, 4, r) denote the number of prime numbers of the form p = 4k+ r
in [1, x]. A well known result (e.g. See [A-76]) states that

lim
x→∞

2π(x, 4, 1)

x/ log x
= lim

x→∞

2π(x, 4, 3)

x/ log x
= 1 .

An immediate consequence of this is the following.

Lemma 3.2. For every n ≥ 5 there is a prime of the form p = 4k + 3 and there are
integers q > 0 and r ∈ {0, 1} such that

n = µ+ 1 + 2q + r , µ =
p− 1

2
, q = o(n) .

Proof. We first choose r so that n− r is even. Then we choose a prime p = 4k+3 so close
to 2(n− r)− 1 that

0 < q :=
2(n− r)− (p+ 1)

4
= o(n).
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This can be done because of the asymptotic estimation of π(x, 4, 3). �

Associated with a prime number p let 0 < q ≤ µ be an integer. Let

0 < a1 < a2 < · · · < aµ−1 < aµ ≤ p− 1

denote the quadratic residues and

0 < b1 < b2 < · · · < bµ−1 < bµ ≤ p− 1

denote the quadratic non-residues modulo p. Let

Gq(z) :=

q
∑

j=1

(

zaj + z−aj
)

.

Note that as a simple consequence of the Pólya-Vinogradov inequality (see Ch. 23, pp.
135–137 in [D-80]), we have aq = 2q +O(

√
p log p). For an integer k ∈ N we also define

Dk(z) :=

k−1
∑

j=0

zj .

Using a possible decomposition given by Lemma 3.2, for any integer n ≥ 5 we define
Sn ∈ An ∩ PN with N := p+ aq + r = 2n+ o(n) by

(3.1) Sn(z) :=
1

2
(fp(z) +Dp(z) + 1) + zpGq(z) + rzp+aq+1

Note that the selection of the numbers aj ∈ N ensures that the terms in 1
2
(fp(z)+Dp(z)+1)

and zpGq(z) do not overlap. So Sn ∈ An ∩ PN with N = 2n+ o(n), indeed.
Combining (3.1), Lemma 3.2 we can easily deduce the following.

Lemma 3.3. Let Sn ∈ An be defined by (3.1). We have

|Sn(z
j
p)| ≥

√
p

2
− 1 , j = 1, 2, . . . , p− 1 ,

where zp := exp(2πi/p) is the first p-th root of unity. We also have Sn(1) = n.

Proof. When j = 0 we have Sn(z
0
p) = p+1

2
+ 2q + r = n, as stated in the lemma. Now

let j ∈ {1, 2, . . . , p − 1}. Lemma 1.2 implies that
∣

∣Im(fp(z
j
p))
∣

∣ =
√
p. Also Dp(z

j
p) = 0,

1 + zjpp Gq(z
j
p) ∈ R, and Im(rz

j(p+aq+1)
p ) ≤ 1. Hence

|Sn(z
j
p)| ≥

∣

∣Im(Sn(z
j
p))
∣

∣ ≥
√
p

2
− 1 , j = 1, 2, . . . , p− 1 , k ≥ √

p . �
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Lemma 3.4 (see [IP-84]). There is always a prime number in the interval [n−n23/42, n]
for all sufficiently large n ∈ N.

Lemma 3.4 has the following straightforward consequence.

Lemma 3.5. For every n ≥ 5 there are primes p and q and r ∈ N such that

n = p+ q + r q = O(n2/3), and r = O(n4/9) .

Proof. We first choose a prime p such that 1 ≪ n− p ≪ n23/42. Then we choose another

prime q such that 0 ≤ n − p − q ≤ (n − p)23/42 ≪ n(23/42)2 ≪ n4/9. Now q ≤ n − p ≪
n23/42 ≪ n2/3 and r := n− p− q ≪ n4/9. �

Using a possible decomposition given by Lemma 3.5, for any integer n ≥ 5 we define

(3.2) Pn := 1 + fp(z) + zpfq(z) + zp+qDr ∈ Ln

The following property of the Fekete polynomials fp is due to Montgomery [M-80].

Lemma 3.6. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√
p log log p ≤ max

t∈R

|fp(eit)| ≤ c2
√
p log p .

Combining (3.2), Lemma 3.5, and the upper bound of Lemma 3.6 we can easily deduce
the following.

Lemma 3.7. Let Pn ∈ Ln be defined by (3.2). We have

|Pn(z
j
p)| = (1 + o(1))

√
p , j = 1, 2, . . . , p− 1 ,

and Pn(1) = 1 + r ≥ 1, where zp := exp(2πi/p) is the first p-th root of unity.

