HOW FAR IS AN ULTRAFLAT SEQUENCE OF UNIMODULAR POLYNOMIALS FROM BEING CONJUGATE-RECIPROCAL?

TAmÁs ERdÉLYI

Abstract

In this paper we study ultraflat sequences $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ in general, not necessarily those produced by Kahane in his paper [Ka]. We examine how far is a sequence $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$

 from being conjugate reciprocal. Our main results include the following.Theorem. Given a sequence $\left(\varepsilon_{n}\right)$ of positive numbers tending to 0, assume that $\left(P_{n}\right)$ is a $\left(\varepsilon_{n}\right)$-ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. The coefficients of P_{n} are denoted by $a_{k, n}$, that is,

$$
P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k}, \quad, k=0,1, \ldots, n, \quad n=1,2, \ldots
$$

Then

$$
\sum_{k=0}^{n} k^{2}\left|a_{k, n}-\bar{a}_{n-k, n}\right|^{2} \geq\left(\frac{1}{3}+\delta_{n}\right) n^{3}
$$

where $\left(\delta_{n}\right)$ is a sequence of real numbers converging to 0 .

1. Introduction

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the complex plane, is denoted by ∂D. Let

$$
\mathcal{K}_{n}:=\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad a_{k} \in \mathbb{C},\left|a_{k}\right|=1\right\}
$$

The class \mathcal{K}_{n} is often called the collection of all (complex) unimodular polynomials of degree n. Let

$$
\mathcal{L}_{n}:=\left\{p_{n}: p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad a_{k} \in\{-1,1\}\right\}
$$

[^0]The class \mathcal{L}_{n} is often called the collection of all (real) unimodular polynomials of degree n. By Parseval's formula,

$$
\int_{0}^{2 \pi}\left|P_{n}\left(e^{i t}\right)\right|^{2} d t=2 \pi(n+1)
$$

for all $P_{n} \in \mathcal{K}_{n}$. Therefore

$$
\begin{equation*}
\min _{z \in \partial D}\left|P_{n}(z)\right| \leq \sqrt{n+1} \leq \max _{z \in \partial D}\left|P_{n}(z)\right| \tag{1.1}
\end{equation*}
$$

An old problem (or rather an old theme) is the following.
Problem 1.1 (Littlewood's Flatness Problem). How close can a unimodular polynomial $P_{n} \in \mathcal{K}_{n}$ or $P_{n} \in \mathcal{L}_{n}$ come to satisfying

$$
\begin{equation*}
\left|P_{n}(z)\right|=\sqrt{n+1}, \quad z \in \partial D ? \tag{1.2}
\end{equation*}
$$

Obviously (1.2) is impossible if $n \geq 1$. So one must look for less than (1.2), but then there are various ways of seeking such an "approximate situation". One way is the following. In his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence $\left(P_{n}\right)$ of polynomials $P_{n} \in \mathcal{K}_{n}$ (possibly even $P_{n} \in \mathcal{L}_{n}$) such that $(n+1)^{-1 / 2}\left|P_{n}\left(e^{i t}\right)\right|$ converge to 1 uniformly in $t \in \mathbb{R}$. We shall call such sequences of unimodular polynomials "ultraflat". More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial $P_{n} \in \mathcal{K}_{n}$ is ε-flat if

$$
\begin{equation*}
(1-\varepsilon) \sqrt{n+1} \leq\left|P_{n}(z)\right| \leq(1+\varepsilon) \sqrt{n+1}, \quad z \in \partial D \tag{1.3}
\end{equation*}
$$

or equivalently

$$
\max _{z \in \partial D}| | P_{n}(z)|-\sqrt{n+1}| \leq \varepsilon \sqrt{n+1}
$$

Definition 1.3. Given a sequence $\left(\varepsilon_{n_{k}}\right)$ of positive numbers tending to 0 , we say that a sequence $\left(P_{n_{k}}\right)$ of unimodular polynomials $P_{n_{k}} \in \mathcal{K}_{n_{k}}$ is $\left(\varepsilon_{n_{k}}\right)$-ultraflat if

$$
\begin{equation*}
\left(1-\varepsilon_{n_{k}}\right) \sqrt{n_{k}+1} \leq\left|P_{n_{k}}(z)\right| \leq\left(1+\varepsilon_{n_{k}}\right) \sqrt{n_{k}+1}, \quad z \in \partial D \tag{1.4}
\end{equation*}
$$

or equivalently

$$
\max _{z \in \partial D}| | P_{n_{k}}(z)\left|-\sqrt{n_{k}+1}\right| \leq \varepsilon_{n_{k}} \sqrt{n_{k}+1}
$$

