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Abstract 

Erd61yi, T., Remez-type inequalities and their applications, Journal of Computational and Applied Mathemat- 
ics 47 (1993) 167-209. 

The Remez inequality gives a sharp uniform bound on [ -1 ,  1] for real algebraic polynomials p of degree at 
most n if the Lebesgue measure of the subset of [ - 1 ,  1], where I pl is at most 1, is known. Remez-type 
inequalities give bounds for classes of functions on a line segment, on a curve or on a region of the complex 
plane, given that the modulus of the functions is bounded by 1 on some subset of prescribed measure. This 
paper offers a survey of the extensive recent research on Remez-type inequalities for polynomials, generalized 
nonnegative polynomials, exponentials of logarithmic potentials and Miintz polynomials. Remez-type inequali- 
ties play a central role in proving other important inequalities for the above classes. The paper illustrates the 
power of Remez-type inequalities by giving a number of applications. 

Keywords: Bernstein-, Markov-, Nikolskii- and Remez-type inequalities; generalized polynomials; exponentials 
of logarithmic potentials; Miintz polynomials; generalized Jacobi weight functions. 

1. Introduction 

Remez-type inequalities give bounds for classes of functions on a line segment, on a curve or 
on a region of the complex plane, given that the modulus of the functions is bounded by 1 on 
some subset of prescribed measure. In Section 2 we define the classes of functions (generalized 
algebraic and trigonometric polynomials, exponentials of logarithmic potentials and Miintz 
polynomials) for which Remez-type inequalities will be established. The Remez inequality is 
stated in Section 3, and its trigonometric and pointwise algebraic analogues are discussed as 
well. Generalized nonnegative algebraic polynomials (the terminology will be explained in 
Section 2) of the form 

k 

f ( z )=l to l l - I l z - z j l  r~, O~to, zj~C, 0 < r j ~ R ,  j = l , 2 , . . . , k ,  (1.1) 
j = l  
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were studied in a sequence of recent papers [6,14,18,20,22,23,25,26]. A number of well-known 
inequalities in approximation theory were extended to them by utilizing the generalized degree 

k 

N =  E rj, (1.2) 
j = l  

in place of the ordinary one. Our motivation was to find tools to examine systems of orthogonal 
polynomials simultaneously, associated with generalized Jacobi, or at least generalized nonneg- 
ative polynomial weight functions of degree at most F. In a recent paper we gave sharp 
estimates, in this spirit, for the Christoffel function on [ - 1 ,  1] and for the distances of the 
consecutive zeros of orthogonal polynomials associated with generalized nonnegative polyno- 
mial weight functions; these results are stated in Section 12. 

The theory of orthogonal polynomials assoicated with Jacobi or generalized Jacobi weight 
functions of the form (1.1) obviously calls for a profound study of generalized polynomials of 
the form (1.1). As an example, the inequality 

iq(y)li<~cmin{n2 n }fl_ Iq(z) l  2 d z ,  - l < y ~ < l ,  (1.3) 
' if'i- - -  y 2 1 

for every polynomial q ~ r  (.~r denotes the set of all algebraic polynomials of degree at most 
n with real coefficients), with an absolute constant c, is well known. To give a lower bound for 
the Christoffel function 

£ A,,+l(a, 2, y ) : =  inf Iq(z)lZw(z) dz (1.4) 
q~_~r 1 

I q(Y)l =1  

associated with the measure a, where da/dz = w(z) is of the form (1.1), we may have the 
following idea. We consider I q I w 1/2 as a (generalized) polynomial of (generalized) degree at 

1 most n + sN, and apply (1.3) to it to obtain 

Zn+l(oe, 2, y)>c-lw(y)max{(n+½N) -2 d -y2  ) , , , - l ~ < y ~ l .  ( 1 . 5 )  n + -~N 
Of course this philosophy is justified only if we show that generalized polynomials are very 
much like ordinary polynomials, namely only if many of the inequalities for ordinary polynomi- 
als can be extended to generalized polynomials by utilizing the generalized degree in place of 
the ordinary degree. We will justify (1.5) in Section 12. 

Another motivating factor is the unpleasant fact that the p th  power of a polynomial is not 
necessarily a polynomial. Without having a package of inequalities for generalized polynomials, 
proofs of inequalities for ordinary polynomials in Lp-norm may include boring, inconvenient, 
technical parts covering the essential ideas. 

