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Abstract

We study the structure of the zero set of a finite point charge electrical field F = (X,Y, Z)
in R

3. Indeed, mostly we focus on a finite point charge electrical field F = (X,Y ) in R
2.

The well-known conjecture is that the zero set of F = (X,Y ) is finite. We show that this is
true in a Special Case: when the point charges for F = (X,Y ) lie on a line. In addition, we
give fairly complete structural information about the zero sets of X and Y for F = (X,Y )
in the Special Case. A highlight of the paper states that in the Special Case the zero set of
F = (X,Y ) contains at most 9M24M points, where M is the number of point charges.

1 Introduction

This article gives the results that we know to hold for the zero sets of finite point charge electrical
fields F = (X,Y,Z) in R

3. While some general facts in this setting are clear, in order to get
complete proofs we have to focus for now on the case where the charges are in a plane. That
is, F = (X,Y ) is a finite point charge field in R

2. The well-known, still unresolved, conjecture
is that in this case the zero set of F is finite. We give full details proving this conjecture in the
Special Case where the charges themselves lie on a line in R

2.
While the Special Case may seem to be an easy case to analyze, it turns out that the

details are complicated, especially if one wants to know the structure of not only the zero set of
F = (X,Y ), but also the zero sets of X and Y . We give different ways of seeing that the zero set
of F = (X,Y ) is finite in the Special Case when the point charges lie on a line. In addition, we
obtain structural information about the zero sets of X and Y at infinity by analyzing power series
expansions, using binomial series, geometric series, and also critical moments that are given by
the coefficients of the field and the positions of the charges. Indeed, in order to complete the
analysis in the case where the point charges lie on a line, we need to consider the structure of
the zero set of F = (X,Y ) with the point charges in general position in R

2. Details will be
discussed for what we know and what yet remains to be shown.

The outline of this article is as follows. In Section 2, we set up the problem and explain how
it relates to a larger class of problems of distinguishing and/or reconstructing electrical fields
and also gravitational fields. In Section 3, we show that the zero set of F = (X,Y ) cannot
contain a non-trivial curve when the point charges lie on a line, the Special Case. We show that
it follows that the zero set of F = (X,Y ) must be finite when the point charges lie on a line. In
Section 4, in our Special Case, we derive facts about the asymptotic directions at infinity of the
zero sets of X and Y and explain why these directions do not overlap.

2 Finite Gravitational and Electrical Fields

The original problem we considered that gave rise to this work is how to determine a gravitational
field from a limited set of measurements. In general, we would want to be able to have a calculus
for this when the mass generating this field is in motion. But for now we only consider the case
where we have a finite number of masses in fixed positions, and idealize these to being point
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masses. So this means we have a finite set of points (xj , yj , zj), j = 1, 2, . . . ,M , and corresponding
masses mj, j = 1, 2, . . . ,M . We take a point (x, y, z) and assume that there is a unit mass at
that point. Then the force at (x, y, z) from the mass at (xj , yj, zj) is proportional to the mass
mj and inversely proportionally to the square of the Euclidean distance

rj = ‖(xj , yj, zj)− (x, y, z)‖2 = ((xj − x)2 + (yj − y)2 + (zj − z)2)1/2 .

There is a direction of this force too of course: from (x, y, z) toward the mass at (xj , yj , zj). We
take units so that the gravitational constant G is 1. Hence the force field

F (x, y, z) = (X(z, y, z), Y (x, y, z), Z(x, y, z)) =
M∑

j=1

mj

r2j

(xj , yj , zj)− (x, y, z)

rj
.

So we have these equations for the components of the force field:

X(x, y, z) =
M∑

j=1

mj(xj − x)

r3j
, Y (x, y, z) =

M∑

j=1

mj(yj − y)

r3j
, Z(x, y, z) =

M∑

j=1

mj(zj − z)

r3j
.

There are actually two problems to deal with here. The first is to distinguish two gravitational
fields by a limited set of measurements, and the second is to determine the full structure of an
unknown gravitational field, by taking a limited set of measurements. The first problem is the
one we focus on in these notes. The second one is in a class of problems of this type, many of
which seem to be very difficult to solve.

The problem of distinguishing gravitational fields can be phrased in terms of finite (point)
electrical fields (i.e. electrical fields given by a finite number of point charges). Indeed, suppose
we have two finite point mass gravitational fields F1 and F2 and have a given set V such that
F1(x, y, z) = F2(x, y, z) for all (x, y, z) ∈ V. That is, F1(x, y, z)−F2(x, y, z) = 0 for all (x, y, z) ∈
V. But F1 − F2 has the form of the vector field given by a finite set of point electrical charges
in R

3. Here the units have been chosen so that the electrical constant K is 1. What we want to
know is this:

Question: Taking an unknown finite electrical field, what method of taking a limited set of
measurements will guarantee that if the measurements are all zero, then the field itself is zero
everywhere?

To answer this question completely, we would want to known the geometry of the zero set of a
field given just as F is above except that the coefficients mj are allowed to be real numbers aj .

We say that the electrical field is empty when there are actually no point charges. Since a
finite electrical field can always be seen as the difference of two gravitational fields, this is the
same as saying that the gravitational fields are identical.

The structure of the zero set of such a field in R
3 is certainly different than in R

2. We
make some remarks about the three dimensional case in the following, but this article actually
focuses on the two dimensional case, indeed for complete results on a Special Case of the two
dimensional case.

2.1 Finite Electrical Fields in Three Dimensions

We take our field F = (X,Y,Z) to be a finite point charge electrical field. So now, consistent
with positive charges repulsing each other, rather than in the case of gravitational fields where
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positive masses attract each other, we have

X(x, y, z) =

M∑

j=1

aj(x− xj)

r3j
, Y (x, y, z) =

M∑

j=1

aj(y − yj)

r3j
, Z(x, y, z) =

M∑

j=1

aj(z − zj)

r3j
,

with
rj = ((x− xj)

1/2 + (y − yj)
2 + (z − zj)

2)1/2 , j = 1, 2, . . . ,M .

We know that in R
3, X,Y, and Z can have zero sets consisting of points, lines, curves, and even

two dimensional surfaces. How these intersect is not clear. The main question for the three
dimensional case was whether or not the common zeros must be only points or curves (perhaps
even just lines) of vectors? Also, how many points, and how many curves and lines, will there
be at most, say given only M? The basic structure is limited in a more general setting by A. I.
Yanushauskas [10]. Yanushauskas used the fact that the force field in this case is the gradient
of a harmonic function to show that the zero set consists of a locally finite set of points and
analytic curves.

Proposition 2.1. If a finite electrical field in R
3 vanishes on a set containing a two dimensional

surface (or even as much as an open disc), then the field is identically zero everywhere and the
point charge set is empty.

But we still have structural issues to consider in order to understand the geometry of such a
zero set.

Conjecture: The zero set of X, Y , or Z is asymptotically planar or linear at infinity, with only
a finite number of planes or lines being possible. Moreover, these planes or lines are distinct
among the three components and the overlap of these three zero sets can only consist of a finite
set of points and asymptotically linear curves.

Of course, we could have the component zero sets being asymptotically a plane or line in
one direction and another plane or line in another direction. If this conjecture is true then the
common zero set would either be bounded or consist of a finite number of curves each of which
is asymptotically linear at infinity.

Remark 2.2. Examples show that the zero set in this case can contain curves (e.g. circles
and straight lines). But counting these and understanding what types of curves one can get
is a future project. The main question otherwise is whether or not the unbounded portion is
asymptotically linear.

Without any additional work, we can address the Conjecture and the structural issues by
using the basic theory of real analytic varieties. See Whitney [6], Whitney [7], and Bruhat and
Whitney [8]. But this will only give us local information about the zero set. Instead, we will use
a product argument, and the structure of real algebraic varieties, to get more information. See
Whitney [6] for an early advanced view, and Gibson [5] for details at a very elementary level.

An algebraic curve in the Euclidean plane is the set of the points whose coordinates are
the solutions of a bivariate polynomial equation P (x, y) = 0. This equation is often called the
implicit equation of the curve, in contrast to the curves that are the graph of a function defining
explicitly y as a function of x, or vice versa. With a curve given by such an implicit equation, the
first problem would be to determine the shape of the curve and to “draw it”. These problems
are not as easy to solve as in the case of the graph of a function, for which y may easily be
computed for various values of x. The fact that the defining equation is a polynomial implies
that the curve has some structural properties that may help in solving these problems. Every
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algebraic curve may be uniquely decomposed into a finite number of smooth monotone arcs
(called branches) sometimes connected by some points sometimes called remarkable points, and
possibly a finite number of isolated points called acnodes. A smooth monotone arc is the graph
of a smooth function which is defined and monotone on an open interval of the x-axis or the
y-axis. In each direction, an arc is either unbounded (usually called an infinite arc) or has an
endpoint which is either a singular point (this will be defined below) or a point with a tangent
parallel to one of the coordinate axes. The singular points of a curve of degree d defined by a
polynomial P (x, y) of degree d are the solutions of the system of equations

∂P

∂x
(x, y) =

∂P

∂y
(x, y) = P (x, y) = 0 .

First, we need a basic algebraic principle. We take here n = 2, 3 for concreteness. We are also
thinking of applying this to the components of the vector field. So when n = 2, our functions
below are Aj(x, y) = aj(x−xj) or Aj(x, y) = aj(y− yj), and Bj(x, y) = ((x−xj)

2 +(y− yj)
2)3.