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all $P_{n} \in \mathcal{K}_{n}$ with $n \geq 1$,

$$
\begin{equation*}
\max _{z \in \partial D}\left|P_{n}(z)\right| \geq(1+\varepsilon) \sqrt{n+1} \tag{1.5}
\end{equation*}
$$

where $\varepsilon>0$ is an absolute constant (independent of n). Yet, refining a method of Körner [Kö], Kahane [Ka] proved that there exists a sequence $\left(P_{n}\right)$ with $P_{n} \in \mathcal{K}_{n}$ which is $\left(\varepsilon_{n}\right)$-ultraflat, where

$$
\begin{equation*}
\varepsilon_{n}=O\left(n^{-1 / 17} \sqrt{\log n}\right) \tag{1.5}
\end{equation*}
$$

Thus the Erdős conjecture (1.4) was disproved for the classes \mathcal{K}_{n}. For the more restricted class \mathcal{L}_{n} the analogous Erdős conjecture is unsettled to this date. It is a common belief that the analogous Erdős conjecture for \mathcal{L}_{n} is true, and consequently there is no ultraflat sequence of polynomials $P_{n} \in \mathcal{L}_{n}$.

An extension of Kahane's breakthrough is given in [Be]. For an account of some of the work done till the mid 1960's, see Littlewood's book [Li2] and [QS].

2. New Results

In this paper we study ultraflat sequences $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in$ \mathcal{K}_{n} in general, not necessarily those produced by Kahane in his paper [Ka]. With trivial modifications our results remain valid even if we study ultraflat sequences $\left(P_{n_{k}}\right)$ of unimodular polynomials $P_{n_{k}} \in \mathcal{K}_{n_{k}}$. It is left to the reader to formulate these analogue results. We examine how far an ultraflat sequence (P_{n}) of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ is from being conjugate reciprocal. Our main results are formulated by the following theorems. In each of Theorems $2.1-2.3$ we assume that $\left(\varepsilon_{n}\right)$ is a sequence of positive numbers tending to 0 , and the sequence $\left(P_{n}\right)$ of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$ is $\left(\varepsilon_{n}\right)$-ultraflat.

If Q_{n} is a polynomial of degree n of the form

$$
Q_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}, \quad a_{k} \in \mathbb{C}
$$

then its conjugate polynomial is defined by

$$
Q_{n}^{*}(z):=z^{n} \bar{Q}_{n}(1 / z):=\sum_{k=0}^{n} \bar{a}_{n-k} z^{k}
$$

Theorem 2.1. We have

$$
\int_{\partial D}\left(\left|P_{n}^{\prime}(z)\right|-\left|P_{n}^{* \prime}(z)\right|\right)^{2}|d z|=2 \pi\left(\frac{1}{3}+\gamma_{n}\right) n^{3}
$$

where $\left(\gamma_{n}\right)$ is a sequence of real numbers converging to 0 .
Theorem 2.2. If the coefficients of P_{n} are denoted by $a_{k, n}$, that is

$$
P_{n}(z)=\sum_{k=0}^{n} a_{k, n} z^{k}, \quad k=0,1, \ldots, n, \quad n=1,2, \ldots
$$

then

$$
\sum_{k=0}^{n} k^{2}\left|a_{k, n}-\bar{a}_{n-k, n}\right|^{2} \geq\left(\frac{1}{3}+\delta_{n}\right) n^{3}
$$

where $\left(\delta_{n}\right)$ is a sequence of real numbers converging to 0 .

Theorem 2.3. We have

$$
\int_{\partial D}\left|P_{n}(z)-P_{n}^{*}(z)\right|^{2}|d z| \geq 2 \pi\left(\frac{1}{3}+\gamma_{n}\right) n
$$

where $\left(\gamma_{n}\right)$ is a sequence of real numbers converging to 0 . Using the notation of Theorem 2.2, in terms of the coefficients of P_{n}, we have

$$
\sum_{k=0}^{n}\left|a_{k, n}-\bar{a}_{n-k, n}\right|^{2} \geq\left(\frac{1}{3}+\delta_{n}\right) n
$$

where $\left(\delta_{n}\right)$ is a sequence of real numbers converging to 0 .
Remark 2.4 Theorem 2.3 tells us much more than the non-existence of an ultraflat sequence of conjugate reciprocal unimodular polynomials. It measures how far such an ultraflat sequence is from being a sequence of conjugate reciprocal polynomials.