How can one prove that there is an absolute constant c such that 

c n  2 

max I q ' ( x ) l ~ < - -  max Iq(x) l ,  (1.6) 
- 1 ~ < x ~ 1  3' - 1 ~ < x ~ 1  

for every q ~ .~r  such that every zero of q has multiplicity at least 3' >/1? To start, we write [q I 
as I q I = I f I ~, where f is of the form (1.1) with N = n/3" and each rj > 1. Unfortunately, I f  I 
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is typically not a polynomial. If it were a polynomial, (1.6) would follow immediately from 
Markov's inequality. However, though f is not a polynomial, it is very much like that, and a 
Markov-type inequality for all f of the form (1.1) with each rj >/1 can be proved, cf. Theorem 
9.3, by utilizing the generalized degree in place of the ordinary degree. Therefore even (1.6) (a 
statement for ordinary polynomials) appeals to inequalities for generalized polynomials. 

To prove our results in Section 12, we needed various inequalities such as Remez-type 
inequalities (Section 4), Nikolskii-type inequalities (Section 5) and weighted Bernstein- and 
Markov-type inequalities (Sections 9 and 10) for generalized nonnegative algebraic polynomials. 
Weighted Markov-Bernstein-type inequalities in Lp-nOrmS play a significant role in the proof 
of inverse theorems of approximation with the Ditzian-Totik modulus of smoothness. Section 
10 offers more general weighted Markov-Bernstein-type inequalities in Lp-nOrms than those of 
[121. 

Typically, the extension of a polynomial inequality to generalized nonnegative polynomials is 
not trivial at all, and the proof is far from a simple density argument. However, our Remez-type 
inequalities of Section 3 can be extended quite simply (Section 4) and these play a central role 
in the proof of other important inequalities for generalized nonnegative polynomials, which do 
not follow from the corresponding polynomial inequalities by a density argument. 

Since (1.1) implies 
k 

log f ( z ) =  ~r j  loglz-zjl+log I~ol, (1.7) 
j = l  

a generalized nonnegative polynomial can be considered as the exponential of a logarithmic 
potential with respect to a finite Borel measure on C that is supported in finitely many points 
(the measure has mass rj > 0 at each zj, j = 1, 2 , . . . ,  k). This suggests that some of the 
inequalities holding for generalized nonnegative polynomials may be true for exponentials of 
logarithmic potentials of the form 

Q~,c(Z)=exp(f c log [ z - t [  d / z ( t ) + c ) ,  (1.8) 

where/z is a finite nonnegative Borel measure on C having compact support, and c ~ R. The 
quantity/x(C) plays the role of the generalized degree N defined by (1.2). In a recent paper [24] 
Remez-type inequalities are established for exponentials of logarithmic potentials on line 
segments and circles of the complex plane (Section 6) and on bounded domains of C with C 2 
boundary (Section 7). We present a "standard" method to prove such an extension of the 
corresponding polynomial inequality, using Fekete polynomials. Each of these Remez-type 
inequalities implies a Nikolskii-type inequality (Section 8) and to demonstrate the power of 
Remez-type inequalities, we prove one of them. 

Each of our Remez-type inequalities has an Lp, 0 < p < 0% analogue which is discussed in 
the corresponding section. 

A sharp Remez-type inequality on [ -  1, 1] was established in [6] for real algebraic polynomi- 
als of degree at most n having at most k zeros in the open unit disk. A numerical version of 
this Remez-type inequality (unlike other important inequalities) has a straightforward extension 
to generalized nonnegative polynomials f of degree at most N with 

Y'~ rj<~K, O<K<~N, (1.9) 
{j:lzjl <1} 
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in (1.1). This opened a way to prove sharp Markov- and Nikolskii-type inequalities for 
generalized nonnegative polynomials under the same constraints. These results are presented 
in Section 11. Some of the results of Sections 5 and 9 are recaptured here as special cases, by 
the choice K = N. 

