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Abstract. For n ≥ 1 let

An :=

{

P : P (z) =
n
∑

j=1

zkj : 0 ≤ k1 < k2 < · · · < kn , kj ∈ Z

}

,

that is, An is the collection of all sums of n distinct monomials. These polynomials are also
called Newman polynomials. Let

Mp(Q) :=

(∫

1

0

∣

∣Q(ei2πt)
∣

∣

p
dt

)1/p

, p > 0 .

We define

Sn,p := sup
Q∈An

Mp(Q)
√
n

and Sp := lim inf
n→∞

Sn,p ≤ Σp := lim sup
n∈N

Sn,p.

We show that

Σp ≥ Γ(1 + p/2)1/p , p ∈ (0, 2) .

The special case p = 1 recaptures a recent result of Aistleitner [1], the best known lower
bound for Σ1.

1. Introduction

Let

Mp(Q) :=

(
∫ 1

0

∣

∣Q(ei2πt)
∣

∣

p
dt

)1/p

, p > 0 .
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For n ≥ 1 let

An := {P : P (z) =
n
∑

j=1

zkj : 0 ≤ k1 < k2 < · · · < kn , kj ∈ Z} ,

that is, An is the collection of all sums of n distinct monomials. We define

Sn,p := sup
Q∈An

Mp(Q)√
n

and Sp := lim inf
n→∞

Sn,p ≤ Σp := lim sup
n∈N

Sn,p.

We also define

In,p := inf
Q∈An

Mp(Q)√
n

and Ip := lim sup
n→∞

In,p ≥ Ωp := lim inf
n∈N

In,p.

The problem of calculating Σ1 appears in a paper of Bourgain [5]. Deciding whether
Σ1 < 1 or Σ1 = 1 would be a major step toward confirming or disproving other important
conjectures. Karatsuba [7] observed that Σ1 ≥ 1/

√
2 ≥ 0.707. Indeed, taking, for instance,

Pn(z) =
n−1
∑

k=0

z2
k

, n = 1, 2, . . . ,

it is easy to see that

(1.1) M4(Pn)
4 = 2n(n− 1) + n ,

and as Hölder’s inequality implies

n = M2(Pn)
2 ≤ M1(Pn)

2/3M4(Pn)
4/3 ,

we conclude

(1.2) M1(Pn) ≥
√

n2

2n− 1
≥

√
n√
2
.

Similarly, if Sn := {a1 < a2 < · · · < an} is a Sidon set (that is, Sn is a subset of integers
such that no integer has two essentially distinct representations as the sum of two elements
of Sn), then the polynomials

Pn(z) =
∑

a∈Sn

za , n = 1, 2, . . . ,

satisfy (1.1) and (1.2). In fact, it was observed in [4] that

(1.3) min
P∈An

M4(P )4 = 2n(n− 1) + n ,
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and such minimal polynomials in An are precisely constructed by Sidon sets as above.
Improving Karatsuba’s result, by using a probabilistic method Aistleitner [1] proved that

Σ1 ≥ √
π/2 ≥ 0.886. We note that P. Borwein and Lockhart [3] investigated the asymptotic

behavior of the mean value of normalized Lp norms of Littlewood polynomials for arbitrary
p > 0. Using the Lindeberg Central Limit Theorem and dominated convergence, they
proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mp(f))
p

np/2
= Γ(1 + p/2)

where Ln :=
{

P : P (z) =
∑n

j=0 ajz
j , aj ∈ {−1,+1}

}

. It follows simply from the p = 1

case of the the result in [3] quoted above that Σ1 ≥
√

π/8 ≥ 0.626. Moreover, this can be
achieved by taking the sum of approximately half of the monomials of {x0, x1, . . . , x2n}
and letting n tend to ∞.

In this note we show that

Σp ≥ Sp ≥ Γ(1 + p/2)1/p , p ∈ (0, 2) ,

and
Ωp ≤ Ip ≤ Γ(1 + p/2)1/p , p ∈ (2,∞) .

The special case p = 1 recaptures a recent result of Aistleitner [1], the best known lower
bound for Σ1. Observe that Parseval’s formula gives Ω2 = Σ2 = 1.

2. New Results

Theorem 2.1. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > kj

(

1 +
cj
j1/2

)

, j = 1, 2, . . . ,

where limj→∞ cj = ∞. Let

Pn(z) =
n
∑

j=1

zkj , n = 1, 2, . . . .

We have

lim
n→∞

Mp(Pn)√
n

= Γ(1 + p/2)1/p

for every p ∈ (0, 2).

Theorem 2.2. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > qkj , j = 1, 2, . . . ,

where q > 1. Let

Pn(z) =

n
∑

j=1

zkj , n = 1, 2, . . . .
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We have

lim
n→∞

Mp(Pn)√
n

= Γ(1 + p/2)1/p

for every p ∈ [1,∞).