3. Lemmas

To prove the theorems in Section 2, we need two lemmas. The first one can be checked by a simple calculation.

Lemma 3.1. Let P_{n} be an arbitrary polynomial of degree n with complex coefficients having no zeros on the unit circle. Let

$$
f_{n}(z):=\frac{z P_{n}^{\prime}(z)}{P_{n}(z)} \quad \text { and } \quad f_{n}^{*}(z):=\frac{z P_{n}^{* \prime}(z)}{P_{n}^{*}(z)}
$$

Then

$$
\overline{f_{n}(z)}+f_{n}^{*}(z)=n, \quad z \in \partial D
$$

Our next lemma may be found in [MMR] (page 676) and is due to Malik.

Lemma 3.2. Let P_{n} be an arbitrary polynomial of degree n with complex coefficients. We have

$$
\max _{z \in \partial D}\left(\left|P_{n}^{\prime}(z)\right|+\left|P_{n}^{* \prime}(z)\right|\right) \leq n \max _{z \in \partial D}\left|P_{n}(z)\right|
$$

Lemma 3.3 (Bernstein's Inequality in $L_{2}(\partial D)$). If Q_{n} is a polynomial of degree at most n with complex coefficients, then

$$
\int_{\partial D}\left|Q_{n}^{\prime}(z)\right|^{2}|d z| \leq n^{2} \int_{\partial D}\left|Q_{n}(z)\right|^{2}|d z|
$$

4. Proof of the Theorems

Proof of Theorem 2.1. Lemma 3.2 combined with the ultraflatness of $\left(P_{n}\right)$ implies that

$$
\left|P_{n}^{\prime}(z)\right|+\left|P_{n}^{* \prime}(z)\right| \leq n \max _{z \in \partial D}\left|P_{n}(z)\right| \leq\left(1+\varepsilon_{n}\right)(n+1)^{3 / 2}
$$

for every $z \in \partial D$. Lemma 3.1 combined with the ultraflatness of P_{n} imply

$$
\left|P_{n}^{\prime}(z)\right| \frac{1}{\left(1-\varepsilon_{n}\right) \sqrt{n+1}}+\left|P_{n}^{* \prime}(z)\right| \frac{1}{\left(1-\varepsilon_{n}\right) \sqrt{n+1}} \geq \frac{\left|P_{n}^{\prime}(z)\right|}{\left|P_{n}(z)\right|}+\frac{\left|P_{n}^{* \prime}(z)\right|}{\left|P_{n}^{*}(z)\right|} \geq n
$$

that is

$$
\left|P_{n}^{\prime}(z)\right|+\left|P_{n}^{* \prime}(z)\right| \geq\left(1-\varepsilon_{n}\right) n^{3 / 2}
$$

for every $z \in \partial D$. We conclude that

$$
\left(1-\varepsilon_{n}\right)^{2} n^{3} \leq\left(\left|P_{n}^{\prime}(z)\right|+\left|P_{n}^{* \prime}(z)\right|\right)^{2} \leq\left(1+\varepsilon_{n}\right)^{2}(n+1)^{3}, \quad z \in \partial D
$$

Multiplying the expression in the middle out and integrating on ∂D with respect to $|d z|$, we obtain

$$
\begin{aligned}
2 \pi\left(1-\varepsilon_{n}\right)^{2} n^{3} & \leq \int_{\partial D}\left|P_{n}^{\prime}(z)\right|^{2}|d z|+\int_{\partial D}\left|P_{n}^{* \prime}(z)\right|^{2}|d z|+2 \int_{\partial D}\left|P_{n}^{\prime}(z) P_{n}^{* \prime}(z)\right||d z| \\
& \leq 2 \pi\left(1+\varepsilon_{n}\right)^{2} n^{3}
\end{aligned}
$$

Note that

$$
\begin{align*}
\int_{\partial D}\left|P_{n}^{\prime}(z)\right|^{2}|d z| & =\int_{\partial D}\left|P_{n}^{* \prime}(z)\right|^{2}|d z|=2 \pi \sum_{k=1}^{n} k^{2} \tag{2.1}\\
& =2 \pi \frac{n(n+1)(2 n+1)}{6} \sim \frac{2 \pi}{3} n^{3}
\end{align*}
$$