The well-known Miintz-Sz~sz Theorem [10] asserts that 

span{l, x*', x*=,... }, 0 < A 1 < '~2 < " ' ' ,  (1.10) 

is dense in C[0, 1] in the uniform norm if and only if ~=1a71 = oo. Does the same characteriza- 
tion hold when the interval [0, 1] is replaced by an arbitrary closed subset of [0, 1] with positive 
measure? In [7] we proved a bounded "left-hand side" Remez-type inequality for Miintz spaces 
(1.10) with Aj >/q J, q > 1, which gives a partial answer. This is the central part of Section 13 of 
this paper. The same bounded left-hand side Remez-type inequality is conjectured whenever 
ET=1A71 < oo. In the case Aj =j2, j = 1, 2 , . . . ,  this would answer an open problem of Newman 
negatively, concerning the denseness of the set 

{q=PlP2: Pl, P2 E span{ xy2: j = 0 ,  1 ,2 , . . .}}  

in C[0, 1]. Some other related results are discussed in Section 13 as well. 

2. Classes of functions; notations 

Denote by . ~  the set of all algebraic polynomials of degree at most n with real coefficients, 
and let ~ be the set of all algebraic polynomials of degree at most n with complex 
coefficients. 

The function 
k 

r. E~:a~r \o-~r 0 < ~ R, j = 1, 2, k, (2.1) f=I - IPj , ,  P, rj . . . ,  
j = l  

will be called a generalized rea'l algebraic polynomial of (generalized) degree 
k 

N= Y'. rjnj. (2.2) 
j = l  

To be precise, in this paper we will use the definition 

z r=exp(r log l z l + i r  arg z), z e C ,  0 < r e R ,  - r r~<arg  z< ' a ' .  (2.3) 

Obviously, 
k 

If l - -  I-I IPjl r', (2.4) 
j = l  

for every f defined by (2.1). We denote by GRAP N the set of all generalized real algebraic 
polynomials of degree at most N. We introduce the class I G R A P  I N ---- { I f  1" f ~ GRAPN}. The 
function 

k 

f(Z)=o)H(z--zj) r', Og=o),zjEC, O<rj~R, j = l , 2 , . . . , k ,  (2.5) 
j = l  
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will be called a generalized complex algebraic polynomial of (generalized) degree 
k 

N= Eri. 
j = l  

We have 

(2.6) 

We have 
k 

I f ( z ) l  = [to[ 1-I [sin(½(z-zj))l rj, (2.11) 
j = l  

for every f defined by (2.9). Denote by GCTP u the set of all generalized complex trigonometric 
polynomials of degree at most N. The set { [ f l: f ~ GCTP N} is denoted by I GCTP I N. 

We remark that if f ~  ]GCAP[N, then restricted to the real line we have f ~  GRAP N. 
Similarly, if f ~  [GCTPIN, then restricted to the real line we have f ~  [GRTPIN. These 
follow from the observations 

jz-z,l 
and 

Isin(½(z-zi))[ 

z ~ U ,  (2.12) 

= (s in(½(z - zi)  ) s in(½(z - 5i)))1/2 

_ \ ~ X / 2  
1 (cosh(Im z i ) - c o s ( z -  Re zi) ) , z ~ R .  (2.13) 

k 

I f ( z ) l  = Io 1 l-] I z - z j l  r', (2.7) 
j=l  

for every f defined by (2.5). Denote by GCAP N the set of all generalized complex algebraic 
polynomials of degree at most N. The set { I f  [" f ~ GCAPN} is denoted by [GCAP [ g. 

In the trigonometric case we denote by 3 -r the set of all trigonometric polynomials of degree 
at most n with real coefficients, and let 3-~ be the set of all trigonometric polynomials of 
degree at most n with complex coefficients. 

The function 
k 

f =  I-IP~ rj, P~3-n~\3-n~_ x, 0 < r i ~ R ,  j = l ,  2 , . . . , k ,  (2.8) 
j = l  

will be called a generalized real trigonometric polynomial of (generalized) degree N defined by 
(2.2). Obviously (2.4) holds for every f defined by (2.8). We will denote by GRTP N the set of all 
generalized real trigonometric polynomials of degree at most N. The set { I f  l" f ~ GRTPN} will 
be denoted by I GRTP I N. We say that the function 

k 

f ( z ) = w l - - I  sin z - z j  , 0 ¢ w e C ,  z i e C  , r j > 0 ,  j = l , 2 , . . . , k ,  (2.9) 
1=1 

is a generalized complex trigonometric polynomial of (generalized) degree 
k 

1 N =  ~ E rj. (2.10) 
i=1 
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Using (2.12) and (2.13), one can easily check that, restricted to the real line, we have 

[GCAP I N = 
k 

f ~ I-[ Pjrj/2" O <~ Pj ~ ,  O < rj ~ lR, j = l, 2, . . . ,  k; 
j = l  

k } 
] =  

and 

k 

]GCTP[N = f ~  l-IPjrj2: O<Pj~a--~(, O<rj~I~,  j =  l, 2 , . . . , k ;  
j = l  

~_, rj <~ 2N . 
j= 

[GCTP } N = {f Therefore, restricted to the real line, IGCAP I N = { f ~  GRAPN: f>--0} and 
GRTPN: f>~ 0}. 

