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Abstract. The principal result of this paper is a Remez-type inequality for Müntz
polynomials:

p(x) :=
n∑

i=0

aix
λi

or equivalently for Dirichlet sums:

P (t) :=
n∑

i=0

aie
−λit ,

where 0 = λ0 < λ1 < λ2 < · · · . The most useful form of this inequality states that
for every sequence (λi)∞i=0 satisfying

∑
∞

i=1 1/λi < ∞, there is a constant c depending
only on Λ := (λi)∞i=0 and s (and not on n, ̺, or A) so that

‖p‖[0,̺] ≤ c ‖p‖A

for every Müntz polynomial p, as above, associated with {λi}∞i=0, and for every set
A ⊂ [̺, 1] of Lebesgue measure at least s > 0. Here ‖ · ‖A denotes the supremum
norm on A. This Remez-type inequality allows us to resolve two reasonably long
standing conjectures.

The first conjecture it lets us resolve is due to D. J. Newman and dates from
1978. It asserts that if

∑
∞

i=1 1/λi < ∞, then the set of products {p1p2 : p1, p2 ∈

span{xλ0 , xλ1 , . . . }} is not dense in C[0, 1].

The second is a complete extension of Müntz’s classical theorem on the denseness
of Müntz spaces in C[0, 1] to denseness in C(A), where A ⊂ [0,∞) is an arbitrary
compact set with positive Lebesgue measure. That is, for an arbitrary compact set
A ⊂ [0,∞) with positive Lebesgue measure, span{xλ0 , xλ1 , . . . } is dense in C(A) if
and only if

∑
∞

i=1 1/λi = ∞.

Several other interesting consequences are also presented.
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1. Introduction

Müntz’s beautiful, classical theorem characterizes sequences Λ := (λi)
∞
i=0 with

(1.1) 0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span{xλ0 , xλ1 , . . . } is dense in C[0, 1]. Here,
and in what follows, span{xλ0 , xλ1 , . . . } denotes the collection of finite linear com-
binations of the functions xλ0 , xλ1 , . . . with real coefficients and C(A) is the space
of all real-valued continuous functions on A ⊂ [0,∞) equipped with the uniform
norm. If A := [a, b] is a finite closed inerval, then the notation C[a, b] := C([a, b])
will be used. Throughout this paper Λ := (λi)

∞
i=0 denotes a sequence satisfying

(1.1). Müntz’s Theorem [11, 18, 27, 30] states the following.

Theorem. M(Λ) is dense in C[0, 1] if and only if
∑∞

i=1 1/λi = ∞.

The original Müntz Theorem proved by Müntz [16] in 1914, by Szász [27] in
1916, and anticipated by Bernstein [3] was only for sequences of exponents tending
to infinity. The point 0 is special in the study of Müntz spaces. Even replacing
[0, 1] by an interval [a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. This
is, in large measure, due to Clarkson and Erdős [12] and Schwartz [24] whose works
include the result that if

∑∞
i=1 1/λi < ∞, then every function belonging to the

uniform closure of M(Λ) on [a, b] can be extended analytically throughout the
region

{z ∈ C \ (−∞, 0] : |z| < b} .

There are many generalizations and variations of Müntz’s Theorem [1, 4, 5, 6, 7,
8, 9, 17, 19, 24, 26, 28, 29]. There are also still many open problems. The proper
generalizations to many variables are still open.

In Section 6 of this paper we show that the interval [0, 1] in Müntz’s Theorem can
be replaced by an arbitrary compact set A ⊂ [0,∞) of positive Lebesgue measure.
That is, if A ⊂ [0,∞) is a compact set of positive Lebesgue measure, then M(Λ) is
dense in C(A) if and only if

∑∞
i=1 1/λi = ∞.

If A contains an interval, then this follows from the already mentioned results of
Clarkson, Erdős, and Schwartz. However, their results and methods cannot handle
the case that, for example, A ⊂ [0, 1] is a Cantor-type set of positive measure. Note
also that the scaling x → αx reduces the case that A ⊂ [0,∞) is compact to the
case that A ⊂ [0, 1] is closed, so working on [0, 1] is perfectly general.

In the case that
∑∞

i=1 1/λi < ∞, analyticity properties of the functions belonging
to the uniform closure of M(Λ) on A are also established.

An analogue of the above result is also proved in Lq
w(A), where w is a nonnegative

integrable weight function on A with
∫

A w > 0, and q ∈ (0,∞).

Speculations about the above extensions of Müntz’s Theorem are probably as
old as Müntz’s Theorem itself.

Somorjai [26] and Bak and Newman [2, 20] proved that

R(Λ) := {p/q : p, q ∈ M(Λ)}
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is always dense in C[0, 1] in the uniform norm on [0, 1]. (Though (1.1) is assumed
throughout this paper, the above result holds for an arbitrary Λ := (λi)

∞
i=0 contain-

ing infinitely many distinct real numbers.) This surprising result says that while
the set M(Λ) of Müntz polynomials may be far from dense, the set R(Λ) of Müntz
rationals is always dense in C[0, 1], no matter what the underlying sequence Λ. In
light of this result, Newman, in 1978 [20, p. 50] raises “the very sane, if very prosaic
question.” Are the functions

k
∏

j=1

( nj
∑

i=0

ai,jx
i2

)

, ai,j ∈ R , nj ∈ N

dense in C[0, 1] for some fixed k ≥ 2 ? In other words does the “extra multipli-
cation” have the same power that the “extra division” has in the Bak-Newman-
Somorjai result? Newman speculated that it did not.

Denote the set of the above products by Hk. Since every natural number is the
sum of four squares, H4 contains all the monomials xn, n = 0, 1, 2, . . . . However,
Hk is not a linear space, so Müntz’s Theorem itself cannot be applied to resolve
the denseness or non-denseness of H4 in C[0, 1].

Section 7 of this paper deals with products of Müntz spaces and, in particular,
answers the above question of Newman in the negative. For

(1.2) Λj := (λi,j)
∞
i=0 , 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . . ,

we define the sets

M(Λ1,Λ2, . . . ,Λk) :=







p =

k
∏

j=1

pj : pj ∈ M(Λj)







.

Bounded Remez-, Bernstein-, and Nikolskii-type inequalities are established for
M(Λ1,Λ2, . . . ,Λk) in the case that

(1.3)

∞
∑

i=1

1

λi,j
< ∞ , j = 1, 2, . . . , k .

This obviously implies that if (1.2) and (1.3) hold and A ⊂ [0,∞) is a compact
set of positive Lebesgue measure, then M(Λ1,Λ2, . . . ,Λk) is not dense in C(A). In
particular, H4 is not dense in C[0, 1], which answers Newman’s problem negatively.
In addition, under the assumptions (1.2) and (1.3), our methods give an “almost
characterization” of the uniform closure of M(Λ1,Λ2, . . . ,Λk) on A in terms of
analyticity properties. This will likely be discussed in a later publication of the
authors.