4. Proof of the Theorems

Proof of Theorem 2.1. The theorem follows from Lemmas 3.1 and 3.3 in a straightforward
fashion. Let Sn ∈ An ∩ PN be defined by (3.1). Let

0 ≤ t0 < t1 < t2 < · · · < tp−1 ≤ 2π

be chosen so that zkp = eitk , k = 0, 1, . . . , p − 1. Using Lemma 3.3 and then applying
Lemmas 3.1 with Q := Sn ∈ An ∩ PN , and recalling that N = p+ o(p), we obtain

((1 + o(1))
√

n/2)(p−1)/p ≤
(

p−1
∏

k=0

|Sn(e
itj )|

)1/p

≤ 2N/pM0(Sn) ,

and hence

M0(Sn) ≥
1 + o(1)

2
√
2

√
n ,

11



and the theorem follows. �

Proof of Theorem 2.2. Let Sn ∈ An ∩ PN be defined by (3.1). Note that

(M0(f, [α, β]))
β−α = (M0(f, [α, γ]))

γ−α(M0(f, [γ, β]))
β−γ ,

for all α < γ < β ≤ α + 2π and for all continuous functions f on [α, β]. Hence, to prove
the lower bound of the theorem, without loss of generality we may assume that β−α ≤ π.
The lower bound of the theorem now follows from Theorem 2.1 and Lemmas 3.3 and 3.5
in a straightforward fashion. Let

(4.1) ω1 := α ≤ t0 < t1 < t2 < · · · < tm ≤ β =: ω2

be chosen so that eitj , j = 0, 1, . . . , m, (m ≤ p − 1), are exactly the primitive p-th roots
of unity lying on the arc connecting eiα and eiβ on the unit circle counterclockwise. The
assumption on n together with p = 2n + o(n) guarantees that the value of δ defined in
Theorem 1.3 is at most 2π/p. Observe also that R ≤ n. Applying Theorem 1.3 with
P := Sn ∈ An ∩ PN and (4.1), we obtain

m
∑

j=0

tj+1 − tj−1

2
log |Sn(e

itj )| ≤
∫ β

α

log |Sn(e
it)| dt+ c1E(N, 4π/p, α, β) ,

where the assumption
(logn)3/2

n1/2
≤ β − α ≤ 2π

together with p = 2n+ o(n), N = 2n+ o(n), and R ≤ n implies that

√

N logn

(

log p

p
+

1

p2(β − α)

)

≤ c(β − α)

with an absolute constant c > 0 and hence,

E(N, 4π/p, α, β) ≤ c6

(

(β − α)N

p
+
N log p

p2
+
√

N logn

(

log p

p
+

1

p2(β − α)

))

≤ c7(β − α)

with absolute constants c6 > 0 and c7 > 0. Therefore

M0(Sn, [α, β]) ≥ exp(−c1c7) (1 + o(1))
√

n/2 ,

and the lower bound of the theorem follows.
Now we prove the upper bound of the theorem. Using the well known estimate

M1(Dµ, [α, β]) ≤
1

β − α
M1(Dµ, [0, 2π]) ≤

c8 logµ

β − α
12



with an absolute constant c8 > 0 and applying Theorem 1.5, we obtain that there is a
constant c9(ε) > 0 depending only on ε > 0 such that

M1(Sn, [α, β]) =M1

(

1

2
(fp +Dp) +

1

2
zp(fq +Dq) + zp+qDr : [α, β]

)

≤1

2
(M1(fp, [α, β]) +M1(fq, [α, β]))

+
1

2
M1(Dp, [α, β]) +

1

2
M1(Dq, [α, β]) +M1(Dr, [α, β])

≤c3(ε)
√
p+ c3(ε)

√
q +

3c8 log(2n)

β − α

≤c9(ε)
√
n

whenever 2(2n+ o(n))−1/2+ε ≤ β − α ≤ 2π. �

Proof of Theorem 2.3. The theorem follows from Lemmas 3.5 and 3.7 in a straightforward
fashion. Let Pn ∈ Ln be defined by (3.2). Using Lemma 3.7 and then applying Lemma
3.1 with Q := Pn ∈ Ln, and recalling that n = p+ o(p), we obtain

((1 + o(1))
√
n)(p−1)/p ≤

(

p−1
∏

k=0

|Pn(z
k
p )|
)1/p

≤ 2n/pM0(Pn) ,

M0(Pn) ≥
(

1

2
+ o(1)

)√
n ,

and the theorem follows. �

Proof of Theorem 2.4. The proof is quite similar to that of Theorem 2.4 by replacing
Lemma 3.3 with Lemma 3.7. We leave the straightforward modifications to the reader. �
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ELS-94. T. Erdélyi, X. Li, and E.B. Saff, Remez and Nikolskii type inequalities for logarithmic potentials,

SIAM J. Math. Anal. 25 (1994), 365–383.
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