Corollary 2.3. We have Σp ≥ Sp ≥ Γ(1 + p/2)1/p for all p ∈ (0, 2).

The special case p = 1 of Corollary 2.3 recaptures a recent result of Aistleitner, and it
is the best known lower bound in the problem of Bourgain mentioned in the introduction.

Corollary 2.4. We have Σ1 ≥ S1 ≥ √
π/2.

Corollary 2.5. We have Ωp ≤ Ip ≤ Γ(1 + p/2)1/p for all p ∈ (2,∞).

We remark here that the same results also hold for the polynomials with coefficients
∑n

j=1 ajz
kj if a general form of Salem-Zygmund theorem is used (e.g see (2) in [6]).

Our final result shows that the upper bound Γ(1 + p/2)1/p in Corollary 2.5 is optimal
at least for even integers.

Corollary 2.6. For any even integer p = 2m ≥ 2, we have

lim
n→∞

min
P∈An

Mp(P )√
n

= Γ(1 + p/2)1/p .

Observe that a standard way to prove a Nikolskii-type inequality for trigonometric
polynomials [2, p. 394] applies to the classes An. Indeed,

Mp(P ) =

(

1

2π

∫ 2π

0

|P (eit)|p dt
)1/p

≤
(

(

1

2π

∫ 2π

0

|P (eit)|2 dt
) (

max
t∈[0,2π]

|P (eit)|
)p−2

)1/p

= (nnp−2)1/p = n1−1/p ,

for every P ∈ An and p ≥ 2, and the Dirichlet kernel Dn(z) := 1 + z + · · ·+ zn shows the
sharpness of this upper bound up to a multiplicative factor constant c > 0. So if we study
the original Bourgain problem in the case of p > 2, we should normalize by dividing by
n1−1/p rather than n1/2.

3. Proofs

Let m(A) denote the Lebesgue measure of measurable sets A ⊂ [0, 1]. To prove Theorem
2.1 we need the complex-valued analogue of the following result of Erdős [6] (note that
there is a typo in (4) in [6], the term N1/2 should be (N/2)1/2).
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Theorem 3.1. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > kj

(

1 +
cj
j1/2

)

, j = 1, 2, . . . ,

where limj→∞ cj = ∞. Let

Qn(t) =
n
∑

j=1

cos(2πkj(t− θj)) . θj ∈ R .

Then

lim
n→∞

m({t ∈ [0, 1] : Qn(t) < x(n/2)1/2}) = 1√
2π

∫ x

−∞

e−t2/2 dt

for every x ∈ R.

Following the proof of Theorem 1 in Erdős’s paper [6], we can calculate the moments
of |Pn(e

i2πt)|2 on [0, 1] in the same way, and the limit distribution function

F (x) := lim
n→∞

m({t ∈ [0, 1] : |Pn(e
i2πt)|2 < xn})

can be identified as F (x) = 1− e−x on [0,∞). Hence the following complex-valued version
of Erdős’s result can be obtained. While Erdős could have easily claimed it in [6], our
Theorem 3.2 below seems to be a new result.

Theorem 3.2. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > kj

(

1 +
cj
j1/2

)

, j = 1, 2, . . . ,

where limj→∞ cj = ∞. Let

Pn(z) =

n
∑

j=1

zkj , n = 1, 2, . . . .

Then

lim
n→∞

m({t ∈ [0, 1] : |Pn(e
i2πt)|2 < xn}) = 1− e−x

for every x ∈ [0,∞).

We also need the following result from [8, p. 215].

Theorem 3.3. Let (kj) be a strictly increasing sequence of nonnegative integers satisfying

kj+1 > qkj , j = 1, 2, . . . ,
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where q > 1. Let

Qn(t) =
n
∑

j=1

cos(2πkj(t− θj)) .

Then for every r > 0 there are constants (depending only on r and q) Ar,q > 0 and Br,q > 0
such that

Ar,q

√
n ≤ Mr(Qn) ≤ Br,q

√
n

for every n ∈ N and r > 0.

Proof of Theorem 2.1. Let

Zn(t) :=
1√
n
Pn(e

i2πt) , n = 1, 2, . . . .

Observe that the functions |Zn|p, n = 1, 2, . . . , are uniformly integrable on [0, 1]. To see
this let a ≥ 1,

E := En,p := {t ∈ [0, 1] : |Zn(t)|p ≥ a}

and

F := Fn := {t ∈ [0, 1] : |Zn(t)|2 ≥ a} .

Using p ∈ (0, 2), we have E ⊂ F . This, together with

∫ 1

0

|Zn(t)|2 dt = 1

givesm(E) ≤ m(F ) ≤ a−1 for every a > 1, p ∈ (0, 2), and n ∈ N. Using Hölder’s inequality
we obtain that

∫

E

|Zn(t)|p dt ≤
(
∫

E

|Zn(t)|2 dt
)p/2

(m(E))(2−p)/2 ≤ a(p−2)/2

for every a > 1, p ∈ (0, 2), and n ∈ N, which shows that the functions |Zn|p, n = 1, 2, . . . ,
are uniformly integrable on [0, 1], indeed.