The results of Sections 6 and 7 can be proved fairly simply, once one has estab-
lished the bounded Remez-type inequality of Section 5 for non-dense Müntz spaces
M(Λ). This is the central result of the paper, and is a result we believe should be
a basic tool for dealing with problems about Müntz spaces, in addition to those
discussed in Sections 6 and 7.



4 PETER BORWEIN AND TAMÁS ERDÉLYI

Let Pn denote the set of all algebraic polynomials of degree at most n with real
coefficients. For a fixed s ∈ (0, 1) let

Pn(s) := {p ∈ Pn : m({x ∈ [0, 1] : |p(x)| ≤ 1}) ≥ s}

where m(·) denotes linear Lebesgue measure. The classical Remez inequality con-
cerns the problem of bounding the uniform norm of a polynomial p ∈ Pn on [0, 1]
given that its modulus is bounded by 1 on a subset of [0, 1] of Lebesgue mea-
sure at least s. That is, how large can ‖p‖[0,1] (the uniform norm of p on [0, 1])
be if p ∈ Pn(s) ? The answer is given in terms of the Chebyshev polynomials.
The extremal polynomials for the above problem are the Chebyshev polynomials
±Tn(x) := ± cos(n arccosh(x)), where h is a linear function which scales [0, s] or
[1− s, 1] onto [−1, 1].

For various proofs, extensions, and applications, see [13, 14, 15, 22, 23].

We generalize the Remez inequality in the following way. Let

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

That is, Mn(Λ) is the collection of Müntz polynomials

p(x) :=
n
∑

i=0

aix
λi , ai ∈ R .

We seek to find

(1) max

{

|p(0)|

‖p‖A
: 0 6= p ∈ Mn(Λ) , A ⊂ [0, 1] , m(A) ≥ s

}

and

(2) max

{

|p(1)|

‖p‖A
: 0 6= p ∈ Mn(Λ) , A ⊂ [0, 1] , m(A) ≥ s

}

.

These two problems are no longer equivalent as they are in the polynomial case
(since x → 1− x does not preserve membership in Mn(Λ)) and they have different
answers. However, these two problems can be handled in essentially the same way.
In Section 5 we concentrate on problem (1). Lemma 5.4 shows that an extremal
function for problem (1) is the (generalized) Chebyshev polynomial

Tn := Tn{λ0, λ1, . . . , λn; [1− s, 1]}

for Mn(Λ) on [1 − s, 1] defined in Section 2. This reduces problem (1) to the
interval case, A = [1 − s, 1]. The interval case can then be handled by a bounded
Chebyshev-type inequality

‖p‖[0,1] ≤ c‖p‖[1−s,1] , p ∈ M(Λ) = span{xλ0 , xλ1 , . . . }

established in Section 3 for every Λ := (λi)
∞
i=0 satisfying

∑∞
i=0 1/λi < ∞, where

the constant c depends only on Λ and s (and not on the “length” of p). This we
first prove under the gap condition

inf{λi+1 − λi : i ∈ N} > 0 .
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However, some comparison lemmas of Section 4 will allow us to drop this condition.
This leads to the central result of the paper, a bounded Remez-type inequality for
non-dense Müntz spaces (see Theorem 5.1) which states the following. For every
Λ := (λi)

∞
i=0 with

∑∞
i=1 1/λi < ∞, and for every s > 0, there exists a constant c

depending only on Λ and s (and not on ̺, A, and the “length” of p) so that

‖p‖[0,̺] ≤ c‖p‖A

for every p ∈ M(Λ) = span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesgue
measure at least s.

One might note that the existence of such a bounded Remez-type inequality for
a Müntz space M(Λ) is equivalent to the non-denseness of M(Λ) in C[0, 1]. Indeed,
if M(Λ) is not dense in C[0, 1], then by Müntz’s Theorem,

∑∞
i=1 1/λi < ∞, and

hence Theorem 5.1 implies that the above Remez-type inequality holds for M(Λ).
On the other hand, if M(Λ) is dense in C[0, 1], then

sup
p∈M(Λ)

|p(0)|

‖p‖[1−s,1]
= ∞.

This follows from

sup
p∈C[0,1]

|p(0)|

‖p‖[1−s,1]
= ∞

by approximation.

In [8] the above result is established for lacunary Müntz spaces, that is, for M(Λ)
with

inf{λi+1/λi : i ∈ N} > 1 .

Yet another remarkable consequence of the bounded Remez-type inequality of
Theorem 5.1 is that the pointwise and locally uniform convergence of a sequence
(pi)

∞
i=1 ⊂ M(Λ) on (0, b) are equivalent whenever

∑∞
i=1 1/λi < ∞. See Theorem

6.3. In fact, one can characterize the non-dense Müntz spaces within the Müntz
spaces M(Λ) as exactly those in which locally uniform and pointwise convergence
on (0, b) are equivalent.

2. Notation

The notations

‖p‖A := sup
x∈A

|p(x)| ,

‖p‖Lq
w(A) :=

(∫

A

|p|qw

)1/q

,

and

‖p‖Lq(A) :=

(∫

A

|p|q
)1/q
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are used throughout this paper for measurable functions p defined on a measurable
set A ⊂ [0,∞), for nonnegative measurable weight functions w defined on A, and
for q ∈ (0,∞). The space of all real-valued continuous functions on a set A ⊂ [0,∞)
equipped with the uniform norm is denoted by C(A).

The space Lq
w(A) is defined as the collection of equivalence classes of real-valued

measurable functions for which ‖f‖Lq
w(A) < ∞. The equivalence classes are defined

by the equivalence relation f ∼ g if fw = gw almost everywhere on A. When A :=
[a, b] is a finite closed interval, we use the notation Lq

w[a, b] := Lq
w(A). When w = 1,

we use the notation Lq[a, b] := Lq
w[a, b]. Again, it is always our understanding that

the space Lq
w(A) is equipped with the Lq

w(A) norm.

Throughout this paper Λ := (λi)
∞
i=0 denotes a sequence of real numbers satisfying

0 = λ0 < λ1 < λ2 < · · · .

The nonnegative-valued functions xλi are well-defined on [0,∞). The system

(xλ0 , xλ1 , . . . , xλn)

is called a (finite) Müntz system. The linear space

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}

over R is called a (finite) Müntz space. That is, the Müntz space Mn(Λ) is the
collection of Müntz polynomials

p(x) =

n
∑

i=0

aix
λi , ai ∈ R .

