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Abstract

We investigate large sieve inequalities such as

1

m

mX
j=1

 
�
log
��P �ei�j���� � C

2�

Z 2�

0

 
�
log
�
e
��P �ei������ d� ;

where  is convex and increasing, P is a polynomial or an exponential
of a potential, and the constant C depends on the degree of P , and
the distribution of the points 0 � �1 < �2 < � � � < �m � 2�. The
method allows greater generality and is in some ways simpler than
earlier ones. We apply our results to estimate the Mahler measure of
Fekete polynomials.

1 1Results

The large sieve of number theory [14, p. 559] asserts that if

P (z) =

nX
k=�n

akz
k

is a trigonometric polyonomial of degree � n, and
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and

� := min f�2 � �1; �3 � �2; : : : ; �m � �m�1; 2� � (�m � �1)g ;

then
mX
j=1

��P �ei�j���2 � � n
2�
+ ��1

�Z 2�

0

��P �ei����2 d� : (1)

There are numerous extensions of this to Lp norms, or involving  
���P �ei����p�,

where  is a convex function, and p > 0 [8], [12]. There are versions of this

that estimate Riemann sums, for example,

mX
j=1

��P �ei�j���2 (� j � � j�1) � C
1

2�

Z 2�

0

��P �ei����2 d� ; (2)

with C independent of n, P , f�1; �2; : : : ; �mg. These are often called forward

Marcinkiewicz-Zygmund inequalities. Converse Marcinkiewicz-Zygmund In-

equalities provide estimates for the integrals above in terms of the sums on

the left-hand side [11], [13], [16].

A particularly interesting case is that of the L0 norm. A result of the

�rst author asserts that if fz1; z2; : : : ; zng are the nth roots of unity, and P

is a polynomial of degree � n,

nY
j=1

jP (zj)j1=n � 2M0 (P ) ; (3)

where

M0 (P ) := exp

�
1

2�

Z 2�

0
log
��P �eit��� dt�

is the Mahler measure of P .

The focus of this paper is to show that methods of subharmonic function

theory provide a simple and direct way to generalize previous results. We

also extend (3) to points other than the roots of unity. Given c � 0, � 2
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[0;1), and a positive measure � of compact support and total mass at most

� � 0 on the plane, we de�ne the associated exponential of its potential by

P (z) = c exp

�Z
log jz � tj d� (t)

�
:

We say that this is an exponential of a potential of mass � �, and that its

degree is � �. The set of all such functions is denoted by P�. Note that if

P is a polynomial of degree � n, then

jP j 2 Pn:

More generally, the generalized polynomials studied by several authors [3],

[7] also lie in P�, for an appropriate �. We prove:

Theorem 1.1 Let  : R! [0;1) be nondecreasing and convex. Let m � 1,

� > 0, � > 0, and

0 < �1 � �2 � � � � � �m � 2�:

Let wj � 0, 1 � j � m with

mX
j=1

wj = 1:

Let �m denote the corresponding Riemann-Stieltjes measure, de�ned for � 2

[0; 2�] by

�m ([0; �]) :=
X
j:�j��

wj :

Let

� := sup

������m ([0; �])� �

2�

���� : � 2 [0; 2�]� (4)

denote the discrepancy of �m. Then for P 2 P�,
mX
j=1

wj 
�
logP

�
ei�j
��
�
�
1 +

8

�
��

�
1

2�

Z 2�

0
 
�
log
h
e�P

�
ei�
�i�

d�: (5)
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Example 1 Let us choose all equal weights,

wj =
1

m
; 1 � j � m:

Then �m is counting measure,

�m ([0; �]) =
1

m
# fj : � j 2 [0; �]g :

If we take  (t) = max f0; tg, and � = 1, and use the notation log+ t =

max f0; log tg, we obtain

1

m

mX
j=1

log+ P
�
ei�j
�
� (1 + 8��) 1

2�

Z 2�

0
log+

h
eP
�
ei�
�i
d�: (6)

This result is new. Previous inequalities have been limited to sums involving

 
�
P
�
ei�j
�p�, some p > 0. If we let p > 0,  (t) = ept, and � = 1

p , (5)

becomes
1

m

mX
j=1

P
�
ei�j
�p � (1 + 8p��) e

2�

Z 2�

0
P
�
ei�
�p
d�: (7)

This choice of � is not optimal. The optimal choice is

� = 4��

�
�1 +

r
1 +

1

2p��

�
but one needs further information on the size of p�� to exploit this. For

example, if p�� � 1, the optimal choice is of order
q

��
p , and choosing this

� in (5), we obtain

1

m

mX
j=1

P
�
ei�j
�p � �1 + Cpp��� 1

2�

Z 2�

0
P
�
ei�
�p
d�; (8)

where C is an absolute constant.