In Section 11 we will work with the following classes of constrained (generalized) polynomi- 
als. Denote by ..~n~.k, 0 ~< k ~< n, the set of all p e ~ r  having at most k zeros (by counting 
multiplicities) in the open unit disk. Let I GCAP I N.K, 0 ~< K ~< N, be the set of all f ~ I GCAP I N 
of the form (2.7) for which 

~_, rj<~K. (2.14) 
{j:l z~ I < 1} 

Let .g," denote the set of all finite Borel measures I* on C with compact support and 
~(C) > 0. For ~ e.gt' and c e R we define 

P~,,c(z)= f c l o g l z - t l d l z ( t ) + c ,  z e C ,  (2.15) 

and 

Q~,,c(Z) = exp(P,,c(Z)).  (2.16) 

Let A = {Aj}7= 0, 0 ~< A 0 < h 1 < • • •. The set of all Miintz polynomials of the form p(z)  = 
Y'.7=oajx *j with real coefficients aj is denoted by Hn(A). Let H(A) = 12 ~=0H,,(A). 

3. Remez-type inequalities for algebraic polynomials on [ -  1, 1] and for trigonometric polyno- 
mials on [ - I t ,  ~r] 

Assume that the absolute value of a real algebraic polynomial of degree at most n is less 
than 1 on a subset A c [ -  1, 1], and re(A) >1 2 - s, 0 < s < 2, is known, where m(A)  denotes 
the Lebesgue measure of A. The question that arises is how large the polynomial can be on 
[ -  1, 1] in terms of n and s. This was answered by Chebyshev when this subset A c [ -  1, 1] is 
an interval; however, his elegant "zero counting" method fails to work when we do not have 
this additional piece of information. The solution, due to Remez [53], and its application in the 
theory of orthogonal polynomials can be found in [32, pp. 119-121], a simpler proof is given in 
[14]. To formulate the Remez inequality we need the Chebyshev polynomials T,, ~ r  defined 
by 

Tn(x)=cos(n arccos x) ,  - 1  ~<x <~ 1. (3.1) 
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Since Tn ~ r ,  (3.1) defines T,, on the whole complex plane. The following explicit formula for 
Tn is well known [32, p.34]. We have 

T,,(x) = ½((x + ffix 2 -  1 ) " +  ( x -  ~x 2 -  1 )"), (3.2) 

for every x e R \ ( - 1, 1). 

Theorem 3.1 (Remez). Let 0 < s < 2. We have 

max Ip(x) l  <~rn (3.3) 
- l < x < l  ~ ' 

r for every p 9~ satisfying 

m ( { x ~  [ - 1 ,  1]" I p(x) l  < 1}) >t 2 - s .  (3.4) 

Equality holds in (3.3) i f  and only i f  

Tn( _+2x s ) 
P -+ 2 - s  2 - s  

(these are the Chebyshev polynomials +_ T n transformed linearly from [ - 1, 1] to either [ - 1, 1 - s] 
or [ - 1  +s,  1]). 

Theorem 3.1 and formula (3.2) give the following immediately. 

Corollary 3.2. We have 

max 
- l < x < l  

and 

I p(x)  [ ~< exp(5nv/s-), 0 < s ~< 1, (3.5) 

(8). 
-l<x<lmax Ip(x) l  < ~ , 1 < s < 2 ,  (3.6) 

for every p ~ r  satisfying (3.4). 

The constants 5 and 8 in the above corollary are not optimal, slightly better constants are 
obtained in Section 6. 

A natural question that arises now is the following. How large can I p(x) l be if x ~ [ -  1, 1] 
is fixed and p ~ satisfies (3.4)? An obvious bound for I p(x) l comes immediately from the 
Remez inequality, but it turns out that for any fixed x ~ ( - 1 ,  1) this can be essentially 
improved. The following theorem is proved in [22, Theorem 4]. 