The set

M(Λ) :=

∞
⋃

n=0

Mn(Λ) = span{xλ0 , xλ1 , . . . }

is called the (infinite) Müntz space associated with Λ.

One of the most basic properties of a Müntz space Mn(Λ) is the fact that it is
a Chebyshev space on every A ⊂ [0,∞) containing at least n+ 1 points. That is,
M(Λ) ⊂ C(A) and every p ∈ Mn(Λ) having at least n+ 1 (distinct) zeros in A is
identically 0. In fact, Müntz spaces are the “canonical” examples for Chebyshev
spaces and the following properties of Müntz spaces Mn(Λ) are well known (see,
for example, [9, 11, 21]).

Theorem 2.1 (Unique Interpolation Property). For every

0 ≤ x0 < x1 < · · · < xn and y0, y1, . . . , yn ∈ R ,

there exists a unique p ∈ Mn(Λ) so that

p(xj) = yj , j = 0, 1, . . . , n .
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Theorem 2.2 (Existence of Chebyshev Polynomials). Let A be a compact
subset of [0,∞) containing at least n + 1 points. Then there exists a unique (ex-
tended) Chebyshev polynomial

Tn := Tn{λ0, λ1, . . . , λn;A}

for Mn(Λ) on A defined by

Tn(x) = c

(

xλn −

n−1
∑

i=0

aix
λi

)

,

where the numbers a0, a1, . . . , an−1 ∈ R are chosen to minimize

∥

∥

∥

∥

∥

xλn −

n−1
∑

i=0

aix
λi

∥

∥

∥

∥

∥

A

,

and where c ∈ R is a normalization constant chosen so that

‖Tn‖A = 1

and the sign of c is determined by

Tn(maxA) > 0 .

Theorem 2.3 (Alternation Characterization). The Chebyshev polynomial

Tn := Tn{λ0, λ1, . . . , λn;A} ∈ Mn(Λ)

is uniquely characterized by the existence of an alternation set

{x0 < x1 < · · · < xn} ⊂ A

for which

Tn(xj) = (−1)n−j = (−1)n−j‖Tn‖A , j = 0, 1, . . . , n .

3. Bounded Chebyshev and Bernstein Type Inequalities for M(Λ)

The main results of this section are the following two theorems.

Theorem 3.1. Suppose
∑∞

i=1 1/λi < ∞. Let s ∈ (0, 1). Then there exists a
constant c depending only on Λ := {λi}

∞
i=0 and s (and not on the “length” of p) so

that
‖p‖[0,1] ≤ c ‖p‖[1−s,1]

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }.
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Theorem 3.2. Suppose
∑∞

i=1 1/λi < ∞ and λ1 ≥ 1. Let ε ∈ (0, 1). Then there
exists a constant c depending only on Λ := (λi)

∞
i=0 and ε (and not on the “length”

of p) so that
‖p′‖[0,1−ε] ≤ c ‖p‖[0,1]

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }.

To prove the above two theorems we need three lemmas. Lemmas 3.3 and 3.4
establish the conclusion of Theorems 3.2 and 3.1, respectively, under the gap con-
dition

(3.1) inf{λi+1 − λi : i ∈ N} > 0 ,

which is then dropped with the aid of Lemma 4.5.

Lemma 3.3. Suppose
∑∞

i=1 1/λi < ∞, λ1 ≥ 1, and the gap condition (3.1) holds.
Let ε ∈ (0, 1). Then there exists a constant c depending only on Λ := (λi)

∞
i=0 and ε

(and not on the “length” of p) so that

‖p′‖[0,1−ε] ≤ c ‖p‖[0,1]

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }.

Proof. Clarkson and Erdős [12] observed that under the conditions of the lemma,
there exists a constant c1(ε) depending only on Λ = (λi)

∞
i=0 and ε ∈ (0, 1) (and not

on i and n) so that

|ai| ≤ c1(ε)(1 + ε)λi‖p‖L2[0,1]

≤ c1(ε)(1 + ε)λi‖p‖[0,1]

for every p ∈ M(Λ) of the form

p(x) =

n
∑

i=0

aix
λi , ai ∈ R .

Therefore, if y ∈ [0, 1− ε] and ‖p‖[0,1] ≤ 1, then

|p′(y)| =

∣

∣

∣

∣

∣

n
∑

i=1

λiaiy
λi−1

∣

∣

∣

∣

∣

≤
n
∑

i=1

|ai|λi|y|
λi−1

≤

∞
∑

i=1

c1(ε)λi(1 + ε)λi(1− ε)λi−1

=
c1(ε)

1− ε

∞
∑

i=1

λi(1− ε2)λi

≤
c1(ε)

1− ε

k
∑

i=1

λi(1− ε2)λi +

∞
∑

i=k+1

i−2 =: c ,

where k ∈ N is chosen so that

(1− ε2)λi ≤
1

λii2
, i = k + 1, k + 2, . . . .

This proves the lemma. �
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Lemma 3.4. Suppose
∑∞

i=1 1/λi < ∞ and the gap condition (3.1) holds. Let
s ∈ (0, 1). Then there exists a constant c depending only on Λ := {λi}

∞
i=0 and s

(and not on the “length” of p) so that

‖p‖[0,1] ≤ c ‖p‖[1−s,1]

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }.

Proof. Using the scaling x → x1/λ1 , without loss of generality we may assume that
λ1 = 1. Suppose there exist

pi ∈ M(Λ) , i = 1, 2, . . .

so that
Ai := ‖pi‖[0,1] → ∞ ,

while
‖pi‖[1−s,1] = 1 , i = 1, 2, . . . .

Let qi := pi/Ai. Note that ‖qi‖[0,1] = 1 and

(3.2) lim
i→∞

‖qi‖[1−s,1] = 0 .

By Lemma 3.3, there exists a constant c depending only on Λ = (λi)
∞
i=0 and ε so

that
‖q′i‖[0,1−ε] ≤ c ‖qi‖[0,1] = c

for every ε ∈ (0, 1). Hence (qi)
∞
i=1 is a sequence of uniformly bounded and equicon-

tinuous functions on every closed subinterval of [0, 1). So, by the Arzela-Ascoli
Theorem, we may extract a uniformly convergent subsequence on [0, 1 − s/2]. By
a theorem of Clarkson and Erdős [12], this subsequence converges uniformly to a
function F analytic on (0, 1 − s/2). Combining this with (3.2) and the Unicity
Theorem, we can deduce that F is identically zero. This is a contradiction since
‖qi‖[0,1] = 1 and

‖qi‖[0,1−s] = ‖qi‖[0,1]

for every sufficiently large i. The lemma is now proved. �

Proof of Theorem 3.1. Observe that lim
i→∞

λi/i = ∞. Therefore, there is an m ∈ N

so that λi > 2i whenever i > m. Let Γ := (γi)
∞
i=1 be defined by

γi :=

{

min{λi, i} if i = 0, 1, . . . ,m
λi/2 + i if i = m+ 1,m+ 2, . . . .