When n = 3, our functions Aj include also Aj(x, y, z) = aj(z − zj) and Bj(x, y, z) = ((x −
xj)

2+(y−yj)
2+(z−zj)

2)3. Let R[x1, x2, . . . , xn] denote the ring of polynomials in the variables
x1, x2, . . . , xn with real coefficients.

Proposition 2.3. Let

R =

M∑

j=1

Aj

B
1/2
j

, Aj , Bj ∈ R[x1, x2, . . . , xn] ,

with n = 2 or n = 3, where Bj ≥ 0 on R
n for all j = 1, 2, . . . ,M . Then the zero set

{(x1, x2, . . . , xn) : R(x1, x2, . . . , xn) = 0}

is a subset of a real algebraic variety in R
n. As a consequence, we have the following.

a) If n = 2, the zero set {(x, y) : R(x, y) = 0} is a subset of a finite number of points and curves.

b) If n = 3, the zero set {(x, y, z) : R(x, y, z) = 0} is a subset of a finite number of points, curves,
and two dimensional surfaces.

Proof. Take R and put the terms over the common denominator D1/2 where D = B1B2 · · ·BM .

This expresses R = D−1/2
∑M

j=1AjD
1/2
j where each Dj is D with Bj divided out. We see then

that {R = 0} is a subset of where S =
∑M

j=1AjD
1/2
j = 0. Let Σ be the collection of the 2M

functions σ : {1, 2, . . . ,M} → {−1, 1}. Now we take the product

P =
∏

σ∈Σ

(
M∑

j=1

σ(j)AjD
1/2
j

)
.

Here the product has 2M factors. We show that P is a polynomial (of degree at most 3M · 2M ).
Let

P(χ1, χ2, . . . , χM ) :=
∏

σ∈Σ

( M∑

j=1

σ(j)χj

)
.

Observe that for every fixed k ∈ {1, 2, . . . ,M} the product P is a polynomial in χk and its value
remains the same if we replace χk by −χk, as the factors of the product remain the same, they
are only permuted. Hence P is a polynomial in χ2

k for every fixed k ∈ {1, 2, . . . ,M}. Now apply
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this with χj = AjD
1/2
j to conclude that P is a polynomial (of degree at most 3M · 2M ), indeed.

To finish the proof observe that
∑M

j=1AjD
1/2
j is a factor of this product defining P , namely the

sum when σ(j) = 1 for each j. So {R = 0} is a subset of the real algebraic variety given by
P = 0.

Remark 2.4. a) It is an interesting issue that deriving P is not so straightforward. Most
elementary cases of equations with square roots are handled just by isolating the terms on one
side of the equality, squaring, rearranging the terms, and continuing this process. But with
multiple terms (five or more) that are square roots, this does not work.

b) We believe that in fact in a) and b) above, not only is the zero set contained in the associated
structure, but is itself in fact of the same structure. At this time, we do not have a complete
proof of this conjecture.

Remark 2.5. The asymptotic directions of the zero sets of the component functions of the
electric field when n = 2 is one structural aspect that is examined in detail below. But the
case of the surfaces being asymptotically linear in the case that n = 3 is not resolved here.
Nonetheless, if this is true, then two gravitational fields in R

3 can be distinguished by taking a
set of three non-colinear vectors v1, v2, and v3, and then translating them by a vector w which
is far from the origin. Now, the intersection of the component zero sets can only consist of a
finite set of curve sections of an associated real algebraic variety containing where F = (0, 0, 0).
Also, these curves are probably asymptotically linear. If so, this shows that if two finite point
gravitational fields F1 and F2 have F1(vi + w) = F2(vi + w) for i = 1, 2, and 3, and w of
large norm, then the gravitational fields are the same everywhere. Note: there is the additional
ambiguity of how far from the origin one must choose w, but taking these values in a sequence
going to infinity would resolve that.

2.2 Finite Electric Fields in the Plane

In R
2, we consider a finite set of points (xj , yj) and a finite set of coefficients aj that are real

numbers. We let the Euclidean distance rj = ‖(x, y)− (xj , yj)‖2, We take a vector field F given
by

F (x, y) = (X(z, y), Y (x, y)) =
M∑

j=1

aj
r2j

(x, y)− (xj , yj)

rj
.

So for the real-valued components of this vector field, we have:

X(x, y) =
M∑

j=1

aj(x− xj)

r3j
and Y (x, y) =

M∑

j=1

aj(y − yj)

r3j
.

Examples suggest that now the zero sets of X and Y consists of points, lines, and curves, both
bounded and unbounded. However, the common zero set is more limited.

Conjecture: The zero set of a two-dimensional finite electrical field consists of a finite set of
points.

Of course, we would want to know also what the corresponding Maxwell Conjecture would be:
how many points can there be given only M? See Gabrielov, Novikov, and Shapiro [2]. See also
Proposition 4.1 in [1] and Killian [3].

This conjecture should not be so difficult to solve. However, despite a number of attempts
to find simple methods to resolve it, and to estimate the number of points, the conjecture has
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not been proven to be correct. In any case, what this result would say about distinguishing two
finite gravitational fields in an ecliptic is that a finite, possibly large, number of measurements
suffice to distinguish these fields. Certainly, measurement in an entire disc would suffice because
F could not be zero on a disc without being zero throughout the plane. Even showing that the
same thing is true if a disc is replaced by a line segment seems not so easy to prove.

Indeed, the conjecture for finite electrical fields in the plane says that if you take a measure-
ment far from the point charges, and it is zero in both components, then the field is identically
zero everywhere and there are actually no point charges at all. In practice, since one does not
know how far out one must be, the right thing to do is to take a fixed sequence of points tending
to infinity and take the measurements there. The conjecture says that these cannot all be zero
without the field being identically zero everywhere.

Remark 2.6. Another version of the measurement problem is not easy to answer. How can we
take a limited number of measurements of two gravitational fields and based on these measure-
ments conclude the fields must be a rotation and/or a translation of one another? This question
can be rephrased for finite electrical fields in a suitable fashion.

One can consider there being two separate issues with describing the zero set of a finite
electrical field in the plane . One issue is how to show that all the zeros must be in a large disc
i.e. there cannot be zeros arbitrarily far out in the plane. This is not the case for X = 0 or for
Y = 0 separately; they typically do have portions arbitrarily far from the origin.

The second issue is how to show that there can only be a finite set of zeros within a fixed
distance of the origin. The second issue is not completely resolved at this time unless we had a
result like Proposition 4.1 in [1].

Actually, what we seek to prove, with some technical work that is much more difficult to
complete than it ought to be, is that at infinity the zero set of X or of Y consists of a finite
number of curves that are to some degree at least asymptotically linear. In the process, or as a
result, we would want to find equations that give the slopes of these lines and show that they
are distinct from one another when we consider X or when we consider Y . This is how we could
show that the common zeros of X and Y must lie in a large disc.

The obvious approach to these questions would seem to be just a smart use of implicit
differentiation. For example, where X = 0, if there is a solution y = y(x) or x = x(y), we should
be able to compute dy/dx or dx/dy and work with this. In particular, if we believe that a given
curve y = y(x) in the zero set of X must be asymptotically linear at infinity, we would just need
to show that y is asymptotically αx, for some α. At this time, we cannot see how to carry this
out in general.

So instead, what we do is consider the implicit equation Y = 0 and X = 0 and expand this
as an infinite series. This series has to be adapted to the region in question; one series does
not seem to suffice for the whole plane. Then we consider these series asymptotically and get
equations that determine the directions of solutions to X = 0 at large distances from the origin.
These equations only have a finite number of solutions. Then we carry out the same thing for
Y = 0. We then show that the asymptotic directions are different for the two zero sets. This
approach gives us at least part of the results that we want.

Remark 2.7. One aspect of this analysis that is worth noting is that certain moments are
closely tied to the structure of the zero sets. In the Special Case we call

∑M
j=1 ajx

k
j the kth

moment. If k = 0, then we get the ground state moment
∑M

j=1 aj . If M is large, then many of
these could be zero without forcing all the charges aj to be zero. The critical moment is the one

given by L such that
∑M

j=1 ajx
k
j = 0 for all 0 ≤ k < L and

∑M
j=1 ajx

L
j 6= 0. As the number of

point charges increases, the structure of the zero sets of X and Y become more complicated, and
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as L increases, the structure of the zero sets of X and Y at infinity become more complicated.
We have found no way to see that these moments play an important role in the structure of the
zero sets without doing asymptotic analysis using power series expansions.

2.3 A Special Case in the Plane

The Special Case will mean that we take points in R
2 that are all on a line and consider the

zeros of F = (X,Y ). The General Case will mean that we take any points in R
2 and consider

the zeros of F = (X,Y ). Oddly enough, the Special Case is not so easy to analyze, even though
it seems quite restrictive.

By rotating and translating, or by a appropriate choice of the coordinate system, the Special
Case becomes the following. Take distinct points Pj = (xj, 0), j = 1, 2, . . . ,M , on the positive
x-axis. Assume that 0 < x1 < x2 < · · · < xM . Put non-zero electric charges aj at these points.
Then the field in the plane is given by

F (x, y) =

M∑

j=1

aj((x, y)− (xj , 0))

((x− xj)2 + y2)3/2
.

Where is F (x, y) = (0, 0)? Here the function F (x, y) = (X(x, y), Y (x, y)) where

X(x, y) =
M∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
and Y (x, y) =

M∑

j=1

ajy

((x− xj)2 + y2)3/2
.

Can we prove that X and Y only vanish simultaneously at only a finite number of values (x, y)?