For well distributed f�1; �2; : : : ; �mg, � is of order 1
m . In particular,

when these points are equally spaced and include 2�, but not 0, so that

� j =
2j�

m
; 1 � j � m;
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we have

� =
2�

m
;

and (7) becomes

1

m

mX
j=1

P
�
ei�j
�p � �1 + 16�p�

m

�
e

2�

Z 2�

0
P
�
ei�
�p
d�: (9)

Example 2 Another important choice of the weights wj is

wj =
� j � � j�1

2�
; 1 � j � m;

where now we assume �0 = 0 and �m = 2�. For this case (5) becomes an

estimate for Riemann sums,

1

2�

mX
j=1

(� j � � j�1) 
�
logP

�
ei�j
��

�
�
1 +

8

�
��

�
1

2�

Z 2�

0
 
�
log
h
e�P

�
ei�
�i�

d�: (10)

The discrepancy � in this case is

� = sup
j

� j � � j�1
2�

:

Remarks

(a) In many ways, the approach of this paper is simpler than that in [12]

where Dirichlet kernels were used, or that of [8], where Carleson measures

were used. The main idea is to use the Poisson integral inequality for sub-

harmonic functions.

(b) We can reformulate (5) asZ 2�

0
 
�
log
��P �ei����� d�m (�)

�
�
1 +

8

�
��

�
1

2�

Z 2�

0
 
�
log
h
e�P

�
ei�
�i�

d�:
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In fact this estimate holds for any probability measure �m on [0; 2�], not

just the pure jump measures above.

(c) The one severe restriction above is that  is nonnegative. In particular,

this excludes  (x) = x. For this case, we prove 2 di¤erent results:

Theorem 1.2 Assume that m, �, f�1; �2; : : : ; �mg and fw1; w2; : : : ; wmg

are as in Theorem 1.1. Let

Q (z) =

mY
j=1

��z � ei�j ��wj : (11)

Then for P 2 P�,
mX
j=1

wj logP
�
ei�j
�
� 1

2�

Z 2�

0
logP

�
ei�
�
d� + � log kQkL1(jzj=1): (12)

Remarks

If we choose all wj = 1
m , this yields

mY
j=1

P
�
ei�j
�1=m � kQk�L1(jzj=1) exp� 1

2�

Z 2�

0
logP

�
ei�
�
d�

�
: (13)

If we take
�
ei�1 ; ei�2 ; : : : ; ei�m

	
to be the mth roots of unity, then

Q (z) = jzm � 1j1=m

and (13) becomes

mY
j=1

P
�
ei�j
�1=m � 2�=m exp� 1

2�

Z 2�

0
logP

�
ei�
�
d�

�
: (14)

In the case � = m = n, this gives the �rst author�s inequality (3). In general

however, it is not easy to bound kQkL1(jzj=1). Using an alternative method,

we can avoid the term involving Q, when the spacing between successive � j

is O
�
��1

�
:
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Theorem 1.3 Assume thatm;� and f�1; �2; : : : ; �mg are as in Theorem 1.1.

Let �0 := �m � 2� and �m+1 := �1 + 2�. Let

� := max f�1 � �0; �2 � �1; : : : ; �m � �m�1g :

Let A > 0. There exists B > 0 such that whenever � � 1 and

� � A��1;

then for all P 2 P�,
mX
j=1

� j+1 � � j�1
2

logP
�
ei�j
�
�
Z 2�

0
logP

�
ei�
�
d� +B: (15)

One application of Theorem 1.2 is to estimation of Mahler measure. Re-

call that for a bounded measurable function Q on [0; 2�], its Mahler measure

is

M0 (Q) = exp

�
1

2�

Z 2�

0
log
���Q�ei����� d�� :