Then 0 = γ0 < γ1 < γ2 < · · · ,
∑∞

i=1 1/γi < ∞,

γi ≤ λi , i = 0, 1, 2, . . .

and
inf{γi+1 − γi : i ∈ N} > 0 .

Now Lemma 3.4 and the first part of Lemma 4.5 will yield the theorem. �

Proof of Theorem 3.2. Without loss of generality we may assume that λ1 = 1. Let
Γ := (γi)

∞
i=0 be defined as in the proof of Theorem 3.1. Now Lemma 3.3, Theorem

3.1, and the second part of Lemma 4.5 yield the theorem. �
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4. Comparison Lemmas

One of the basic properties of a Müntz system

(xλ0 , xλ1 , . . . , xλn) , 0 = λ0 < λ1 < · · · < λn

is that it is a Descartes system on every interval [a, b] ⊂ (0,∞), see [21]. The
following comparison lemma, due to Smith [25], is valid for every Descartes system.

Lemma 4.1. Suppose (f0, f1, . . . , fn) is a Descartes system on [a, b]. Suppose

p = fα +

k
∑

i=1

aifλi
, ai ∈ R ,

q = fα +

k
∑

i=1

bifγi
, bi ∈ R ,

where 0 ≤ λ1 < λ2 < · · · < λk ≤ n, 0 ≤ γ1 < γ2 < · · · < γk ≤ n,

0 ≤ γi ≤ λi < α , i = 1, 2, . . . ,m ,

and
α < λi ≤ γi ≤ n , i = m+ 1,m+ 2, . . . , k

with strict inequality for at least one index i = 1, 2, . . . , k. Then

p(xi) = q(xi) = 0 , i = 1, 2, . . . , k

with distinct xi ∈ [a, b] implies

|p(x)| ≤ |q(x)|

for every x ∈ [a, b] with strict inequality for every

x ∈ [a, b] \ {x1, x2, . . . , xk} .

To formulate the next lemmas we introduce the following notation. Let

0 = λ0 < λ1 < · · · < λn , 0 = γ0 < γ1 < · · · < γn

and
γi ≤ λi , i = 1, 2, . . . , n .

Let
Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}

and
Mn(Γ) := span{xγ0 , xγ1 , . . . , xγn} .

Let s ∈ (0, 1) be fixed. Let

Tn,λ := Tn{λ0, λ1, . . . , λn; [1− s, 1]}

and
Tn,γ := Tn{γ0, γ1, . . . , γn; [1− s, 1]}

denote the Chebyshev polynomials on [1− s, 1] for Mn(Λ) and Mn(Γ), respectively
(see Theorem 2.2).
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Lemma 4.2. Let y ∈ [0, 1− s) be fixed. Then both

max
06=p∈Mn(Λ)

|p(y)|

‖p‖[1−s,1]

and

max
06=p∈Mn(Λ)

|p′(y)|

‖p‖[1−s,1]

are attained by p = Tn,λ. In the second case we assume λ1 ≥ 1 if y = 0.

Proof. A simple compactness argument shows that the maxima in the lemma are
attained by some p∗ ∈ Mn(Λ) and q∗ ∈ Mn(Λ), which can be identified as Tn,λ

by a standard variational method. See for example [16, p. 295; 23, p. 101] where
arguments of this variety are given. �

Lemma 4.3. We have
|Tn,λ(0)| ≤ |Tn,γ(0)| .

Further, if λ1 = γ1 = 1, then

|T ′
n,λ(0)| ≤ |T ′

n,γ(0)| .

Proof. Let p ∈ Mn(Γ) interpolate Tn,λ at the n zeros of Tn,λ in [1− s, 1] and at 0.
It follows from Lemma 4.1 that

|p(x)| ≤ |Tn,λ(x)| , x ∈ [0, 1] .

In particular,
‖p‖[1−s,1] ≤ ‖Tn,λ‖[1−s,1] = 1 ,

which, together with p(0) = Tn,λ(0) and Lemma 4.2 gives

|Tn,λ(0)| = |p(0)| ≤
|p(0)|

‖p‖[1−s,1]
≤

|Tn,γ(0)|

‖Tn,γ‖[1−s,1]
= |Tn,γ(0)| .

This proves the first part of the lemma.

The second part of the lemma can be proved in essentially the same way. Let
0 6= p ∈ Mn(Γ) interpolate Tn,λ at the n zeros of Tn,λ in [1 − s, 1]. Note that
p′(0) 6= 0, otherwise

p ∈ span{xγj : j = 0, 1, . . . , n , j 6= 1}

cannot have n zeros in [1− s, 1]. Similarly T ′
n,λ(0) 6= 0. Normalize p so that

p′(0) = T ′
n,λ(0) .

It follows from Lemma 4.1 that

|p(x)| ≤ |Tn,λ(x)| , x ∈ [0, 1] .

In particular
‖p‖[1−s,1] ≤ ‖Tn,λ‖[1−s,1] = 1 ,

which, together with p′(0) = T ′
n,λ(0) and Lemma 4.2, yields

|T ′
n,λ(0)| = |p′(0)| ≤

|p′(0)|

‖p‖[1−s,1]
≤

|T ′
n,γ(0)|

‖Tn,γ‖[1−s,1]
= |T ′

n,γ(0)| .

This proves the second part of the lemma. �
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Lemma 4.4. The functions |Tn,λ| and |Tn,γ | are decreasing on [0, 1− s]. Further,
if λ1 = γ1 = 1, then |T ′

n,λ| and |T ′
n,γ | are also decreasing on [0, 1− s].

Proof. Suppose |Tn,λ| is not monotone decreasing on [0, 1− s]. Then

T ′
n,λ ∈ span{xλ1−1, xλ2−1, . . . , xλn−1}

must have at least n zeros in (0, 1), which is impossible. This proves the first
statement of the lemma.

Suppose now λ1 = 1 and |T ′
n,λ| is not monotone decreasing on [0, 1− s]. Then

T ′′
n,λ ∈ span{xλ2−2, xλ3−2, . . . , xλn−2}

must have at least n− 1 zeros in (0, 1), which is impossible. This proves the second
statement of the lemma. �

The main result of this section is the following lemma. It plays a crucial role in
the proof of Theorems 3.1 and 3.2 of the previous section.

Lemma 4.5. We have

max
06=p∈Mn(Λ)

‖p‖[0,1]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1]

‖p‖[1−s,1]
.

Further, if λ1 = γ1 = 1, then

max
06=p∈Mn(Λ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
.