2.4 Zeros on the Line of the Point Charges

Proposition 2.8. The function F (x, 0) vanishes only at finitely many x ∈ R.

Proof. This is the subcase that y = 0. This is actually the case of a finite electrical field on a
line. But now Y (x, y) = Y (x, 0) = 0 and

X(x, y) = X(x, 0) =
M∑

j=1

aj(x− xj)

((x− xj)2)
3/2

=
M∑

j=1

aj(x− xj)

|x− xj|

1

(x− xj)2
.

Let I0 := (−∞, x1), IM := (xM ,∞), and Ij := (xj, xj+1), j = 1, 2, . . . ,M − 1. The function

h(x) :=
x− xj
|x− xj |

is identically −1 or identically 1 on any of these intervals Ij for j = 0, 1, . . . ,M .

Hence, X(x, y) = X(x, 0) is a rational function on any of these Ij and can only have a finite
number of zeros on Ij . This means that F (x, 0) can be zero only finitely many times too.

2.5 Zeros Off the Line of the Point Charges

Now we work to argue that the zeros must be in some disc. Suppose y is not zero but F (x, y) =
(0, 0). Then Y (x, y) = 0 implies that

M∑

j=1

aj

((x− xj)2 + y2)3/2
= 0
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since y 6= 0. So

0 = X(x, y) =
M∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
=

M∑

j=1

aj(−xj)

((x− xj)2 + y2)3/2
.

Hence, if we have zeros at an arbitrarily large distance away from the origin (necessarily not on
the x-axis and so y 6= 0), then multiply

0 =

M∑

j=1

aj

((x− xj)2 + y2)3/2
and 0 =

M∑

j=1

ajxj

((x− xj)2 + y2)3/2

by
(
x2 + y2

)3/2
. Then take a limit along a sequence of values (x, y) whose distance from the origin

is going to ∞, for which the forces are zero, and conclude that
∑M

j=1 aj = 0 and
∑M

j=1 ajxj = 0.

We examine the cases M = 2 and M = 3 briefly in the rest of this section. SupposeM = 2 so
that there are only two point charges. Then the existence of zeros arbitrarily far from the origin,
would give a1 + a2 = 0 and a1x1 + a2x2 = 0. Since x1 6= x2, this mean that both a1 = a2 = 0.
So if there are zeros, then they must lie in some large disc.

How do we argue that there are only finitely many of these even in this very simple case?
The zero set can be non-empty for sure. Actually, with two point charges, it is not hard to see
we cannot have zeros off the axis, and there is only a finite number on the axis. The number is
very limited too, maybe at most two (or three?) zeros.

We can extend the argument above to handle three points, at least in some Special Cases.
Assume there are zeros arbitrarily far out. We then have

∑M
j=1 aj = 0 and

∑M
j=1 ajxj = 0. Using

points (x, y) that are zeros, we have

M∑

j=1

ajxj

((x− xj)2 + y2)3/2
= 0 .

So using −
∑M

j=2 ajxj = a1x1, we have

M∑

j=2

ajxj

(
1

((x− xj)2 + y2)3/2
−

1

((x− x1)2 + y2)3/2

)
= 0 .

Now we can use the Mean Value Theorem to rewrite

1

((x− xj)2 + y2)3/2
−

1

((x− p1)2 + y2)3/2
= (xj − x1)

(
−3tj

(t2j + y2)5/2

)

for some tj between x− x1 and x− xj . Again, taking zeros of large radius, that also have the x

value large, and multiplying by
(x2 + y2)5/2

−3x
gives

M∑

j=2

ajxj(xj − x1) =

M∑

j=2

ajx
2
j −

M∑

j=2

ajxjx1 = 0 .

Since
∑M

j=2 ajxj = −a1p1, we get
∑M

j=1 ajx
2
j = 0. So in this Special Case we have

∑M
j=1 aj = 0,

∑M
j=1 ajxj = 0, and

∑M
j=1 ajx

2
j = 0. The conclusion is that if a1 = a2 = a3 = 0. So there cannot

be zeros arbitrarily far out, with x values also large unless a1 = a2 = a3 = 0. We need a separate
argument to treat the case where the x values do not get large.
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3 Special Case: No Curves and Finiteness of the Zero Set

It turns out that there are a couple of ways, closely related to each other, to show that in the
Special Case there cannot be any non-trivial curves in the zero set F = (X,Y ) = (0, 0). We
choose here one particular approach.

First, in Section 3.1, we prove that this zero set is, in fact, countable. The advantage of this
argument is that we do not even need to define what we mean by “non-trivial curve”. Then in
Section 3.2, we show that the zero set is in fact finite.

3.1 The Zero Set {X = Y = 0} Is Countable

With 0 < x1 < x2 < · · · < xM , let

Xm(x, y) :=

M∑

j=1

aj(x− xj)

((x− xj)2 + y2)(2m+1)/2
, m = 1, 2, . . . ,

and

Ym(x, y) :=

M∑

j=1

ajy

((x− xj)2 + y2)(2m+1)/2
, m = 1, 2, . . . .

We have

∂Xm

∂x
=

M∑

j=1

aj
((x− xj)

2 + y2)− (2m+ 1)(x − xj)
2

((x− xj)2 + y2)(2m+3)/2
,

∂Xm

∂y
=

M∑

j=1

aj
−(2m+ 1)y(x − xj)

((x− xj)2 + y2)(2m+3)/2
,

∂Ym

∂x
=

M∑

j=1

aj
−(2m+ 1)y(x − xj)

((x− xj)2 + y2)(2m+3)/2
,

∂Ym

∂y
=

M∑

j=1

aj
((x− xj)

2 + y2)− (2m+ 1)y2

((x− xj)2 + y2)(2m+3)/2
.

Let
H := {(x, y) : X1 = Y1 = 0, y 6= 0}

and
Hm := {(x, y) : Xu = Yu = 0, y 6= 0 u = 1, 2, . . . ,m, X2

m+1 + Y 2
m+1 > 0} ,

m = 1, 2, . . .. Observe that for (x, y) ∈ Hm we have

∂Xm

∂x
= −

∂Ym

∂y
= (2m+ 1)yYm+1

and
∂Xm

∂y
=

∂Ym

∂x
= −(2m+ 1)yXm+1 .

In this section we use only undergraduate real analysis such as Vandermonde determinants and
the Implicit Function Theorem and prove a structural property of the set H. In particular, we
prove that H is a countable set. The basic idea is under the assumptions

X1(x0, y0) = Y1(x0, y0) = 0 ,
∂X1

∂x
(x0, y0) 6= 0

9



the algebraic varieties

{(x, y) : X1(x, y) = 0} and {(x, y) : Y1(x, y) = 0} ,

which are graphs of functions in a neighborhood of (x0, y0) by the Implicit Function Theorem,
intersect each other in an orthogonal fashion. However, proving our results in this section requires
more technical details.

Proposition 3.1. We have

H =

M−1⋃

m=1

Hm

unless a1 = a2 = · · · = aM = 0.

Proof. Suppose (x0, y0) /∈ H. For the sake of brevity let

rj := ((x0 − xj)
2 + y20)

1/2 , j = 1, 2, . . . ,M .

We have
M∑

j=1

aj
rj

1

(r2j )
k
= 0 , k = 1, 2, . . . ,M , (3.1)

and
M∑

j=1

ajxj
rj

1

(r2j )
k
= 0 , k = 1, 2, . . . ,M . (3.2)

Let {R1 < R2 < . . . < Rm} = {r1, r2, . . . , rM}. Since our point charges (xj , 0) are on a line, for
every u ∈ {1, 2, . . . ,m} there are at most 2 values of j ∈ {1, 2, . . . ,M} for which rj = Ru. Hence
by (3.1) and (3.2) we have

m∑

u=1

bu
Ru

1

(R2
u)

k
= 0 , k = 1, 2, . . . ,m , (3.3)

and
m∑

u=1

cu
Ru

1

(R2
u)

k
= 0 , k = 1, 2, . . . ,m , (3.4)

where
bu = aj and cu = xjaj (3.5)

if there is only one value j ∈ {1, 2, . . . ,M} such that rj = Ru, and

bu = aj1 + aj2 and cu = xj1aj1 + xj2aj2 (3.6)

if there are two distinct values j1, j2 ∈ {1, 2, . . . ,M} such that rj1 = rj2 = Ru. Using (3.3)–(3.6)
and the well known non-vanishing property of Vandermonde determinants we conclude that

bu = cu = 0 , u = 1, 2, . . . ,m ,

from which
aj = 0, j = 1, 2, . . . ,M ,

follows.
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Proposition 3.2. Each point in Hm is an isolated point in Hm for every m = 1, 2, . . . ,M − 1,
unless a1 = a2 = · · · = aM = 0.

Proof. Suppose a21+a22+ · · ·+a2M > 0. Let m be a fixed positive integer. Suppose (x0, y0) ∈ Hm,
that is, either

Xu(x0, y0) = Yu(x0, y0) = 0 , y0 6= 0 , u = 1, 2, . . . ,m , Xm+1(x0, y0) 6= 0 , (3.7)

or
Xu(x0, y0) = Yu(x0, y0) = 0 , y0 6= 0 , u = 1, 2, . . . ,m , Ym+1(x0, y0) 6= 0 . (3.8)

If (3.7) holds, then we have

∂Xm

∂y
(x0, y0) = −(2m+ 1)y0Xm+1(x0, y0) 6= 0 (3.9)

and
∂Ym

∂x
(x0, y0) = −(2m+ 1)y0Xm+1(x0, y0) 6= 0 (3.10)

Also,

∂Ym

∂y
(x0, y0) =

Ym(x0, y0)

y0
− (2m+ 1)y0Ym+1(x0, y0)

= −(2m+ 1)y0Ym+1(x0, y0)

(3.11)

and

∂Xm

∂x
(x0, y0) = (2m+ 1)y0Ym+1(x0, y0)−

(2m)Ym(x0, y0)

y0

= (2m+ 1)y0Ym+1(x0, y0) .