It is well known that

M0 (Q) = lim
p!0+

Mp (Q) ;

where for p > 0,

Mp (Q) := kQkp :=
�
1

2�

Z 2�

0

���Q�ei�����p d��1=p :
It is a simple consequence of Jensen�s formula that if

Q (z) = c
nY
k=1

(z � zk)

is a polynomial, then

M0 (Q) = jcj
nY
k=1

max f1; jzkjg :
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The construction of polynomials with suitably restricted coe¢ cients and

maximal Mahler measure has interested many authors. The Littlewood

polynomials,

Ln :=

(
p : p (z) =

nX
k=0

�kz
k; �k 2 f�1; 1g

)
;

which have coe¢ cients �1, and the unimodular polynomials,

Kn :=

(
p : p (z) =

nX
k=0

�kz
k; j�kj = 1

)
are two of the most important classes considered. Beller and Newman [1]

constructed unimodular polynomials of degree n whose Mahler measure is

at least
p
n � c= log n. Here we show that for Littlewood polynomials, we

can achieve almost 12
p
n, by considering the Fekete polynomials.

For a prime number p, the pth Fekete polynomial is

fp (z) =

p�1X
k=1

�
k

p

�
zk;

where

�
k

p

�
=

8><>:
1; if x2 � k (mod p) has a non-zero solution x

0; if p divides k

�1; otherwise.

Since fp has constant coe¢ cient 0 it is not a Littlewood polynomial, but

gp (z) = fp (z) =z

is a Littlewood polynomial, and has the same Mahler measure as fp. Fekete

polynomials are examined in detail in [2, pp. 37�42].

Theorem 1.4 Let " > 0. For large enough prime p, we have

M0 (fp) =M0 (gp) �
�
1

2
� "
�
p
p: (16)
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Remarks

From Jensen�s inequality,

M0 (fp) � kfpk2 =
p
p� 1 :

However 12 � " in Theorem 1.4 cannot be replaced by 1 � ". Indeed if p is

prime, and we write p = 4m+ 1, then gp is self-reciprocal, that is,

zp�1gp

�
1

z

�
= gp (z) ;

and hence

gp
�
e2it
�
= ei(p�2)t

(p�3)=2X
k=0

ak cos ((2k + 1) t) ; ak 2 f�2; 2g :

A result of Littlewood [10, Theorem 2] implies that

M0 (fp) =M0 (gp) �
1

2�

Z 2�

0

��gp �e2it��� dt � (1� "0)pp� 1;
for some absolute constant "0 > 0. It is an interesting question whether

there is a sequence of Littlewood polynomials (fn) such that for an arbitrary

" > 0, and n large enough,

M0 (fn) � (1� ")
p
n:

The results are proved in the next section.

2 Proofs

We assume the notation of Theorem 1.1. We let

r = 1 +
�

�
; (17)

and de�ne the Poisson kernel for the ball jzj � r (cf. [15, p. 8]),

Pr
�
sei�; reit

�
=

r2 � s2
r2 � 2rs cos (t� �) + s2 ;

9



where 0 � s < r and t; � 2 R.

Proof of Theorem 1.1

Step 1 The Basic Inequality

Let P 2 P�n f0g, so that for some c > 0 and some measure � with total

mass � � and compact support,

logP (z) = log c+

Z
log jz � tj d� (t) :

As logP is subharmonic, and as  is convex and increasing,  (logP ) is

subharmonic [15, Theorem 2.6.3, p. 43]. Then we have for jzj < r, the

inequality [15, Theorem 2.4.1, p. 35]

 (logP (z)) � 1

2�

Z 2�

0
 
�
logP

�
reit
��
Pr
�
z; reit

�
dt:

Choosing z = ei�j , multiplying by wj , and adding over j gives

mX
j=1

wj 
�
logP

�
ei�j
��
� 1

2�

Z 2�

0
 
�
logP

�
reit
��
dt

� 1

2�

Z 2�

0
 
�
logP

�
reit
��
H (t) dt (18)

where

H (t) : =
mX
j=1

wjPr
�
ei�j ; reit

�
� 1

=

Z 2�

0
Pr
�
ei� ; reit

�
d
�
�m (�)�

�

2�

�
:

Here we have used the elementary property of the Poisson kernel, that it

integrates to 1 over any circle center 0 inside its ball of de�nition.