Proof. Combining Lemmas 4.2, 4.3, and 4.4, we obtain for every y ∈ [0, 1− s) that

max
06=p∈Mn(Λ)

|p(y)|

‖p‖[1−s,1]
=

|Tn,λ(y)|

‖Tn,λ‖[1−s,1]
= |Tn,λ(y)| ≤ |Tn,λ(0)| ≤ |Tn,γ(0)|

=
|Tn,γ(0)|

‖Tn,γ‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p‖[0,1−s]

‖p‖[1−s,1]
,

which implies the first inequality of the lemma.

Similarly, combining Lemmas 4.2, 4.3, and 4.4, we obtain for every y ∈ [0, 1− s)
that

max
06=p∈Mn(Λ)

|p′(y)|

‖p‖[1−s,1]
=

|T ′
n,λ(y)|

‖Tn,λ‖[1−s,1]
= |T ′

n,λ(y)| ≤ |T ′
n,λ(0)| ≤ |T ′

n,γ(0)|

=
|T ′

n,γ(0)|

‖Tn,γ‖[1−s,1]
≤ max

06=p∈Mn(Γ)

‖p′‖[0,1−s]

‖p‖[1−s,1]
,

which implies the second inequality of the lemma. �
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5. Bounded Remez-Type Inequality for Non-Dense Müntz Spaces

The central result of this paper is the following.

Theorem 5.1. Suppose
∑∞

i=1 1/λi < ∞. Let s > 0. Then there exists a constant
c depending only on Λ := (λi)

∞
i=0 and s (and not on ̺, A, or the “length” of p) so

that
‖p‖[0,̺] ≤ c ‖p‖A

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesgue
measure at least s.

The proof of Theorem 5.1 is based on interpolation. By the Unique Interpolation
Property of Chebyshev spaces, associated with

0 ≤ x0 < x1 < · · · < xn

we can uniquely define

ℓk := ℓk{x0, x1, . . . , xn} ∈ Mn(Λ) , k = 0, 1, . . . , n

so that

ℓk{x0, x1, . . . , xn}(xj) = δj,k :=

{

1 if j = k

0 if j 6= k .

Lemma 5.2. Let

0 < x0 < x1 < · · · < xn and 0 < x̃0 < x̃1 < · · · < x̃n .

Suppose 0 ≤ k ≤ n and

xj ≤ x̃j if j = 0, 1, . . . , k − 1 ,
xj = x̃j if j = k ,
xj ≥ x̃j if j = k + 1, k + 2, . . . , n .

For the sake of brevity let

ℓk := ℓk{x0, x1, . . . , xn}

and
ℓ̃k := ℓk{x̃0, x̃1, . . . , x̃n} .

Then
|ℓk(0)| ≤ |ℓ̃k(0)| .

Proof. It is sufficient to prove the lemma in the case that there is an index m so
that 1 ≤ m ≤ n, m 6= k, and

xj = x̃j if j = 0, 1, . . . , n ; j 6= m ;
xm < x̃m if m < k ;
xm > x̃m if m > k .
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The general case of the lemma then follows from repeated applications of the above
special cases. Note that in the above special cases

ℓk − ℓ̃k ∈ Mn(Λ)

has a zero at each of the points

x1, x2, . . . , xm−1, xm+1, xm+2, . . . , xn ,

hence it changes sign at each of these points, and does not have any other zero in
[0,∞). It is also obvious that

sign(ℓk(x)) = sign(ℓ̃k(x)) , x ∈ [0, x0] ,

which, together with the previous observation and the inequality x0 ≤ x̃0, yields
that

|ℓk(0)| ≤ |ℓ̃k(0)| ,

and the lemma is proved. �

By a simple scaling we can extend Lemma 5.2 as follows. We use the notation
introduced in Lemma 5.2.

Lemma 5.3. Let

0 < x0 < x1 < · · · < xn and 0 < x̃0 < x̃1 < · · · < x̃n .

Suppose 0 ≤ k ≤ n, α ≥ 0, and

xj ≤ x̃j − α if j = 0, 1, . . . , k − 1 ,
xj = x̃j − α if j = k ,
xj ≥ x̃j − α if j = k + 1, k + 2, . . . , n .

Then
|ℓk(0)| ≤ |ℓ̃k(0)| .

Proof. If α = 0, then Lemma 5.2 yields the lemma. So we may suppose that α > 0.
Let

β :=
xk

x̃k
=

x̃k − α

x̃k
,

x∗
j := βx̃j , j = 0, 1, . . . , n ,

and
ℓ∗k := ℓk{x

∗
0, x

∗
1, . . . , x

∗
n} , k = 0, 1, . . . , n .

Obviously
ℓ̃k(βx) = ℓ∗k(x) , x ∈ [0,∞)

and
xj ≤ x∗

j if j = 0, 1, . . . , k − 1 ,
xj = x∗

j if j = k ,
xj ≥ xj if j = k + 1, k + 2, . . . , n .

Hence Lemma 5.2 implies that

|ℓk(0)| ≤ |ℓ∗k(0)| = |ℓ̃k(0)| ,

which finishes the proof. �

The next two lemmas are interesting in their own right. They show that the
appropriately placed Chebyshev polynomial is always extremal for the the Remez-
type inequality we are considering.
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Lemma 5.4. Let A ⊂ [0, 1] be a closed set of Lebesgue measure at least s ∈ (0, 1).
Then

|p(0)| ≤ |Tn{λ0, λ1, . . . , λn; [1− s, 1]}(0)| · ‖p‖A

for every p ∈ Mn(Λ).

Proof. If 0 ∈ A then the statement is trivial. So assume that 0 /∈ A. Let

x̃0 < x̃1 < · · · < x̃n

denote the extreme points of

Tn := Tn{λ0, λ1, . . . , λn; [1− s, 1]}

in [1− s, 1], that is,

Tn(x̃j) = (−1)n−j , j = 0, 1, . . . , n .

Let xj ∈ A, j = 0, 1, . . . , n, be defined by

m([xj , 1] ∩ A) = m([x̃j , x̃n]) = x̃n − x̃j .

Since A is a closed subset of [0, 1] with m(A) ≥ s, such points xj ∈ A exist. Let
p ∈ Mn(Λ). Then, using Lemma 5.3, we obtain

|p(0)| =

∣

∣

∣

∣

∣

n
∑

k=0

p(xk)ℓk(0)

∣

∣

∣

∣

∣

≤

(

n
∑

k=0

|ℓk(0)|

)

‖p‖A

≤

(

n
∑

k=0

|ℓ̃k(0)|

)

‖p‖A

=

∣

∣

∣

∣

∣

n
∑

k=0

(−1)n−kℓ̃k(0)

∣

∣

∣

∣

∣

‖p‖A

=

∣

∣

∣

∣

∣

n
∑

k=0

Tn(x̃k)ℓ̃k(0)

∣

∣

∣

∣

∣

‖p‖A

= |Tn(0)| · ‖p‖A

and the lemma follows. In the rest of the proof we justify each line above.