(3.12)

By the Implicit Function Theorem and (3.9), there are δ > 0, ε > 0, and a function y = f(x)
differentiable on (x0 − δ, x0 + δ) such that the set

C1 : = {(x, y) : Xm(x, y) = 0, x ∈ (x0 − δ, x0 + δ), y ∈ (y0 − ε, y0 + ε)}

= {(x, f(x)) : x ∈ (x0 − δ, x0 + δ)}

is the graph of a differentiable function y = f(x) on (x0 − δ, x0 + δ), and the equation for the
tangent line to the curve C1 at the point (x0, y0) is

y − y0 = α(x− x0) ,

where

α =

(
∂Xm

∂x

/∂Xm

∂y

)
(x0, y0 =

(2m+ 1)y0Ym+1(x0, y0)

−(2m+ 1)y0Xm+1(x0, y0)
=

−Ym+1(x0, y0)

Xm+1(x0, y0)
.

Similarly, by the Implicit Function Theorem and (3.10), there are δ > 0, ε > 0, and a function
x = g(y) differentiable on (y0 − δ, y0 + δ) such that the set

C2 : = {(x, y) : Ym(x, y) = 0, y ∈ (y0 − δ, y0 + δ), x ∈ (x0 − ε, x0 + ε)}

= {(g(y), y) : y ∈ (y0 − δ, y0 + δ)}
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is the graph of a differentiable function x = g(y) on (y0 − δ, y0 + δ), and the equation for the
tangent line to the curve C2 at the point (x0, y0) is

x− x0 = β(y − y0) ,

where by (3.11) and (3.12) we have

β =

(
∂Ym

∂y

/∂Ym

∂x

)
(x0, y0) =

−(2m+ 1)y0Ym+1(x0, y0)

−(2m+ 1)y0Xm+1(x0, y0)
=

Ym+1(x0, y0)

Xm+1(x0, y0)
.

Observe that α = −β. We conclude that the curves C1 and C2 are orthogonal to each other
at (x0, y0). As Hm ⊂ C1

⋂
C2, the point (x0, y0) ∈ Hm is an isolated point of Hm.

If (3.8) holds, then we have

∂Ym

∂y
(x0, y0) =

Ym(x0, y0)

y0
− (2m+ 1)y0Ym+1(x0, y0)

= −(2m+ 1)y0Ym+1(x0, y0) 6= 0

(3.13)

and

∂Xm

∂x
(x0, y0) = (2m+ 1)y0Ym+1(x0, y0)−

(2m)Ym(x0, y0)

y0

= (2m+ 1)y0Ym+1(x0, y0) 6= 0 .

(3.14)

Also,

∂Xm

∂y
(x0, y0) =

∂Ym

∂x
(x0, y0) = −(2m+ 1)y0Xm+1(x0, y0) (3.15)

By the Implicit Function Theorem and (3.13), there are δ > 0, ε > 0, and a function y = f(x)
differentiable on (x0 − δ, x0 + δ) such that the set

C3 : = {(x, y) : Ym(x, y) = 0, x ∈ (x0 − δ, x0 + δ), y ∈ (y0 − ε, y0 + ε)}

= {(x, f(x)) : x ∈ (x0 − δ, x0 + δ)}

is the graph of a differentiable function y = f(x) on (x0 − δ, x0 + δ), and the equation for the
tangent line to the curve C3 at the point (x0, y0) is

y − y0 = α(x− x0) ,

where

α =

(
∂Ym

∂x

/∂Ym

∂y

)
(x0, y0) =

−(2m+ 1)y0Xm+1(x0, y0)

−(2m+ 1)y0Ym+1(x0, y0)
=

Xm+1(x0, y0)

Ym+1(x0, y0)
.

Similarly, by the Implicit Function Theorem and (3.14), there are δ > 0, ε > 0, and a function
x = g(y) differentiable on (y0 − δ, y0 + δ) such that the set

C4 : = {(x, y) : Xm(x, y) = 0, y ∈ (y0 − δ, y0 + δ), x ∈ (x0 − ε, x0 + ε)}

= {(g(y), y) : y ∈ (y0 − δ, y0 + δ)}

is the graph of a differentiable function x = g(y) on (y0 − δ, y0 + δ), and the equation for the
tangent line to the curve C4 at the point (x0, y0) is

x− x0 = β(y − y0)

12



where by (3.15) we have

β =

(
∂Xm

∂y

/∂Xm

∂x

)
(x0, y0) =

−(2m+ 1)y0Xm+1(x0, y0)

(2m+ 1)y0Ym+1(x0, y0)
=

−Xm+1(x0, y0)

Ym+1(x0, y0)
.

Observe that α = −β. We conclude that the curves C3 and C4 are orthogonal to each other
at (x0, y0). As Hm ⊂ C3

⋂
C4, the point (x0, y0) ∈ Hm is an isolated point of Hm.

Now by combining Propositions 3.1, 3.2, and Section 2.4, our final conclusion in this section
is the following.

Proposition 3.3. In the Special Case, the set {(x, y) : X(x, y) = Y (x, y) = 0} is countable, and
hence the zero set of F = (X,Y ) does not contain a non-trivial curve.

3.2 Bézout and Finiteness of the Zero Set

Now we use the above result on the absence of curves in the joint zero set to show that the
zero set is actually finite in the Special Case. The argument is along the lines of the proof of
Proposition 2.3.

Proposition 3.4. In the Special Case, the zero set of F = (X,Y ) is a finite set.

Proof. Again, suppose 0 < x1 < x2 < · · · < xM and the real numbers a1, a2, . . . , aM are not all
zero. Let, as before,

X(x, y) =
M∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
, and Y (x, y) =

M∑

j=1

ajy

((x− xj)2 + y2)3/2
,

Let Σ be the collection of the 2M functions σ : {1, 2, . . . ,M} → {−1, 1}. Let

Xσ(x, y) :=

M∑

j=1

σ(j)aj(x− xj)

((x− xj)2 + y2)3/2
, and Yσ(x, y) :=

M∑

j=1

σ(j)ajy

((x− xj)2 + y2)3/2
.

Let

Dj(x, y) :=

M∏

k=1

k 6=j

((x− xk)
2 + y2))3/2 , j = 1, 2, . . . ,M ,

and

D(x, y) :=

M∏

k=1

((x− xk)
2 + y2))3/2 .

We have

Xσ(x, y)
2 + Yσ(x, y)

2

=

(
M∑

j=1

σ(j)aj(x− xk)Dj(x, y)

D(x, y)

)2

+

(
M∑

j=1

σ(j)ajyDj(x, y)

D(x, y)

)2

=
1

D(x, y)2

((
M∑

j=1

σ(j)aj(x− xj)Dj(x, y)

)2

+

(
M∑

j=1

σ(j)ajyDj(x, y)

)2)
.
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Observe that the function

F (x, y) :=
∏

σ∈Σ

((
M∑

j=1

σ(j)aj(x− xj)Dj(x, y)

)2

+

(
M∑

j=1

σ(j)akyDj(x, y)

)2)

is an even polynomial in each of the variables

χj := Dj(x, y) , j = 1, 2, . . . ,M ,

as it remains the same when χj is replaced by −χj. Hence F (x, y) is a polynomial in each of
the variables

χ2
j = Dj(x, y)

2, j = 1, 2, . . . ,M .

We conclude that

G(x, y) :=
∏

σ∈Σ

(
Xσ(x, y)

2 + Yσ(x, y)
2

)
=

P (x, y)

D(x, y)2M+1
,

where P is a polynomial of degree at most (3M)2M . We claim that the set

E := {(x, y) : P (x, y) = 0}

cannot contain a non-trivial curve. Indeed, observe that E is a finite union of the countable sets
Xσ ∩ Yσ, hence E is also countable. Thus E = {(x, y) : P (x, y) = 0} is an algebraic variety not
containing a non-trivial curve. Such an algebraic variety contains only finitely many points. As
the zero set of F = (X,Y ) is a subset of E, it is also finite.

With the help of Bézout’s Theorem we can give an upper bound for the number of points in
the zero set of F = (X,Y ).

Proposition 3.5. In the Special Case the zero set of F = (X,Y ) contains at most 9M24M

points.

To prove the above proposition we need the following classic version of Bézout’s Theorem. Two
polynomials f ∈ R[x, y] and g ∈ R[x, y] are coprime if there is no non-constant polynomial
which is a factor of both f and g. Associated with a polynomial f ∈ R[x, y] we define its zero
set Z(f) := {(x, y) : f(x, y) = 0} .

Proposition 3.6. (Bézout’s Theorem) Given any two coprime polynomials f, g ∈ R[x, y] of
degrees d1 and d2, respectively, Z(f) ∩ Z(g) contains at most d1d2 points.

A consequence of the above Bézout’s Theorem is the following.

Proposition 3.7. Let f ∈ R[x, y] be a polynomial of degree d. If Z(f) contains only finitely
many points, then Z(f) contains at most d(d − 1) points.