Theorem 3.3. There is an absolute constant C 1 > 0 such that 

I p ( x ) l < e x p  c lnmin  f i . _ x  2 ,¢ ) -  , O < s < l ,  

for every p ~,~,~ satisfying (3.4). 

- 1  < x ~< 1, (3.7) 
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The sharpness (up to the c o n s t a n t  Cl)  is also shown in [22, Section 12]. We remark that in 
case of 1 < s < 2 there is no essentially better pointwise Remez-type bound than the uniform 
one given by (3.6). This explains why we deal only with the case 0 < s ~< 1 in Theorem 3.3. 

The proof of Theorem 3.3 is based on an essentially sharp Remez-type inequality for 
trigonometric polynomials; however, it is not a simple "substitution x = cos t "  argument. This 
trigonometric Remez-type inequality [22, Theorem 2] states the following. 

Theorem 3.4. There is an absolute constant C 2 ~> 0 such that 

1 max I p ( t ) l  <~exp(cEns ), 0<s~<~ ' r r ,  
-rr~<t ~<'rr 

for  every p ~ 3-n r satisfying 

m({t  ~ [ - r r ,  rr]" I p ( t )  I ~< 1}) > / 2 ~ - s .  

In fact,  c2ns in (3.8) can be replaced by n(s + 1.75 s2). 

(3.8) 

(3.9) 

The last s tatement of Theorem 3.4 is not stated in [22, Theorem 2]; however, as von 
Golitschek and Lorentz pointed it out, one can easily verify it by a straightforward calculation, 
analyzing the proof given in [22]. Though Theorem 3.4 with its unnatural  restriction 0 < s ~< ½rr 
turned out to be completely satisfactory in several applications, it is still a natural question what 

1 happens when ~-rr < s < 2"rr. It can be proved that there is an absolute constant c 3 > 0 such that 

max I p ( t ) l  ~< ' ½rr < s  < 2rr, (3.10) 
-=~<t~  2~r s ' 

for every p ~ j,-r satisfying (3.9). This result has never been published. 
If we know that the absolute value of a trigonometric polynomial of degree at most n is not 

greater than 1 on an interval of prescribed length, we can give the exact pointwise bound for 
the polynomial outside this interval To be able to use Chebyshev's classical method based on 
zero counting, it is very important to define a trigonometric polynomial of degree n, which 
equioscillates 2n + 1 times on the interval [ - to ,  to], 0 < to ~< rr. This is possible by taking 

(s in(½t)  ) 
Qn"°(t)= T2n sin(½to) E~nr' (3.11) 

where T2,(x) = cos(2n arccos x), - 1  ~< x ~< 1, is the Chebyshev polynomials of degree 2n. This 
polynomial was used in [62] to establish sharp Markov- and Bernstein-type inequalities for the 
derivatives of trigonometric polynomials on an interval [ - to ,  to] shorter than the period. With 
the help of the trigonometric polynomial Qn.,,, we can formulate the following theorem [22, 
Lemma 3]. 

Theorem 3.5. Let p ~ ~-n r and I p(t) l  ~< 1 for every t ~ [ - to ,  to], where 0 < to < at. Then 
I p ( y ) l  ~< Qn,~(Y) for  every y ~ [ - r r ,  . r r ) \ ( - to ,  to). 

From (3.11) and (3.2) we easily deduce that there are absolute constants 0 < c 4 < C 5 such that 

exp(can('n- - to)) ~< an,,o(ar) <~ exp(csn(rr - to)), (3.12) 
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1 for every ~rr < to < ~'. This shows that Theorem 3.4 is sharp up to the constant c 3. I have the 
following conjecture. 

1 Conjecture 3.6. Le t  0 < s < 2 ar and  w = rr - -~s. Then 

max Ip( t ) l  <Q,,,o('rr), 

for  every p ~ y - r  satisfying (3.9). 