Note that p ∈ Mn(Λ) and
∑n

k=0 p(xk)ℓk ∈ Mn(Λ) agree at x0, x1, . . . , xn.
Since Mn(Λ) is a Chebyshev space of dimension n + 1, we can deduce that p =
∑n

k=0 p(xk)ℓk, and the first line above follows by substituting 0. The second line fol-
lows by the triangle inequality. Note that xk ∈ A, so |p(xk)| ≤ ‖p‖A for each k. To

see the third line we need the inequalities |ℓk(0)| ≤ |ℓ̃k(0)| for each k. These follow
from Lemma 5.3. The assumptions of Lemma 5.3 are satisfied since the construc-
tion obviously implies the inequalities 0 < xj ≤ x̃j and x̃i − x̃j ≤ xi − xj for every
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0 ≤ j < i ≤ n. The fourth line follows from the observation that ℓ̃k(0) = −ℓ̃k+1(0)

for each k = 0, 1, . . . , n − 1. This can be deduced from the fact that ℓ̃k changes
sign exactly at

x̃1, x̃2, . . . , x̃k−1, x̃k+1, x̃k+2, . . . , x̃n,

while ℓ̃k(x̃k) = 1. The fifth line uses the fact that

Tn(x̃k) = (−1)n−k, k = 0, 1, . . . , n.

Finally, the last line follows by observing that Tn ∈ Mn(Λ) and
∑n

k=0 Tn(x̃k)ℓ̃k ∈
Mn(Λ) agree at x̃0, x̃1, . . . , x̃n. Since Mn(Λ) is a Chebyshev space of dimension

n+ 1, we can deduce that Tn =
∑n

k=0 Tn(x̃k)ℓ̃k, and on substituting 0, we obtain
the last line. �

Lemma 5.5. Let A be a closed subset of [0, 1] with Lebesgue measure at least
s ∈ (0, 1). Then

|p(y)| ≤ |Tn{λ0, λ1, . . . , λn; [1− s, 1]}(0)| · ‖p‖A

for every p ∈ Mn(Λ) and y ∈ [0, inf A).

Proof. Let y ∈ [0, inf A) be fixed. Simple compactness and perturbation arguments
show that

max
06=p∈Mn(Λ)

|p(y)|

‖p‖A

is attained by
Tn,A := Tn{λ0, λ1, . . . , λn;A} .

Note that λ0 = 0 implies that Tn,A is decreasing on [0, inf A], otherwise

T ′
n,A ∈ span{xλ1−1, xλ2−1, . . . , xλn−1}

must have at least n+1 zeros in (0, 1], which is impossible. Hence, by Lemma 5.4,

|p(y)|

‖p‖A
≤

|Tn,A(y)|

‖Tn,A‖A
= |Tn,A(y)| ≤ |Tn,A(0)| ≤ |Tn{λ0, λ1, . . . , λn; [1− s, 1]}(0)|

for every 0 6= p ∈ Mn(Λ). This finishes the proof. �

Proof of Theorem 5.1. Without loss of generality we may assume that A is closed.
Let

Tn := Tn{λ0, λ1, . . . , λn; [1− s, 1]}.

By Lemma 3.1, there exists a constant c depending only on Λ := {λi}
∞
i=0 and s

(and not on the “length” of p) so that

‖Tn‖[0,1] ≤ c‖Tn‖[1−s,1] = c

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . }. By combining this with Lemma 5.5,
there exists a constant c depending only on Λ := (λi)

∞
i=0 and s (and not on ̺, A,

or the “length” of p) so that
‖p‖[0,̺] ≤ c‖p‖A

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesgue
measure at least s. �

The next theorem establishes on Lq version of Theorem 5.1.
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Theorem 5.6. Suppose
∑∞

i=1 1/λi < ∞. Let s > 0 and q ∈ (0,∞). Then there
exists a constant c depending only on Λ := (λi)

∞
i=0, s, and q (and not on ̺, A, or

the “length” of p) so that
‖p‖[0,̺] ≤ c ‖p‖Lq(A)

for every p ∈ M(Λ) := span{xλ0 , xλ1 , . . . } and for every set A ⊂ [̺, 1] of Lebesgue
measure at least s.

Proof. Note that m(A) ≥ s implies that

m

({

x ∈ A : |p(x)| ≥

(

2

s

)1/q

‖p‖Lq(A)

})

≤
s

2
,

hence

m

({

x ∈ A : |p(x)| <

(

2

s

)1/q

‖p‖Lq(A)

})

≥
s

2
.

The theorem now follows from Theorem 5.1. �

6. Müntz’s Theorem on Compact Sets of Positive Measure

The results of this section are straightforward consequences of the Remez-type
inequality of Theorem 5.1.

Theorem 6.1. Suppose
∑∞

i=1 1/λi < ∞ and A ⊂ [0,∞) is a set of positive
Lebesgue measure. Then M(Λ) is not dense in C(A).

Moreover, if the gap condition

(6.1) inf{λi+1 − λi : i ∈ N} > 0

holds, then every function f ∈ C(A) from the uniform closure of M(Λ) on A is of
the form

f(x) =

∞
∑

i=0

aix
λi , x ∈ A ∩ [0, rA) ,

where
rA := sup{x ∈ [0,∞) : m(A ∩ (x,∞)) > 0} .

is the essential supremum of A.

If the gap condition (6.1) does not hold, then every function f ∈ C(A) from
the uniform closure of M(Λ) on A can still be extended analytically throughout the
region

{z ∈ C \ (−∞, 0] : |z| < rA} .

Proof. Suppose f ∈ C(A) and suppose there is a sequence (pi)
∞
i=1 ⊂ M(Λ) so that

lim
i→∞

‖pi − f‖A = 0 .
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Then the sequence (pi)
∞
i=1 is uniformly Cauchy on A. Therefore, Theorem 5.1

and the definition of rA yields that (pi)
∞
i=1 is uniformly Cauchy on every closed

subinterval of [0, rA). If the gap condition (6.1) holds, then the characterization of
the uniform closure of M(Λ) on A follows from the results of Clarkson and Erdős
[12]. The result of Clarkson and Erdős [12] we need here claims that if the gap
condition (6.1) holds and 0 ≤ a < b < ∞, then every function f ∈ C[a, b] from the
uniform closure of M(Λ) on [a, b] is of the form

f(x) =

∞
∑

i=0

aix
λi , x ∈ [a, b) .