Proof. Without loss of generality we may assume that f is square-free, that is, f is a product of
irreducible polynomial factors none of which is repeated, as keeping only one of each repeated
factors in a factorization of f the set Z(f) remains the same. As Z(f) contains only finitely
many points, we may also assume that f does not have a factor that is a polynomial of y of
degree at least 1. Observe that if Z(f) contains only finitely many points, then each of these
points are singular, that is,

Z(f) =

{
(x, y) : f(x, y) =

∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0

}
,
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otherwise the Implicit Function Theorem would imply that Z(f) contains a curve (graph of a
function) with infinitely many points. For the sake of brevity let

g(x, y) :=
∂f

∂x
(x, y) .

As f is square-free, f and g are coprime. Hence Bézout’s Theorem implies that Z(f) = Z(f) ∩
Z(g) contains at most d(d− 1) points.

Now we are ready to prove Proposition 3.5.

Proof. Observe that the degree of P in the proof of Proposition 3.4 is at most d := (3M)2M .
Hence, by Proposition 3.7 we can deduce that the zero set E = {(x, y) : P (x, y) = 0} contains
at most d2 = 9M24M points. As the zero set of F = (X,Y ) is a subset of E, it contains at most
d2 = 9M24M points as well.

Observe that no general fact about analytic varieties has been used. All that is needed is
Bézout’s Theorem. See Gibson [5] for Bézout’s Theorem.

3.3 Impact of the Next Dimension

The zero sets of X and Y do not meet in an orthogonal fashion in general. But under simple
assumptions they do, and in fact aspects of the field in one higher dimension can play a role.

Consider an analysis of this by taking charges in the xy-plane, with the force field in R
3.

Now we have F = (X,Y,Z) but our charges are not in general position in R
3. Instead they are

restricted to being in the xy-plane: that is, the charges are at points (xj , yj, 0), j = 1, 2, . . . ,M .
Again, the force field in R

3 has a potential

φ(x, y, z) =
−1

2

M∑

j=1

aj
rj

.

But now, unlike in two dimensions, this potential is harmonic.
SupposeX = Y = 0 at a point (x0, y0, 0). Suppose again as before that both yX = yX(x) and

yY = yY (x) can be implicitly determined by X = 0 and Y = 0 in a neighborhood of (x0, y, 0).
For the sake of this argument, we assume that this happens because

∂X

∂y
6= 0 and

∂Y

∂y
6= 0

at the point (x0, y0, 0). This means that

∂2φ

∂y∂x
6= 0 and

∂2φ

∂y2
6= 0

at the point (x0, y0, 0). We also have

0 =
∂X

∂x
+

∂X

∂y

dyX
dx

=
∂2φ

∂x2
+

∂2φ

∂y∂x

dyX
dx

and

0 =
∂Y

∂x
+

∂Y

∂y

dyY
dx

=
∂2φ

∂x∂y
+

∂2φ

∂y2
dyY
dx
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at the point (x0, y0, 0). Hence

dyX
dx

dyY
dx

=

(
−
∂2φ

∂x2

/ ∂2φ

∂y∂x

)(
−

∂2φ

∂x∂y

/∂2φ

∂y2

)
=

(
∂2φ

∂x2

/∂2φ

∂y2

)

holds at the point (x0, y0, 0). We have just proved the following result.

Proposition 3.8. If X = Y = 0,

∂X

∂y
6= 0 ,

∂Y

∂y
6= 0 , and

∂2φ

∂x2
+

∂2φ

∂y2
= 0

at the point (x0, y0, 0), then
dyX
dx

dyY
dx

= −1

holds at the point (x0, y0, 0), and the zero sets {X = 0} and {Y = 0} in the xy-plane meet at
the point (x0, y0, 0) in an orthogonal fashion.

However, in general
∂2φ

∂x2
+

∂2φ

∂y2
is not zero. Rather

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 .

But

∂2φ

∂z2
=

M∑

j=1

aj
r3j

− 3

M∑

j=1

ajz
2

r5j
.

So when z = 0, we have
∂2φ

∂z2
=

M∑

j=1

aj
r3j

. But Z =
M∑

j=1

ajz

r3j
. So at a point (x0, y0, 0) which is a

limit of points (x, y, z) with z 6= 0 and Z(x, y, z) = 0 we have
∂2φ

∂z2
= 0, and so

∂2φ

∂x2
+

∂2φ

∂y2
= 0 .

Hence, as above, this means that
dyX
dx

dyY
dx

= −1

at the point (x0, y0, 0), and so again we have the same result as in Proposition 3.8, that is, the
zero sets of {X = 0} and {Y = 0} meet at the point x0, y0, 0) in an orthogonal fashion.

However, examples should show that there are are points (x, y, 0) in the xy-plane where both
X and Y are zero, but

M∑

j=1

aj
r3j

=
M∑

j=1

aj

((x− xj)2 + (y − yj)2)3/2

is not zero. So at such points the zero sets {X = 0} and {Y = 0} would not necessarily meet in
an orthogonal fashion.
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4 Special Case: Asymptotic Directions of Component Zero Sets

Let 0 6= α ∈ (−∞,∞). The line y = αx is called an asymptotic direction for a set A ⊂ R
2 if

there are (pm, qm) ∈ A such that

lim
|pm|→∞

qm
pm

= lim
|qm|→∞

qm
pm

= α .

The x-axis is called an asymptotic direction for a set A ⊂ R
2 if there are (pm, qm) ∈ A such that

lim
|pm|→∞

qm
pm

= 0 .

The y-axis is called an asymptotic direction for a set A ⊂ R
2 if there are (pm, qm) ∈ A such that

lim
|qm|→∞

pm
qm

= 0 .

For the sake of brevity we will use the notation β := 1/α. Note that the case β = 0 corresponds
to the asymptotic direction given by the y-axis. The goal in this section is is simple: to show
that the set of possible asymptotic directions for {X = 0} and the set of the possible asymptotic
directions for {Y = 0} are distinct. We succeed in showing this with the exception of the
asymptotic directions y = ±x. We call the domains {(x, y) : |x| < |y|} and {(x, y) : |y| < |x|}
Type I domain and Type II domain, respectively. To find all possible asymptotic directions for
the zero sets {Y = 0} and {X = 0} we proceed differently in Type I and Type II domains, but
the cases of the zero sets {Y = 0} and {X = 0} are quite similar to each other in both domains.
Our results in this section have their own intrinsic interest, even though the boundedness of the
zero set {X = Y = 0} contained in Propositions 3.4 and 3.5 is not completely recaptured in this
section as we cannot show that the lines |y| = |x| cannot be a common asymptotic direction to
both of the zero sets {Y = 0} and {X = 0}.

4.1 Notation

Let, as before, 0 < x1 < x2 < · · · < xM and

X(x, y) :=
M∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
and Y (x, y) :=

M∑

j=1

ajy

((x− xj)2 + y2)3/2
.

By the Binomial Theorem the Taylor series expansion

(1 + z)−3/2 =

∞∑

n=0

(
−3/2

n

)
zn , z ∈ (−1, 1) ,

converges uniform on the interval [−1 + δ, 1 − δ] for every δ > 0. Let µu := (−1)u
∑M

j=1 ajx
u
j .

By the non-vanishing property of the Vandermonde determinants there is an integer 0 ≤ L ≤ M
such that µu = 0 for u = 0, 1, . . . , L−1, and µL 6= 0. This is the choice of L throughout Sections
4.1-4.6. Typically, as L gets larger, the complexity to detect possible asymptotic directions for
the zero sets {X = 0} and {Y = 0} increases.
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4.2 Type I Domain, Possible Asymptotes for Y = 0

Proposition 4.1. Let δ ∈ (0, 1/2) be fixed. If

Y (pm, qm) = 0,

∣∣∣∣
pm
qm

∣∣∣∣ < 1− δ, qm 6= 0, lim
|qm|→∞

pm
qm

= β ,

then
dL

dβL

(
1

(1 + β2)3/2

)
= 0 .

Proof. We have

0 = qL+1
m |qm|Y (pm, qm) = qLm

M∑

j=1

aj

(
1 +

(
pm − xj

qm

)2
)−3/2

= qLm

M∑

j=1

aj

∞∑

n=0

(
−3/2

n

)(
pm − xj

qm

)2n

for all sufficiently large m. Note that we have adjusted with the factor qL+1
m |qm|. We also have

M∑

j=1

aj(pm − xj)
2n =

M∑

j=1

aj

2n∑

u=0

(
2n

u

)
(−1)uxuj p

2n−u
m =

2n∑

u=0

M∑

j=1

(
2n

u

)
(−1)uajx

u
j p

2n−u
m

=

2n∑

u=L

M∑

j=1

(
2n

u

)
(−1)uxuj p

2n−u
m =

2n∑

u=L

(
2n

u

)
µup

2n−u
m ,

(4.1)

and hence

0 = qLm

M∑

j=1

aj

∞∑

n=0

(
−3/2

n

)(
pm − xj

qm

)2n

= qLm

∞∑

n=0

(
−3/2

n

) M∑

j=1

aj

(
pm − xj

qm

)2n

=
∞∑

n=0

(
−3/2

n

) 2n∑

u=L

(
2n

u

)
µu

(
pm
qm

)2n−u

qL−u
m

for all sufficiently large m. Separating the term for which u = L, we obtain

0 =

∞∑

n=0

(
−3/2

n

)(
2n

L

)
µL

(
pm
qm

)2n−L

+

∞∑

n=0

(
−3/2

n

) 2n∑

u=L+1

(
2n

u

)
µu

(
pm
qm

)2n−u

qL−u
m

=
µL

L!