(3.13) 

4. Remez-type inequalities for IGCAPIN on [ - 1 ,  1] and for IGCTPIN on [ -at ,  ,rr] 

The Remez-type inequalities of Section 3 can be easily extended to generalized nonnegative 
algebraic and trigonometric polynomials by utilizing the generalized degree N in place of the 
ordinary degree. To illustrate this, we give the proof of our Remez-type inequality for 
generalized nonnegative trigonometric polynomials using a simple density argument. One 
would expect to extend a number of polynomial inequalities for generalized nonnegative 
polynomials in this spirit. However, a serious problem arises from the fact that density 
arguments do not seem to work in most of the cases. To obtain extensions of polynomial 
inequalities to the classes I GCAP I N and I GCTP I N (see the definitions in Section 2), the basic 
idea is the following. The Remez-type inequalities for I GCAPIN and I GCTPIN are easy to 
obtain from the corresponding polynomial inequalities; however, they seem general and deep 
enough to try to deduce other inequalities (such as Nikolskii-, Markov-, Bernstein- and 
Schur-type inequalities) for I GCAP I N and I GCTP I N from them. It turns out that Remez-type 
inequalities for I GCAP I N and I GCTP I N play a significant role in the proof of our results in 
Sections 5, 9, 11 and 12. This is illustrated in Section 5 by giving a short proof of a 
Nikolskii-type inequality for [GCAPIN based on the corresponding Remez-type inequality 
from this section. After explaining their importance we present the results. 

To establish the analogue of the Remez inequality (Theorem 3.1) for I GCAP [ N it may seem 
hard to tell what we should put in place of the Chebyshev polynomial T n in (3.3), since T N does 
not make any sense. Nevertheless, as a consequence of our sharp Remez-type inequality for 
exponentials of potentials (Theorem 6.1), we obtained the following corollary. 

Corollary 4.1. L e t  0 < s < 2. Then 

N 

for  every f ~ I GCAP I N satisfying 

m({x~  [ - 1 ,  1]: f ( x ) < l } ) > > . 2 - s .  

(4.1) 

(4.2) 

The sharpness of the above inequalities in a "limit sense" can be seen by taking the 
generalized nonnegative algebraic polynomials 

f =  IT,  I N / "  ~ IGCAPIN, n =  1, 2 , . . . ,  (4.3) 
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where T,, is the Chebyshev polynomial of degree n defined by (3.1). In [22, Theorem 1] the 
following less sharp result was proved as the extension of Corollary 3.2 to the class I GCAP I N. 

Theorem 4.2. We have 

max f ( x )  <~ exp(5Nv~-), 0 < s  ~< 1, (4.4) 
- l~<x~<l  

and (8)N 
max f ( x )<~  , 1 < s < 2 ,  (4.5) 

- l < x ~ < l  

for every f ~ I GCAP I N satisfying (4.2). 

The extension of Theorem 3.3 to the class I GCAP I N is given in [22, Theorem 4]. 

Theorem 4.3. We have 

f ( x ) < ~ e x p  c l N m i n  ~ x 2 , , 

for every f ~ I GCAP I N satisfying (4.2). Here c 1 is the same as in Theorem 3.3. 

(4.6) 

The case 1 < s < 2 is not examined here, see the comment right after Theorem 3.3. The 
extension of Theorem 3.4 to the class I GCTP I N [22, Theorem 2] is formulated in the following 
theorem. 

Theorem 4.4. We have 
1 max f ( t )  <~ exp(c2Ns) ,  0 < s  < -~rr, 

for every f ~ I GCTP I N satisfying 

m({ t  ~ [--~r, at]" p ( t )  <~ 1})>/2xr--  s. 

Here c 2 is the same as in Theorem 3.4. 

(4.7) 

(4.8) 

For 1 ~rr < s < 2rr, the extension of (3.10) asserts that 

(c3)  
max f ( t )  <~ (4.9) 

- - a t  < t  ~<xr 2-rr - s  

for every f ~ I GCTP I N satisfying (4.8). 
To convince the reader that the results of this section are straightforward consequences of 

the corresponding polynomial inequalities of Section 3, we show how Theorem 4.4 follows from 
Theorem 3.4. 

Proof of Theorem 4.4. Let f ~ I GCTP [ N satisfy (4.8) and first assume that each ry is rational in 
the representat ion (2.11), thus let rj = q J q ,  j = 1, 2 , . . . ,  k,  with some positive integers qy and 
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q. Observe that the trigonometric polynomial 
k 

p ( z )  = [ tO 12q H (s in(½(z-  zj))sin(½(z - ~,y)))q~ ~ T2N q 
j = l  

satisfies (3.9); hence by Theorem 3.4 we obtain 

max f ( t )  = max [ p ( t ) [  1/(2q) <~ (exp(c22Nqs))1/(2q)=exp(c2Ns),  
- ~r <~ t <~ ~r - -  ~r <~ t <~ ar 

which gives the desired result. In general, when the exponents rj are arbitrary positive real 
numbers in the representation (2.11) of f, we obtain the theorem from the already proved 
rational case by a limiting argument. [] 

The following pair of theorems [25, Theorems 8 and 9] gives the Lp, 0 < p  < oo, analogues of 
Theorems 4.2 and 4.4. 