Step 2 Estimating H

We integrate this relation by parts, and note that both �m [0; 0] = 0 and

10



�m [0; 2�] = 1. This gives

H (t) = �
Z 2�

0

�
@

@�
Pr
�
ei� ; reit

���
�m ([0; � ])�

�

2�

�
d�

and hence

jH (t)j � �
Z 2�

0

���� @@� Pr �ei� ; reit�
���� d� : (19)

Now
@

@�
Pr
�
ei� ; reit

�
=

�
r2 � 1

�
2r sin (t� �)

(r2 � 2r cos (t� �) + 1)2

so a substitution s = t� � and 2��periodicity giveZ 2�

0

���� @@� Pr �ei� ; reit�
���� d� = Z �

��

���� @@sPr �eis; r�
���� ds

= �2
Z �

0

@

@s
Pr
�
eis; r

�
ds

= �2
�
Pr
�
ei�; r

�
� Pr (1; r)

�
=

8r

r2 � 1 : (20)

Combining (18)�(20), gives

mX
j=1

wj 
�
logP

�
ei�j
��
�
�
1 + �

8r

r2 � 1

�
1

2�

Z 2�

0
 
�
logP

�
reit
��
dt: (21)

Step 3 Return to the unit circle

Next, we estimate the integral on the right-hand side in terms of an integral

over the unit circle. Let us assume that � has total mass �(� �). Let

S (z) = jzj� P
�r
z

�
so that

logS (z) = log c+

Z
log jr � tzj d� (t) ;

a function subharmonic in C. Then the same is true of  (logS), so its

integrals over circles centre 0 increase with the radius [15, Theorem 2.6.8,

p. 46]. In particular

1

2�

Z 2�

0
 
�
logS

�
ei�
��

d� � 1

2�

Z 2�

0
 
�
logS

�
rei�

��
d�
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and a substitution � ! �� gives

1

2�

Z 2�

0
 
�
logP

�
rei�

��
d� � 1

2�

Z 2�

0
 
�
� log r + logP

�
ei�
��

d�

� 1

2�

Z 2�

0
 
�
� log r + logP

�
ei�
��

d�

� 1

2�

Z 2�

0
 
�
�+ logP

�
ei�
��

d�;

recall our choice (17) of r. Then (21) becomes
mX
j=1

wj 
�
logP

�
ei�j
��

�
�
1 + �

8r

r2 � 1

�
1

2�

Z 2�

0
 
�
log
h
e�P

�
ei�
�i�

d�

�
�
1 + 8�

�

�

� 1

2�

Z 2�

0
 
�
log
h
e�P

�
ei�
�i�

d�:

�
Proof of Theorem 1.2

Write

logP (z) = log c+

Z
log jz � tj d� (t)

so

mX
j=1

wj logP
�
ei�j
�
= log c+

Z 0@ mX
j=1

wj log
��ei�j � t��

1A d� (t)

= log c+

Z
logQ (t) d� (t) ; (22)

recall (11). Now as all zeros of Q are on the unit circle,

g (u) := logQ (u)� log kQkL1(jzj=1) � log juj

is harmonic in the exterior fu : juj > 1g of the unit ball, with limit 0 at 1,

and with g (u) � 0 for juj = 1. By the maximum principle for subharmonic

functions,

g (u) � 0; juj > 1:
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We deduce that for juj > 1,

logQ (u) � log kQkL1(jzj=1) + log
+ juj :

Moreover, inside the unit ball, we can regard Q as the absolute value of a

function analytic there (with any choice of branches). So the last inequality

holds for all u 2 C. Then assuming (as above) that � has total mass � � �,Z
logQ (t) d� (t) � � log kQkL1(jzj=1) +

Z
log+ jtj d� (t)

= � log kQkL1(jzj=1) +
Z �

1

2�

Z 2�

0
log
���ei� � t��� d�� d� (t)

� � log kQkL1(jzj=1) +
1

2�

Z 2�

0

�Z
log
���ei� � t��� d� (t)� d�:

(23)

In the second line we used a well known identity [15, Exercise 2.2, p. 29],

and in the last line we used the fact that the sup norm of Q on the unit

circle is larger than 1. This is true because

1

2�

Z 2�

0
logQ

�
ei�
�
d� =

mX
j=1

wj
1

2�

Z 2�

0
log
���ei�j � ei���� d� = 0;

while logQ < 0 in a neighborhood of each � j , so that logQ
�
ei�
�
> 0 on a

set of � of positive measure. Substituting (23) into (22) gives
mX
j=1

wj logP
�
ei�j
�
� � log kQkL1(jzj=1) +

1

2�

Z 2�

0
log
���P �ei����� d�: �

Proof of Theorem 1.3

Note �rst that our choice of �0; �m+1 give
mX
j=1

� j+1 � � j�1
2

= 2�:

It su¢ ces to prove that for every a 2 C,
mX
j=1

� j+1 � � j�1
2

log
��ei�j � a�� � Z 2�

0
log
��eit � a�� dt+B��1

= 2� log+ jaj+B��1: (24)
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For, we can integrate this against the measure d� (a) that appears in the

representation of P 2 P�. Since

log
��ei� � a�� = log ��ei� � a�1��+ log jaj

for � 2 R and jaj < 1, we can assume that jaj � 1. Moreover it is su¢ cient

to prove (24) in the case jaj � 1 + ��1. Indeed the case jaj 2
�
1; 1 + ��1

�
follows easily from the case jaj = 1 + ��1, and the fact that the left-hand

and right-hand sides in (24) increase as we increase jaj, while keeping arg (a)

�xed. We may also assume that a 2 [1 + ��1;1), simply rotate the unit

circle. To prove (24), we use the integral form of the error for the trapezoidal

rule [6, p. 288, (4.3.16)]: if f 00 exists and is integrable in [�; �],Z �

�
f (t) dt� � � �

2
(f (�) + f (�)) =

1

2

Z �

�
f 00 (t) (�� t) (� � t) dt:

From this we deduce that if f 00 does not change sign on [�; �],����Z �

�
f (t) dt� � � �

2
(f (�) + f (�))

���� � (� � �)2

2

��f 0 (�)� f 0 (�)�� : (25)

Moreover, if f 00 changes sign at most twice, then����Z �

�
f (t) dt� � � �

2
(f (�) + f (�))

���� � 3 (� � �)2 maxt2[�;�]

��f 0 (t)�� : (26)

Now let

f (t) := log
��eit � a�� :

Then

f 0 (t) =
a sin t

1 + a2 � 2a cos t and f 00 (t) =
�2a2 +

�
1 + a2

�
a cos t

(1 + a2 � 2a cos t)2
:

Elementary calculus shows that jf 0j achieves its maximum on [0; 2�] when

cos t = 2a
1+a2

. Then jsin tj = a2�1
a2+1

. Hence, as a � 1 + ��1, and � � 1,��f 0 (t)�� � �a� a�1��1 � �; t 2 R: (27)

14



Also, since f 00 has at most two zeros in the period, the total variation V 2�0 f 0

on [0; 2�] satis�es

V 2�0 f 0 � 6max
[0;2�]

��f 0�� � 6�: (28)

Now we apply (25) to (28) to the interval [�; �] = [� j�1; � j ] and add over j.

We also use our conventions on �m+1 and �m. Then������
Z 2�

0
f (t) dt�

mX
j=1

� j+1 � � j�1
2

f (� j)

������
=

������
mX
j=1

 Z �j

�j�1

f (t) dt� � j � � j�1
2

[f (� j�1) + f (� j)]

!������
� 1

2
�2V 2�0 f 0 + 6�2� � 9A2��1:

So we have (24) with B = 9A2. �
Proof of Theorem 1.4

We begin by recalling two facts about zeros of Littlewood and unimodular

polynomials:

(I) 9 c > 0 such that every unimodular polynomial of degree � n has at

most c
p
n real zeros [4].

(II) 9 c > 0 such that every Littlewood polynomial of degree � n has at

most c log2 n= log log n zeros at 1 [5].

Now suppose that 1 is a zero of fp with multiplicity m = m (p). By (I) or

(II), m = O
�
p1=2

�
. Let

hm (z) = (z � 1)m

and

Fp (z) = fp (z) =hm (z) :

Note that all coe¢ cients of Fp are integers (as 1=hm (z) has Maclaurin series

with integer coe¢ cients), so Fp (1) is a non-zero integer. Also hm is monic

15



and has all zeros on the unit circle, so its Mahler measure is 1. Then as

Mahler measure is multiplicative,

M0 (fp) =M0 (Fp)M0 (hm) =M0 (Fp) :

Let zp = exp
�
2�i
p

�
. The special case (3) of Theorem 1.2 gives

M0 (fp) �
1

2

 
jFp (1)j

p�1Y
k=1

���Fp �zkp����
!1=p

� 1

2

 
1 �

p�1Y
k=1

����� fp
�
zkp
��

zkp � 1
�m
�����
!1=p

:

It is known [2, Section 5] that for 1 � k � p� 1,

fp

�
zkp

�
=

s�
�1
p

�
p:

Then

M0 (fp) �
1

2

 p
pp�1

pm

!1=p
=
1

2

p
pp�(

1
2
+m)=p:

Since m = O
�
p1=2

�
, the bound (16) follows for large p. �
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