dL

dzL

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
+

∞∑

u=L+1

µu

u!

du

dzu

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

(4.2)

for all sufficiently large m. Here we interchanged the order of summations which, is legal as one
can easily check that under our conditions the double sum converges absolutely. See Section 4.6.
Observe that

|µu| =

∣∣∣∣∣∣

M∑

j=1

ajx
u
j

∣∣∣∣∣∣
≤




M∑

j=1

|aj |


xuM = AxuM . (4.3)
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The Cauchy Integral Formula and |pm/qm| < 1− δ imply that
∣∣∣∣∣
1

u!

du

dzu

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm

∣∣∣∣∣ ≤
δ

2
max

|z|=1−δ/2

∣∣∣∣∣
(
1 + z2

)−3/2

∣∣∣∣∣

(
δ

2

)−(u+1)

≤

(
2

δ

)u+2

. (4.4)

Observe also that

|qm|L−u = |qm|L−u+1/2|qm|−1/2 ≤ |qm|−u/(2L+2)|qm|−1/2 , u ≥ L+ 1 , |qm| > 1 . (4.5)

Combining 4.3, 4.4, and 4.5, we obtain
∣∣∣∣∣

∞∑

u=L+1

µu

u!

du

dzu

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

∣∣∣∣∣

≤
∞∑

u=L+1

|µu|

∣∣∣∣∣
1

u!

du

dzu

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm

∣∣∣∣∣|qm|L−u

≤
∞∑

u=L+1

AxuM

(
2

δ

)u+2

|qm|L−u ≤ |qm|−1/2
∞∑

u=L+1

AxuM

(
2

δ

)u+2

|qm|−u/(2L+2)

≤ |qm|−1/2A

(
2

δ

)2 ∞∑

u=L+1

(
2xM

δ|qm|1/(2L+2)

)u

.

(4.6)

As |qm| → ∞, 4.6 implies that

lim
|qm|→∞

(
∞∑

u=L+1

µu

u!

du

dzu

((
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

)
= 0 .

Now we are ready to take the limit in 4.2 when |qm| → ∞. We obtain

µL

L!

dL

dβL

(
1

(1 + β2)3/2

)
+ 0 = 0 .

4.3 Type I domain, Possible Asymptotes for X = 0

Proposition 4.2. Let δ ∈ (0, 1/2) be fixed. If

X(pm, qm) = 0,

∣∣∣∣
pm
qm

∣∣∣∣ < 1− δ, qm 6= 0, lim
|qm|→∞

pm
qm

= β ,

then
dL

dβL

(
β

(1 + β2)3/2

)
= 0 .

Proof. We have

0 = qL+1
m |qm|X(pm, qm) = qL−1

m

M∑

j=1

aj(pm − xj)

(
1 +

(
pm − xj

qm

)2
)−3/2

= qL−1
m

M∑

j=1

aj

∞∑

n=0

(
−3/2

n

)
(pm − xj)

2n+1

q2nm
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for all sufficiently large m. Note that we have adjusted with the factor qL+1
m |qm|. Replacing 2n

by 2n+ 1 in 4.1, we also have

M∑

j=1

aj(pm − xj)
2n+1 =

2n+1∑

u=L

(
2n+ 1

u

)
µup

2n+1−u
m ,

and hence

0 = qL−1
m

M∑

j=1

aj

∞∑

n=0

(
−3/2

n

)
(pm − xj)

2n+1

q2nm
= qL−1

m

∞∑

n=0

(
−3/2

n

) M∑

j=1

(pm − xj)
2n+1

q2nm

=

∞∑

n=0

(
−3/2

n

) 2n+1∑

u=L

(
2n+ 1

u

)
µu

(
pm
qm

)2n+1−u

qL−u
m .

for all sufficiently large m. Separating the term for which u = L, we obtain

∞∑

n=0

(
−3/2

n

)(
2n+ 1

L

)
µL

(
pm
qm

)2n+1−L

+

∞∑

n=0

(
−3/2

n

) 2n+1∑

u=L+1

(
2n+ 1

u

)
µu

(
pm
qm

)2n+1−u

qL−u
m

=
µL

L!

dL

dzL

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
+

∞∑

u=L+1

µu

u!

du

dzu

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

(4.7)

vanishes for all sufficiently large m. Here we interchanged the order of summations, which is
legitimate as one can easily check that under our conditions the double sum converges absolutely.
See Section 4.6. The Cauchy Integral Formula and |pm/qm| ≤ 1− δ imply that
∣∣∣∣∣
1

u!

du

dzu

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm

∣∣∣∣∣ ≤
δ

2
max

|z|=1−δ/2

∣∣∣∣∣
(
1 + z2

)−3/2

∣∣∣∣∣

(
δ

2

)−(u+1)

≤

(
2

δ

)u+2

. (4.8)

Combining 4.3, 4.8, and 4.5, we obtain
∣∣∣∣∣

∞∑

u=L+1

(−1)uµu

u!

du

dzu

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

∣∣∣∣∣

≤
∞∑

u=L+1

|µu|

∣∣∣∣∣
1

u!

du

dzu

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm

∣∣∣∣∣|qm|L−u

≤

∞∑

u=L+1

AxuM

(
2

δ

)u+2

|qm|L−u ≤ |qm|−1/2
∞∑

u=L+1

AxuM

(
2

δ

)u+2

|qm|−u/(2L+2)

≤ |qm|−1/2A

(
2

δ

)2 ∞∑

u=L+1

(
2xM

δ|qm|1/(2L+2)

)u

.

(4.9)

As |qm| → ∞, 4.9 implies that

lim
|qm|→∞

(
∞∑

u=L+1

µu

u!

du

dzu

(
z
(
1 + z2

)−3/2
) ∣∣∣

z=pm/qm
qL−u
m

)
= 0 .

Now we are ready to take the limit in 4.7 when |qm| → ∞. We obtain

µL

L!

dL

dβL

(
β

(1 + β2)3/2

)
+ 0 = 0 .
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4.4 Type II domain, Possible Asymptotes for Y = 0

Proposition 4.3. Let δ ∈ (0, 1/4) be fixed. If

Y (pm, qm) = 0, |pm| > xM , qm 6= 0,

∣∣∣∣
qm
pm

∣∣∣∣ < 1− 2δ, lim
|pm|→∞

qm
pm

= α ,

then α 6= 0 and
dL

dαL

(
αL+2

(1 + α2)3/2

)
= 0 .

Proof. The Binomial Theorem gives

1

(x− xj)2n+3
=

1

x2n+3

(
1−

xj
x

)−(2n+3)
=

1

x2n+3

∞∑

u=0

(
−(2n+ 3)

u

)(
−xj
x

)u

, |x| > xM ,

for each j = 1, 2, . . . ,M , and hence

M∑

j=1

aj
(x− xj)2n+3

=

M∑

j=1

aj
x2n+3

∞∑

u=0

(
−(2n+ 3)

u

)(
−xj
x

)u

=

M∑

j=1

aj
x2n+3

(
L∑

u=0

(
−(2n+ 3)

u

)(
−xj
x

)u

+RL,n

(
−xj
x

))

= µL

(
−(2n + 3)

L

)
x−(2n+3)−L +AL,n(x) , |x| > |xM | ,

(4.10)

with

AL,n(x) := x−(2n+3)
M∑

j=1

ajRL,n

(
−xj
x

)
,

where RL,n(x) is the Lth remainder term in the Taylor series expansion of the function f(t) :=
(1 + t)−(2n+3) centered at 0, that is,

(1 + t)−(2n+3) = TL,n(t) +RL,n(t) , |t| < 1 ,

where TL,n(t) it the Lth Taylor polynomial centered at 0 associated with the function f(t) :=
(1+ t)−(2n+3). Estimating by using the Cauchy form of the remainder term RL,n(t) in the Taylor
series expansion of the function f(t) := (1 + t)−(2n+3), we obtain

|RL,n(t)| ≤ (L+ 1)

∣∣∣∣
(
−(2n + 3)

L+ 1

)∣∣∣∣ (1− |t|)−(2n+4)|t|L+1 , |t| < 1 ,

and hence with A :=
∑M

j=1 |aj | we have

|AL,n(x)| =

∣∣∣∣∣∣
x−(2n+3)

M∑

j=1

ajRL,n

(
−xj
x

)∣∣∣∣∣∣

≤ AM |x|−(2n+3)(L+ 1)

∣∣∣∣
(
−(2n+ 3)

L+ 1

)∣∣∣∣
(
1−

∣∣∣
xM
x

∣∣∣
)−(2n+4) ∣∣∣

xM
x

∣∣∣
L+1

,

≤ AM(L+ 1)xL+1
M

∣∣∣∣
(
−(2n+ 3)

L+ 1

)∣∣∣∣ (|x| − xM )−(2n+4) |x|−L , |x| > xM .

(4.11)
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A simple algebra shows that

1

y
Y (x, y) =

M∑

j=1

aj

((x− xj)2 + y2)3/2
=

M∑

j=1

aj
|x− xj|3

(
1 +

(
y

x− xj

)2
)−3/2

, |x| > xM , y 6= 0 .