If the gap condition (6.1) does not hold, then results of Schwartz [24] yield the
theorem. The result of Schwartz [24] we need here claims that for every 0 ≤ a <
b < ∞, even if the gap condition (6.1) does not hold, every function f ∈ C[a, b] from
the uniform closure of M(Λ) on [a, b] can still be extended analytically throughout
the region

{z ∈ C \ (−∞, 0] : |z| < rA} .

�

Theorem 6.2. Suppose A ⊂ [0,∞) is a compact set of positive Lebesgue measure.
Then M(Λ) is dense in C(A) if and only if

∑∞
i=1 1/λi = ∞.

Proof. Suppose
∑∞

i=1 1/λi = ∞. Let f ∈ C(A). By Tietze’s Theorem there exists

an f̃ ∈ C[0, 1] so that f̃(x) = f(x) for every x ∈ A. By Müntz’s Theorem there is
a sequence (pi)

∞
i=1 ⊂ M(Λ) so that

lim
i→∞

‖f̃ − pi‖[0,1] = 0 .

Therefore
lim
i→∞

‖f − pi‖A = 0 ,

which finishes the trivial part of the theorem. Suppose now that
∑∞

i=1 1/λi < ∞.
Then Theorem 6.1 yields that M(Λ) is not dense in C(A). �

The following surprising theorem shows that if
∑∞

i=1 1/λi < ∞, then the point-
wise and locally uniform convergence of a sequence (pi)

∞
i=1 ⊂ M(Λ) on [0, b) are

equivalent. An amusing consequence of this is that if
∑∞

i=1 1/λi < ∞, then the set

{

f : f(x) =

∞
∑

i=0

aix
λi , ai ∈ R , x ∈ [0, b)

}

is closed under pointwise convergence.

Theorem 6.3. Suppose
∑∞

i=1 1/λi < ∞. Let A ⊂ [0,∞) be a set of positive
Lebesgue measure, and let rA be the essential supremum of A defined as in Theorem
6.1. Assume (pi)

∞
i=1 ⊂ M(Λ) and

pi(x) → f(x) , x ∈ A .
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Then (pi)
∞
i=1 converges uniformly on every closed subinterval of [0, rA).

This characterizes non-dense Müntz spaces within Müntz spaces, since in any
Müntz space M(Λ) with

∑∞
i=1 1/λi = ∞ and for any A ⊂ [0,∞) of positive

Lebesgue measure, there exists a sequence (pi)
∞
i=1 ⊂ M(Λ) that converges point-

wise on [0,∞) but not locally uniformly on A. This follows easily from Müntz’s
Theorem.

Proof of Theorem 6.3. Let δ ∈ (0, rA) be fixed. Egoroff’s Theorem and the defini-
tion of rA imply the existence of a set B ⊂ A∩ (δ,∞) of positive Lebesgue measure
so that (pi)

∞
i=1 converges uniformly on B, hence it is uniformly Cauchy on B. Now

Theorem 5.1 yields that (pi)
∞
i=1 is uniformly Cauchy on [0, δ], which proves the

theorem. �

Theorem 6.4. Suppose
∑∞

i=1 1/λi < ∞, A ⊂ [0,∞) is a set of positive Lebesgue
measure, w is a nonnegative-valued, integrable weight function on A with

∫

A
w > 0,

and q ∈ (0,∞). Then M(Λ) is not dense in Lq
w(A).

Moreover, if the gap condition (6.1) holds, then every function f ∈ Lq
w(A) be-

longing to the Lq
w(A) closure of M(Λ) can be represented as

f(x) =

∞
∑

i=0

aix
λi , x ∈ A ∩ [0, rw) ,

where

rw := sup

{

x ∈ [0,∞) :

∫

A∩(x,∞)

w(x)dx > 0

}

.

If the gap condition (6.1) does not hold, then every function f ∈ Lq
w(A) belonging

to the Lq
w(A) closure of M(Λ) can still be represented as an analytic function on

{z ∈ C \ (−∞, 0] : |z| < rw}

restricted to A.

Proof. Suppose f ∈ Lq
w(A) and suppose there is a sequence (pi)

∞
i=1 ⊂ M(Λ) so that

lim
i→∞

‖f − pi‖Lq
w(A) = 0 .

Minkowski’s Inequality (if q ∈ (0, 1), then a multiplicative factor 21/q−1 is needed)
yields that (pi)

∞
i=1 is a Cauchy sequence in Lq

w(A). The assumptions on w imply
that for every δ ∈ (0, rw) there exists an α > 0 so that

B := {x ∈ A ∩ (δ,∞) : w(x) > α}

is of positive Lebesgue measure. Note that

‖p‖Lq(B) ≤ α−1‖p‖Lq
w(B) ≤ α−1‖p‖Lq

w(A)

for every p ∈ Lq
w(A). Therefore, (pi)

∞
i=1 is a Cauchy sequence in Lq(B). So, by

Theorem 5.2, (pi)
∞
i=1 is uniformly Cauchy on [0, δ]. If the gap condition (6.1) holds,

then the theorem now follows from results of Clarkson and Erdős [12] (see the end
of the proof of Theorem 6.1). If the gap condition (6.1) does not hold, then a
result of Schwartz [24] yields the theorem (see also the end of the proof of Theorem
6.1). �



20 PETER BORWEIN AND TAMÁS ERDÉLYI

Theorem 6.5. Suppose A ⊂ [0, 1] is a set of positive Lebesgue measure, w is a
nonnegative-valued integrable weight function on A with

∫

A
w > 0, and q ∈ (0,∞).

Then M(Λ) is dense in Lq
w(A) if and only if

∑∞
i=1 1/λi = ∞.

Proof. Suppose
∑∞

i=1 1/λi = ∞. Let f ∈ Lq
w(A). It is standard measure theory to

show that for every ε > 0, there exists a g ∈ C[0, 1] so that

‖f − g‖Lq
w(A) <

ε

2
.

Now Müntz’s Theorem implies that there exists a p ∈ M(Λ) so that

‖g − p‖Lq
w(A) ≤ ‖g − p‖A

(∫

A

w

)1/q

<
ε

2
.

Therefore M(Λ) is dense in Lq
w(A).

Suppose now that
∑∞

i=1 1/λi < ∞. Then Theorem 6.4 yields that M(Λ) is not
dense in Lq

w(A). �

7. Products of Müntz Spaces

For

(7.1) Λj := (λi,j)
∞
i=0 , 0 = λ0,j < λ1,j < λ2,j < · · · , j = 1, 2, . . . ,

we define the sets

M(Λ1,Λ2, . . . ,Λk) :=







p =

k
∏

j=1

pj : pj ∈ M(Λj)







.

First we prove the following Remez-type inequality for M(Λ1,Λ2, . . . ,Λk).