By Theorem 3.2 we have

Un(x) := m({t ∈ [0, 1] : |Zn(t)|2 < x})

converges to F (x) := 1 − e−x pointwise on [0,∞) as n → ∞. Combining this with the
uniform integrability of |Zn|p, n = 1, 2, . . . , on [0, 1], we obtain

lim
n→∞

∫ 1

0

|Zn(t)|p dt =
∫ ∞

0

xp/2 dF (x) =

∫ ∞

0

xp/2F ′(x) dx =

∫ ∞

0

xp/2e−x dx

= Γ(1 + p/2) . �
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Proof of the Theorem 2.2. Let, as before,

Zn(t) :=
1√
n
Pn(e

i2πt) , n = 1, 2, . . . .

Introducing

Xn(t) :=
1√
n
Re(Pn(e

i2πt)) =
1√
n

n
∑

j=1

cos(2πkjt) ,

and

Yn(t) :=
1√
n
Im(Pn(e

i2πt)) =
1√
n

n
∑

k=1

sin(2πkjt) .

we have Zn(t) := Xn(t) + iYn(y). Observe that the functions |Zn|p, n = 1, 2, . . . , are
uniformly integrable on [0, 1]. To see this let a > 0 and

E := En,p := {t ∈ [0, 1] : |Zn(t)|2p ≥ a} .

By Theorem 3.3 (recall that p ≥ 1) we have

m(E)a ≤
∫ 1

0

|Zn(t)|2p dt =
∫ 1

0

(

|Xn(t)|2 + |Yn(t)|2
)p

dt

≤ 2p−1

∫ 1

0

(

|Xn(t)|2p + |Yn(t)|2p
)

dt ≤ 2pB2p
2p,q .

Hence m(E) ≤ 2pB2p
2p,qa

−1 for every a > 0, p ≥ 1, and n ∈ N. Combining this with the
Cauchy-Schwarz inequality and Theorem 3.3, we obtain

∫

E

|Zn(t)|p dt ≤
(
∫

E

|Zn(t)|2p dt
)1/2

(m(E))1/2 ≤ Bp
2p,q(2

p/2Bp
2p,qa

−1/2)

= 2p/2B2p
2p,qa

−1/2

for every a > 0, p ≥ 1, and n ∈ N, which shows that the functions |Zn|p, n = 1, 2, . . . , are
uniformly integrable on [0, 1], indeed.

By Theorem 3.2 we have

Un(x) := m({t ∈ [0, 1] : |Zn(t)|2 < x})

converges to F (x) := 1 − e−x pointwise on [0,∞) as n → ∞. Combining this with the
uniform integrability of |Zn|p, n = 1, 2, . . . , on [0, 1], we obtain

lim
n→∞

∫ 1

0

|Zn(t)|p dt =
∫ ∞

0

xp/2 dF (x) =

∫ ∞

0

xp/2F ′(x) dx =

∫ ∞

0

xp/2e−x dx

= Γ(1 + p/2) . �
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Proof of Corollary 2.6. Let P ∈ An be of the form P (z) =
∑n

j=1 z
kj with some integers

0 ≤ k1 < k2 < · · · < kn. We have

(P (z))
m

=

(

n
∑

j=1

zkj

)m

=
∞
∑

k=0









∑

1≤j1,j2,... ,jm≤n,

kj1
+kj2

+···+kjm
=k

1









zk.

Hence

Mp(P )p = M2(P
m)2 =

∞
∑

k=0









∑

1≤j1,j2,... ,jm≤n,

kj1
+kj2

+···+kjm
=k

1









2

≥
∞
∑

k=0









∑

1≤j1,j2,... ,jm≤n,jℓ 6=ji,

kj1
+kj2

+···+kjm
=k

1









2

.

Now, as the number of permutations of distinct values kj1 , kj2 , · · · , kjm is m!, it follows
that

Mp(P )p ≥ (m!)2
(

n

m

)

= m!n(n− 1) · · · (n−m+ 1) .

Hence, we have

min
P∈An

Mp(P )√
n

≥ Γ(1 + p/2)1/p
(

1 ·
(

1− 1

n

)

· · ·
(

1− m− 1

n

))1/p

.

Therefore

(3.1) lim inf
n→∞

min
P∈An

Mp(P )√
n

≥ Γ(1 + p/2)1/p.

By Theorem 2.2, there are polynomials Pn ∈ An such that

lim
n→∞

Mp(Pn)√
n

= Γ(1 + p/2)1/p.

Hence

(3.2) lim sup
n→∞

min
P∈An

Mp(P )√
n

≤ Γ(1 + p/2)1/p.

The corollary now follows from (3.1) and (3.2). �
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