Observe that

∣∣∣∣
qm

pm − xj

∣∣∣∣ ≤ 1− δ for all sufficiently large m, and hence the Binomial Theorem

gives

0 = ±
pL+3
m

qm
Y (pm, qm) = pL+3

m

M∑

j=1

aj
(pm − xj)3

(
1 +

(
qm

pm − xj

)2
)−3/2

= pL+3
m

M∑

j=1

aj
(pm − xj)3

∞∑

n=0

(
−3/2

n

)(
qm

pm − xj

)2n

for all sufficiently large m. Note that we have adjusted with the factor pL+3
m . Combining this

with 4.10, we obtain

0 = pL+3
m

M∑

j=1

aj
(pm − xj)3

∞∑

n=0

(
−3/2

n

)(
qm

pm − xj

)2n

= pL+3
m

∞∑

n=0

M∑

j=1

(
−3/2

n

)
ajq

2n
m

(pm − xj)2n+3

=
∞∑

n=0

(
−3/2

n

)
q2nm

(
µL

(
−(2n + 3)

L

)
p−2n
m + pL+3

m AL,n(pm)

)

=

∞∑

n=0

(
−3/2

n

)(
µL

(
−(2n+ 3)

L

)(
qm
pm

)2n

+ q2nm pL+3
m AL,n(pm)

)

(4.12)

for all sufficiently large m. It follows from 4.11 that
∣∣∣∣∣

∞∑

n=0

(
−3/2

n

)
q2nm pL+3

m AL,n(pm)

∣∣∣∣∣

≤AM(L+ 1)xL+1
M

∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n + 3)

L+ 1

)∣∣∣∣
(

|qm|

|pm| − xM

)2n ( |pm|

|pm| − xM

)3 1

|pm| − xM

≤AM(L+ 1)xL+1
M

∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n + 3)

L+ 1

)∣∣∣∣ (|α|+ δ)2n
(

|pm|

|pm| − xM

)3 1

|pm| − xM

for all sufficiently large m, where the right-hand side converges to

AM(L+ 1)xL+1
M

(
∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n+ 3)

L+ 1

)∣∣∣∣ (|α| + δ)2n
)(

lim
|pm|→∞

|pm|3

(|pm| − xM )4

)
= 0 .

Therefore taking the limit in 4.12 as |pm| → ∞ gives

∞∑

n=0

(
−3/2

n

)
µL

(
−(2n+ 3)

L

)
α2n = 0 .
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That is,
∞∑

n=0

(
−3/2

n

)
µL

(
−(2n+ L+ 2)

L

)
α2n = 0 .

As |α| ≤ 1− δ we conclude that α 6= 0 and

µL

L!

dL

dαL

(
αL+2

(1 + α2)3/2

)
= 0 .

4.5 Type II domain, Possible Asymptotes for X = 0

Proposition 4.4. Let δ ∈ (0, 1/4) be fixed. If

Y (pm, qm) = 0, |pm| > xM ,

∣∣∣∣
qm
pm

∣∣∣∣ < 1− 2δ, lim
|pm|→∞

qm
pm

= α ,

then α 6= 0 and
dL

dαL

(
αL+1

(1 + α2)3/2

)
= 0 .

Proof. Replacing 2n+ 3 by 2n+ 2 in 4.10, we obtain

M∑

j=1

aj
(x− xj)2n+2

= µL

(
−(2n+ 2)

L

)
x−(2n+3)−L +AL,n(x) , |x| > |xM | , (4.13)

with

AL,n(x) := x−(2n+2)
M∑

j=1

ajRL,n

(
−xj
x

)
,

where RL,n(x) is the Lth remainder term in the Taylor series expansion of the function f(t) :=
(1 + t)−(2n+2) centered at 0, that is,

(1 + t)−(2n+2) = TL,n(t) +RL,n(t) , |t| < 1 ,

where TL,n(t) it the Lth Taylor polynomial centered at 0 associated with the function f(t) :=
(1+ t)−(2n+2). Estimating by using the Cauchy form of the remainder term RL,n(t) in the Taylor
series expansion of the function f(t) := (1 + t)−(2n+3), we obtain

|RL,n(t)| ≤ (L+ 1)

∣∣∣∣
(
−(2n + 2)

L+ 1

)∣∣∣∣ (1− |t|)−(2n+3)|t|L+1 , |t| < 1 ,

and hence, replacing 2n+ 3 with 2n+ 2 in 4.11, we have

|AL,n(x)| ≤ AM(L+ 1)xL+1
M

∣∣∣∣
(
−(2n+ 2)

L+ 1

)∣∣∣∣ (|x| − xM )−(2n+3) |x|−L , |x| > xM . (4.14)

A simple algebra shows that

X(x, y) =

M∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
=

M∑

j=1

aj(x− xj)

|x− xj|3

(
1 +

(
y

x− xj

)2
)−3/2

, |x| > xM , y 6= 0 .
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Observe that ∣∣∣∣
qm

pm − xj

∣∣∣∣ ≤ 1− δ

for all sufficiently large m, and hence the Binomial Theorem gives

0 = ±pL+2
m X(pm, qm) = pL+2

m

M∑

j=1

aj(pm − xj)

(pm − xj)3

(
1 +

(
qm

pm − xj

)2
)−3/2

= pL+2
m

M∑

j=1

aj
(pm − xj)2

∞∑

n=0

(
−3/2

n

)(
qm

pm − xj

)2n

for all sufficiently large m. Note that we have adjusted with the factor pL+2
m . Hence, similarly

to 4.12, we get

0 = pL+2
m

M∑

j=1

aj
(pm − xj)2

∞∑

n=0

(
−3/2

n

)(
qm

pm − xj

)2n

=

∞∑

n=0

(
−3/2

n

)(
µL

(
−(2n + 2)

L

)(
qm
pm

)2n

+ q2nm pL+2
m AL,n(pm)

) (4.15)

for all sufficiently large m. It follows from 4.14 that
∣∣∣∣∣

∞∑

n=0

(
−3/2

n

)
q2nm pL+2

m AL,n(pm)

∣∣∣∣∣

≤AM(L+ 1)xL+1
M

∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n+ 2)

L+ 1

)∣∣∣∣
(

|qm|

|pm| − xM

)2n( |pm|

|pm| − xM

)2 1

|pm| − xM

≤AM(L+ 1)xL+1
M

∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n+ 2)

L+ 1

)∣∣∣∣ (|α| + δ)2n
(

|pm|

|pm| − xM

)2 1

|pm| − xM

for all sufficiently large m, where the right-hand side converges to

AM(L+ 1)xL+1
M

(
∞∑

n=0

∣∣∣∣
(
−3/2

n

)(
−(2n+ 2)

L+ 1

)∣∣∣∣ (|α| + δ)2n

)(
lim

|pm|→∞

|pm|2

(|pm| − xM )3

)
= 0 .

Therefore taking the limit in 4.15 as |pm| → ∞ gives

∞∑

n=0

(
−3/2

n

)
µL

(
−(2n+ 2)

L

)
α2n = 0 .

That is,
∞∑

n=0

(
−3/2

n

)
µL

(
2n + L+ 1

L

)
α2n = 0 .

As |α| ≤ 1− 2δ we conclude that α 6= 0 and

µL

L!

dL

dαL

(
αL+1

(1 + α2)3/2

)
= 0 .

‘
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4.6 Interchanging the Order of Summation

In the analysis in Section 4.2 to find the possible asymptotes for {Y = 0} in the Type I domain
we interchanged the order of summations in

∞∑

n=0

(
−3/2

n

) 2n∑

u=L

(
2n

u

)
µu

(
pm
qm

)2n−u

qL−u
m =

∞∑

u=L

∞∑

n=0

(
2n

u

)
µu

(
pm
qm

)2n−u

qL−u
m

for all sufficiently large m, or equivalently

∞∑

n=0

(
−3/2

n

) 2n∑

u=L

(
2n

u

)
µu

(
pm
qm

)2n−u

q−u
m =

∞∑

u=L

∞∑

n=0

(
2n

u

)
µu

(
pm
qm

)2n−u

q−u
m

for all sufficiently large m. To see that this is legitimate, recall that µu := (−1)u
∑u

j=1 ajx
u
j and

µu = 0 for each u = 0, 1, . . . , L− 1, and hence we have

∞∑

n=0

2n∑

u=L

∣∣∣∣∣

(
−3/2

n

)(
2n

u

)
µu

(
pm
qm

)2n−u

q−u
m

∣∣∣∣∣ =
∞∑

n=0

2n∑

u=0

∣∣∣∣∣

(
−3/2

n

)(
2n

u

)
µu

(
pm
qm

)2n−u

q−u
m

∣∣∣∣∣

=

∞∑

n=0

2n∑

u=0

∣∣∣∣∣∣

(
−3/2

n

)(
2n

u

) M∑

j=1

aj(−xj)
u

(
pm
qm

)2n−u

q−u
m

∣∣∣∣∣∣
≤

M∑

j=1

∞∑

n=0

|aj |

∣∣∣∣
(
−3/2

n

)∣∣∣∣
(
|pm|+ xj

|qm|

)2n

≤

M∑

j=1

∞∑

n=0

|aj |

∣∣∣∣
(
−3/2

n

)∣∣∣∣ (|β|+ δ/2)2n < ∞

for all sufficiently largem, as |β| ≤ 1−δ and the power series
∑∞

n=0

(
−3/2
n

)
z2n converges absolutely

for all z ∈ (−1, 1).
A similar argument shows that interchanging the order of summation in our work in Section

4.2 to find the possible asymptotes for {X = 0} in the Type I domain is legitimate.