Theorem 7.1. Suppose (7.1) holds and

(7.2)

∞
∑

i=1

1

λi,j
< ∞ , j = 1, 2, . . . , k .

Let s > 0. Then there exists a constant c depending only on Λ1,Λ2, . . . ,Λk, s, and
k (and not on ̺ or A) so that

‖p‖[0,̺] ≤ c ‖p‖A

for every p ∈ M(Λ1,Λ2, . . . ,Λk) and for every set A ⊂ [̺, 1] of Lebesgue measure
at least s.

Proof. Theorem 5.1 implies that there exist constants αj > 0 depending only on
Λ1,Λ2, . . . ,Λk, s, and k so that

m({x ∈ [y, 1] : |p(x)| > α−1
j |p(y)|}) ≥ 1− y −

s

2k
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for every p ∈ M(Λj) and y ∈ [0, 1 − s]. Indeed, αj := c + 1 is a suitable choice,
where c is the constant in Theorem 5.1 depending only on Λ := Λj and s̃ := s/(2k).
Otherwise, if

m({x ∈ [y, 1] : |p(x)| > (c+ 1)−1|p(y)|}) < 1− y −
s

2k

for some p ∈ M(Λj), then, on one hand, |p(y)| > 0 would hold, while on the
other hand, Theorem 5.1 with A := {x ∈ [y, 1] : |p(x)| ≤ (c + 1)−1|p(y)|}) and
m(A) ≥ s/(2k) would imply that |p(y)| ≤ c(c+ 1)−1|p(y)|. This is a contradiction,
so the existence of the constants αj with the desired properties are justified.

Now let
p ∈ M(Λ1,Λ2, . . . ,Λk) ,

that is,

p =
k
∏

j=1

pj , pj ∈ M(Λj) .

Then, for every y ∈ [0, 1− s],

m({x ∈ [y, 1] : |p(x)| > (α1α2 · · ·αk)
−1|p(y)|})

≥ m





k
⋂

j=1

{

x ∈ [y, 1] : |pj(x)| > α−1
j |pj(y)|

}





≥ 1− y − k
s

2k
= 1− y −

s

2
.

Hence y ∈ [0, inf A] and m(A) ≥ s imply

m({x ∈ A : |p(x)| > (α1α2 · · ·αk)
−1|p(y)|}) ≥

s

2
> 0 ,

and the theorem follows with c := α1α2 · · ·αk. �

Theorem 7.1 immediately solves Newman’s problem [20].

Corollary 7.2. Suppose (7.1) and (7.2) hold and A ⊂ [0, 1] is a set of positive
Lebesgue measure. Then M(Λ1,Λ2, . . . ,Λk) is not dense in C(A). Moreover, if
w is a non negative-valued integrable weight function on A with

∫

A
w > 0 and

q ∈ (0,∞), then M(Λ1,Λ2, . . . ,Λk) is not dense in Lq
w(A).

Our next theorem establishes a Bernstein-type inequality for M(Λ1,Λ2, . . . ,Λk).

Theorem 7.3. Suppose (7.1) and (7.2) hold and

λ1,j ≥ 1 , j = 1, 2, . . . , k .

Let s > 0. Then there exits a constant c depending only on Λ1,Λ2, . . . ,Λk, s, and
k (and not on ̺ or A) so that

‖p′‖[0,̺] ≤ c ‖p‖A
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for every p ∈ M(Λ1,Λ2, . . . ,Λk) and for every set A ⊂ [̺, 1] of Lebesgue measure
at least s.

Proof. Note that a combination of Theorems 5.1 and 3.2 implies that there exist
constants βj > 0 depending only on Λ1,Λ2, . . . ,Λk, s, and k so that

m({x ∈ [y, 1] : |p(x)| > β−1
j |p′(y)|}) ≥ 1− y −

s

2k

for every p ∈ M(Λj) and y ∈ [0, 1 − s]. Indeed, βj := (c1 + 1)c2 is a suitable
choice, where c1 is the constant in Theorem 5.1 depending only on Λ := Λj and
s̃ := s/(4k), while c2 is a constant depending only on Λ := Λj and s/(4k) so that

|p′(y)| ≤ c2‖p‖[0,y+s/(4k)]

the existence of which follows from Therem 3.2 by the scaling x 7→ (y + s/(4k))x.
To see that βj above is a suitable choice, suppose that

m({x ∈ [y, 1] : |p(x)| > (c2(c1 + 1))−1|p′(y)|}) < 1− y −
s

2k
,

for some p ∈ M(Λj). Then |p′(y)| > 0. Let

A := {x ∈ [y + s/(4k), 1] : |p(x)| ≤ ((c1 + 1)c2)
−1|p′(y)|} .

Then m(A) ≥ s/(2k)− s/(4k) = s/(4k), and by Theorem 5.1,

‖p‖[0,y+s/(4k)] ≤ c1(c1 + 1)−1c−1
2 |p′(y)| < c−1

2 |p′(y)| .

This contradicts the choice of c2. Therefore the existence of the constants βj with
the desired properties are justified.

Let αj > 0, j = 1, 2, . . . , k, be chosen as in the proof of Theorem 7.1. Now let

p ∈ M(Λ1,Λ2, . . . ,Λk) ,

that is,

p =

k
∏

j=1

pj , pj ∈ M(Λj) .

Then, as in the proof of Theorem 7.1, for every y ∈ [0, 1− s],

m





k
⋂

j=1

{x ∈ [y, 1] : |p(x)| > γ−1
j |(p1 · · · pj−1p

′
jpj+1 · · · pk)(y)|}





≥ 1− y − k
s

2k
= 1− y −

s

2
,

where
γj := α1 · · ·αj−1βjαj+1 · · ·αk .

So
m{x ∈ [y, 1] : |p(x)| > c−1|p′(y)|} ≥ 1− y −

s

2
,

where c :=
∑k

j=1 γj . Hence y ∈ [0, inf A] and m(A) ≥ s imply

m({x ∈ A : |p(x)| > c−1|p′(y)|}) ≥
s

2
> 0 ,

and the theorem follows with c =
∑k

j=1 γj . �

The following Nikolskii-type inequality is also valid for M(Λ1,Λ2, . . . ,Λk).
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Theorem 7.4. Suppose (7.1) and (7.2) hold. Let s > 0 and q ∈ (0,∞). Then
there exists a constant c depending only on Λ1,Λ2, . . . ,Λk, s, k, q, and w (and not
on ̺ and A) so that

‖p‖q[0,̺] ≤ c

∫

A

|p(x)|qw(x) dx

for every p ∈ M(Λ1,Λ2, . . . ,Λk), for every set A ⊂ [̺, 1] of Lebesgue measure at
least s , and for every function w measurable and positive a.e. on [0, 1].

Proof. This a straightforward consequence of Theorem 7.1 �
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