Hence

$$
\int_{\partial D}\left|P_{n}^{\prime}(z)\right|\left|P_{n}^{* \prime}(z)\right||d z|=2 \pi\left(\frac{1}{6}+\delta_{n}\right) n^{3}
$$

with constants δ_{n} converging to 0 . Integrating the equation

$$
\left(\left|P_{n}^{\prime}(z)\right|-\left|P_{n}^{* \prime}(z)\right|\right)^{2}=\left|P_{n}^{\prime}(z)\right|^{2}+\left|P_{n}^{* \prime}(z)\right|^{2}-2\left|P_{n}^{\prime}(z) P_{n}^{* \prime}(z)\right|
$$

and using observation (2.1) we obtain the theorem.
Proof of Theorem 2.2. Parseval Formula and the triangle inequality give

$$
\begin{aligned}
2 \pi \sum_{k=0}^{n} k^{2}\left|a_{k, n}-\bar{a}_{n-k, n}\right|^{2} & =\int_{\partial D}\left|P_{n}^{\prime}(z)-P_{n}^{* \prime}(z)\right|^{2}|d z| \\
& \geq \int_{\partial D}\left(\left|P_{n}^{\prime}(z)\right|-\left|P_{n}^{* \prime}(z)\right|\right)^{2}|d z|
\end{aligned}
$$

and the theorem then follows from Theorem 2.1.

Proof of Theorem 2.3. Applying Theorem 2.1, the triangle inequality, and the Bernstein inequality in L_{2} for $P_{n}-P_{n}^{*}$ (see Lemma 3.3), we obtain

$$
\begin{aligned}
2 \pi\left(\frac{1}{3}+\gamma_{n}\right) n^{3} & =\int_{\partial D}\left(\left|P_{n}^{\prime}(z)\right|-\left|P_{n}^{* \prime}(z)\right|\right)^{2}|d z| \leq \int_{\partial D}\left|P_{n}^{\prime}(z)-P_{n}^{* \prime}(z)\right|^{2}|d z| \\
& \leq n^{2} \int_{\partial D}\left|P_{n}(z)-P_{n}^{*}(z)\right|^{2}|d z|
\end{aligned}
$$

where $\left(\gamma_{n}\right)$ is a sequence of real numbers converging to 0 . Now the first part of the theorem follows after dividing by n^{2}. To see the second part we proceed as in the proof of Theorem 2.2 by using Parseval's formula.

5. Last Minute Addition.

The author seems to be able to prove the following.
Theorem 5.1 (Saffari's Orthogonality Conjecture). Assume that $\left(P_{n}\right)$ is an ultraflat sequence of unimodular polynomials $P_{n} \in \mathcal{K}_{n}$. Let

$$
P_{n}(z):=\sum_{k=0}^{n} a_{k, n} z^{k}
$$

Then

$$
\sum_{k=0}^{n} a_{k, n} a_{n-k, n}=o(n)
$$

Here, as usual, o(n) denotes a quantity for which $\lim _{n \rightarrow \infty} o(n) / n=0$.
The proof of this may appear in a later publication.
6. Acknowledgment. I thank Peter Borwein for many discussions related to the topic.

References

[Be] J. Beck, "Flat" polynomials on the unit circle - note on a problem of Littlewood, Bull. London Math. Soc. (1991), 269-277.
[BE] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
[DL] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[Er] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300 Berlin.
[Ka] J.P. Kahane, Sur les polynomes a coefficient unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342.
[Kö] T. Körner, On a polynomial of J.S. Byrnes, Bull. London Math. Soc. 12 (1980), 219224.
[Li1] J.E. Littlewood, On polynomials $\sum \pm z^{m}, \sum \exp \left(\alpha_{m} i\right) z^{m}, z=e^{i \theta}$., J. London Math. Soc. 41, 367-376, yr 1966.
[Li2] J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
[MMR] Milovanović, G.V., D.S. Mitrinović, \& Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[QS] H. Queffelec and B. Saffari, On Bernstein's inequality and Kahane's ultraflat polynomials, J.F.A.A. vol. 2 (1996), 519-592..
[Sa] B. Saffari, The phase behavior of ultraflat unimodular polynomials, in Probabilistic and Stochastic Methods in Analysis, with Applications (1992), Kluwer Academic Publishers, Printed in the Netherlands.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

E-mail address: terdelyi@math.tamu.edu

[^0]: 1991 Mathematics Subject Classification. 41A17.
 Key words and phrases. unimodular polynomials, ultraflat polynomials, angular derivatives. Research supported in part by the NSF of the USA under Grant No. DMS-9623156.