4.7 Interlacing properties of zeros of polynomials I

We now address how we can conclude that the asymptotic directions of the zero sets of Y and
X are distinct. Proving this would show that there are no zeros for F = (X,Y ) outside some
large disc, in the Special Case. From the analysis in Section 3, we already know this because
the zero set is finite. But our argument may have independent value because it gives interlacing
properties for a class of functions that has not previously been considered. In addition, this
interlacing is needing for applications of the General Case that we will address later. Moreover,
this interlacing sets up a context in which some of the challenges in the General Case can be
understood better. We thank Vilmos Totik who early on gave us methods for getting results like
the ones in this section.

We define

A0(x) :=
x

(1 + x2)3/2
, B0(x) :=

1

(1 + x2)3/2
,

AL(x) :=
dLA0

dxL
, BL(x) :=

dLB0

dxL
, L = 1, 2, . . . .

It is easy to see that there are polynomials PL of degree L+ 1 and QL of degree L such that

AL(x) =
PL(x)

(1 + x2)(2L+3)/2
=

(1 + x2)P ′
L−1(x)− (2L+ 1)xPL−1(x)

(1 + x2)(2L+3)/2
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and

BL(x) =
QL(x)

(1 + x2)(2L+3)/2
=

(1 + x2)Q′
L−1(x)− (2L+ 1)xQL−1(x)

(1 + x2)(2L+3)/2
.

As the degree L+ 1 of the polynomial PL and the degree L of the polynomial QL are less than
(2L+ 3)/2 we have

lim
x→±∞

PL(x)

(1 + x2)(L+3)/2
= lim

x→±∞

QL(x)

(1 + x2)(L+3)/2
= 0 (4.16)

Proposition 4.5. Let L ≥ 1 be an integer.

(a) The polynomial PL of degree L + 1 has L + 1 distinct real zeros, and the zeros of PL and
PL−1 strictly interlace.

(b) The polynomial QL of degree L has L distinct real zeros, and the zeros of QL and QL−1

strictly interlace.

Proof. We prove only (a), the proof of (b) is identical. The proof is a simple induction on L.
The statements is obviously true for L = 1. Assume that statement (a) is true for some integer
L− 1 ≥ 1. Note that the zeros of PL−1 and AL−1 are the same. Let us denote the distinct real
zeros of PL−1 and AL by x1 < x2 < · · · < xL. The limit relations 4.16 and Rolle’s theorem imply
that AL+1 = A′

L has zeros yj ∈ (xj , xj+1), j = 0, 1, . . . , L, where x0 := −∞ and xL+1 := ∞.
However, the zeros of AL are the same as the zeros of PL, which means that statement (a) is
true for L.

Proposition 4.6. Let L ≥ 1 be an integer.

(a) The zeros of zeros of PL and P ′
L strictly interlace.

(b) The zeros of QL and Q′
L strictly interlace.

Proof. Suppose a polynomial R of degree L has L distinct zeros x1 < x2 < · · · < xL. Then
Rolle’s Theorem implies that R′ has zeros yj ∈ (xj , xj+1), j = 1, 2, . . . , L − 1. However, the
degree of R′ is L− 1, so R′ has L− 1 distinct zeros.

Proposition 4.7. Let L ≥ 1 be an integer. The zeros of AL and BL strictly interlace. Equiva-
lently, the zeros of PL and QL strictly interlace.

Proof. Observe that

AL(β) =
dLA0

dβL
and A0(β) = βB0(β) ,

so using the Leibniz formula we obtain

AL(β) = LBL−1(β) + βBL(β) ,

or equivalently
PL(β) = LQL−1(β)(1 + β2) + βQL(β) (4.17)

The fact that PL and QL have no common zeros already follows from it simply, as any such
common zero of PL and QL is a common zero of QL and QL−1 which is impossible by Proposition
1, as the zeros of QL and Q′

L strictly interlace. It is somewhat more subtle to see that the zeros
PL and the zeros of QL interlace Denoting the zeros of QL by β1 < β2 < · · · < βL, we can deduce
from 4.17 that

PL(βj−1)PL(βj) < 0 , j = 2, 3, . . . , L ,
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since by Proposition 1.1 we already know that QL−1 has exactly one zero in (βj−1, βj). Hence
PL has at least one zero in each of the intervals (βj−1, βj) , j = 2, 3, . . . , L . Also, it is easy to
see by induction that the sign of the leading coefficient of QL is (−1)L, hence

lim
β→±∞

QL(β)

βL
= (−1)L . (4.18)

It follows from 4.17 and 4.18 that PL has a sign change, and hence at least one zero in (βL,∞),
and PL has a sign change, and hence at least one zero in (−∞, β1). Finally recall that the degree
of PL is L+ 1 and the degree of QL is L. In conclusion, there is exactly one zero of QL strictly
between any two consecutive real zeros of PL.

4.8 The Inversion Formula and Interlacing Properties of Polynomials

There is an interesting connection between the values of β in the Type I domains, and the values
of α in the Type II domains. This connection is not at first evident because of constraints that
need to be made in order that we have convergence of the power series that we consider. But
we can observe this now.

Let L ≥ 0 be an integer. We define

A0(x) :=
x

(x2 + 1)3/2
, B0(x) :=

1

(x2 + 1)3/2
,

AL(x) :=
dL

dxL
x

(x2 + 1)3/2
, BL(x) :=

dL

dxL
1

(x2 + 1)3/2
,

CL(x) :=
dL

dxL
xL+2

(x2 + 1)3/2
, DL(x) :=

dL

dxL
xL+1

(x2 + 1)3/2
.

Proposition 4.8. (Inversion Formula) We have

sgn(x)xL+1BL(x) = (−1)LCL(1/x) , x ∈ R \ {0} , L = 0, 1, . . . .

Proof. As both sides are even functions of x ∈ R\{0}, without loss of generality we may assume
that x > 0. For an integer L ≥ 0 we define

B̃L(x) := xL+1BL(x) , C∗
L(x) := CL(1/x) , C̃L(x) := (−1)LC∗

L(x) .

Observe that for L ≥ 1 we have

B̃L(x) = xL+1BL(x) = xxLB′
L−1(x)

= x(xLB′
L−1(x)) + x(LxL−1BL−1(x))− LxLBL−1(x)

= xB̃′
L−1(x)− LB̃L−1(x) ,

that is, the functions B̃L satisfy the recursion

B̃0(x) =
x

(1 + x2)3/2
, (4.19)

B̃L(x) = xB̃′
L−1(x)− LB̃L−1(x) , L = 1, 2, . . . . (4.20)

Observe that
C̃0(x) =

x

(x2 + 1)3/2
, (4.21)
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and the Leibniz formula yields

CL(x) =
dL

dxL
xL+1x

(x2 + 1)3/2
= xC ′

L−1(x) + LCL−1(x) , L = 1, 2, . . . . (4.22)

Replacing x by 1/x we get

CL(1/x) = (1/x)C ′
L−1(1/x) + LCL−1(1/x) , L = 1, 2, . . . ,

that is,
C∗
L(x) = −xC∗′

L−1(x) + LC∗
L−1(x) , L = 1, 2, . . . ,

and hence
C̃L(x) = xC̃ ′

L−1(x)− LC̃L−1(x) , L = 1, 2, . . . . (4.23)

Now observe that by 4.19, 4.20, 4.21, and 4.23 the functions B̃L and C̃L satisfy the same recursion.
In conclusion

B̃L(x) = C̃L(x) , L = 0, 1, . . . ,

and the lemma follows.

Proposition 4.9. Let L ≥ 0 be an integer. The functions CL and DL do not have a common
zero different from 0.

Proof. The statement is obvious for L = 0. Let L ≥ 1 be an integer. Observe that

DL(x) = C ′
L−1(x) ,

and hence 4.22 can be written as

CL(x) = xDL(x) + LCL−1(x) , L = 1, 2, . . . .

Therefore if α 6= 0 is a common zero of CL and DL, then α 6= 0 is a common zero of CL and
CL−1, and hence α 6= 0 is a common zero of CL−1 and C ′

L−1. By the Inversion Formula this
means that a is a common zero of

sgn(x)B̃L−1(1/x) = x−LBL−1(1/x)

and
d

dx
B̃L−1(1/x) = −x−L−2B′

L−1(1/x) + (−L)x−L−1BL−1(1/x) .

This means that 1/α is a common zero of BL−1 and BL. However, this is impossible. Indeed,
as as we have seen before, the Leibniz formula implies that

AL(x) = LBL−1(x) + xBL(x) ,

and hence any common zero of BL−1 and BL is a common zero of AL and BL. However, the
zeros of AL and BL strictly interlace by Proposition 1.3 of the previous section.

4.9 The Boundary Case y = ±x

In a forthcoming paper we may be able to prove that y = ±x cannot be a common asymptotic
direction to both of the zero sets {X = 0} and {Y = 0}. Originally we needed this to argue
that the zero set {X = Y = 0} is bounded. However, Proposition 3.4 already implies that in
the Special Case the zero set {X = Y = 0} is bounded, as it is a finite set of points.
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4.10 Final Conclusion

Combining the results in Section 4.2 through Section 4.9, we conclude that in the Special Case
the set of possible asymptotic directions of the zero set {(x, y) : X(x, y) = 0} and the set of
possible asymptotic directions of the zero set {(x, y) : Y (x, y) = 0} are distinct, except possibly
the lines y = ±x. Whether or not the lines y = ±x can be a common asymptotic direction to
both of the zero sets {X = 0} and {Y = 0} remains open in this paper.

Acknowledgments: We thank Bruce Reznick for showing us the product method for elimi-
nating square roots in our field component equations in Section 2 and Section 3. We thank
Vilmos Totik for helpful remarks about the interlacing of zeros of in our formulas for asymptotic
directions in Section 4.
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