Theorem 4.5. Let X be a nonnegative, nondecreasing function defined on [0, oo) such that X ( x ) / x  
is nonincreasing on [0, ~). There is an absolute constant c 6 > 0 such that 

f l l ( x ( f ( x ) ) ) P  dx  <~ (1 + exp(c6PNVrs )) f A ( x ( f ( x ) ) ) u  dx ,  (4.10) 

1 f o r e v e r y f e l G C A P [ N , O < p < o o ,  O < s ~ - ~ a n d A c [ - 1 , 1 ] w i t h m ( A ) > ~ 2 - s .  Herec 6 5x/2 
is a suitable choice. 

Theorem 4.6. Let X be the same as in Theorem 4.5. There is an absolute constant c 7 > 0 such that 

f [  (x(f(t))) p dt <~ (1 + exp(c7PNs)) fA(x(f(t)))P_ dt ,  (4.11) 

1 for every f ~ IGCTP I N, 0 < p  < oo, 0 <S < xrr a n d A  c [ - ~ r ,  ~r) with m ( A )  >1 2~r - s. I f  0 < s <~ 
1 then c 7 = 4 is a suitable cholce. 
4 '  

Theorems 4.5 and 4.6 are simple consequences of our Theorems 4.2 and 4.4, respectively; we 
demonstrate it by giving the proof of Theorem 4.6, following the method used in [25]. 

Proof of Theorem 4.6. For an f ~ ]GCTP [ N we define the sets 

I I ( f )  = ( t ~  [- 'n ' ,  "rr): ( x ( f ( t ) ) ) P > ~ e x p ( - 2 c 2 P N s )  max 

I 2 ( f )  = (t ~ [-~r ,  ~r)" f ( t )  >>. e x p ( - E c 2 N s  ) max f(~-)}, 
- -  ar < ~" <~ ar 

(x ( f ( r ) ) )P} ,  (4.12) 

(4.13) 

where c 2 > 0 is defined in Theorem 4.4. By the conditions prescribed for X, one can easily 
deduce that 

I 2 ( f )  C l l ( f ) .  (4.14) 

Further, Theorem 4.4 implies that 

1 (4.15) m ( I z ( f ) )  >/2s ,  0 < s ~< Xrr, 
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which, together with (4.14), yields 

1 (4.16) m ( I , ( f ) ) > ~ 2 s ,  0 < s  ~ urr. 

Now let I =A n Ii( f ) .  Since m ( A )  >t 2 - s, we have m(I )  >I s. Therefore, by (4.12) we obtain 

f [_~,~l \A(x( f ( t ) ) )P  dt <~ ft_~,~l\A_max<~ ( x ( f ( r ) ) ) P  dt 

<~ exp(2c2PNS) f l ( x ( f ( t ) ) ) P  dt 

<~ exp(Zc2pNs) f ,4 (x ( f ( t ) ) )P  dt ,  

and the theorem is proved. [] 

5. Nikoiskii-type inequalities for [GCAPIN on [ - 1 ,  1] and for IGCTPIN on [ -a t ,  av] 

In this section we give sharp upper bounds for the L p ( - 1 ,  1)-norm of functions from 
[GCAP I N if their L q ( -  1, 1)-norm is bounded by 1 and 0 < q  < p  ~< oo. This is the content of 

Theorem 5.1. The trigonometric analogue of this result is established by Theorem 5.2. In 
Theorems 5.3-5.5 we offer some weighted analogues of Theorems 5.1 and 5.2 for wide families 
of weight functions. Such inequalities are called Nikolskii-type inequalities. The proofs of these 
Nikolskii-type inequalities are based heavily on the Remez-type inequalities of Section 4, and 
we demonstrate this by proving Theorem 5.2 following a method from [25, Theorem 5]. 
Schur-type inequalities (which can be considered as special Nikolskii-type inequalities) for 
I GCAPIN with close to sharp constant will be given by Theorem 5.6. Applications of 

Nikolskii-type inequalities in the theory of orthogonal polynomials will be given in Section 12. 
The following pair of theorems was proved in [25, Theorems 5 and 6]. 

Theorem 5.1. Let X be a nonnegative, nondecreasing function defined on [0, oo) such that X ( x ) / x  
is nonincreasing on [0, ~). There is an absolute constant c 8 > 0 such that 

II x(f)II Lp(- 1,1) ~-~ (C8(2 + qN)) 2/q-E/p II x(f)II ~q(-x,1), (5.1) 

for every f ~ I GCAP I N and 0 < q < p <~ ~. I f  X(X) = x, then c 8 = e2(2rr)-  1 is a suitable choice. 

Theorem 5.2. Let X be the same as in Theorem 5.1. There is an absolute constant C 9 > 0 such that 

II x(f)II L~(-~,,~) ~< (c9(1 + qN)) 1/q-x/p l[ x( f ) I I  Lq(-~,-~), (5.2) 

for every f ~ IGCTP IN and 0 < q <p <~ ~. I f  X(x)  =x,  then c 9 = e(4ar) -1 is a suitable choice. 

Following [25, Theorem 5], we present the proof of the first statement of Theorem 5.2, which 
gives a greater constant than c 9 = e(4rr) -1 in the case X ( x ) = x .  
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Proof of Theorem 5.2. For the sake of brevity we use the short notation I1" II p = II" II ,,<-~.~). It 
is sufficient to prove the theorem when p = 0% and then a simple argument gives the desired 
result for arbitrary 0 < q < p < oo. To see this, assume that 

IIx(f)ll~ <-<g a/q IIx(f)llq, 
for every f ~ I GCTP I N and 0 < q < o% with some constant K. Then 

II x ( f )  I1,~ ~< I I (x( f  ))P-q+q ll l <~ Il x ( f  ) ll~-q ll x ( f  ) ll q 

<~ g p/q-1 II x ( f ) I I ~ - q  II x ( f ) l l  q, 

for every f ~ I GCTP [ N and 0 < q < 0% and therefore, 

II x ( f ) I I  p -<< g 1/0-1/*' II x(f)II  q, 

for every f ~ I GCTP I N and 0 < q < oo. 
Now let p = ~. We show that 

m({t ~ [ - r r ,  r r ) =  ( x ( f ( t ) ) )q  >~ exp(-qNs)]l  x ( f ) l i e ) )  >t clos, (5.3) 

for every f ~  IGCTP IN and s ~ (0, 2rr), where c10 -= min{1/c2, ¼}. Indeed, since X is nonneg- 
ative and nondecreasing and (X(x) /x )  q is nonincreasing on [0, oo), we have 

( x ( f ( t  ))) q >t exp( -qNs)  II x ( f  ) IIg, (5.4) 

for every real t satisfying 

f ( t )  >1 exp(-Ns)II  f t1~, (5.5) 
so it is sufficient to prove (5.3) only when X(x) = x and q = 1. If (5.3) were not true in this case, 
then 

g := f exp(gs)  ll f I1= -1 (5.6) 

would satisfy 

m({t ~ [ - 'n ' ,  "rr): g(t)  ~ 1}) > 2 r r -  Cl0S, (5.7) 

and Theorem 4.4 would imply 

II g I1® < exp(cEclogs) < exp(gs) ,  (5.8) 

which would contradict (5.6). Thus (5.3) holds indeed. Choosing s = (1 + q N )  -1 in (5.3), we 
obtain 

m(( t  ~ [--~r, rr) = ( x ( f ( t ) ) )  q >~ e - '  II x ( f ) [ Iq ) )  >i c10(1 + qN) -1, (5.9) 

for every f ~  ] G C T P  [ g.  Now integrating only on the subset I of [ - r r ,  ~), where 

( x ( f ( t ) ) )  q >1 e - '  II x(f)I1•, (5.10) 

and using (5.9), we get 

II x ( f ) I 1 ~  < e c ~ l ( 1  +qN)fz(x( f ( t ) ) )  q dt ~< ecru1(1 + q g ) l l x ( f ) l l  q, (5.11) 

for every f ~  IGCTP IN; thus the first statement of Theorem 5.2 is proved. [] 
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If g is a measurable function on the interval [a, b] and for every A > 0 there is a constant 
K = K(g)  depending only on g such that 

m({x  ~ [a, b] = I g (x )  I >t ~}) < K(g)A  -p, (5.12) 

then we say that g is in weak Lp(a, b) and we use the notation g ~ WLp(a, b). It is obvious 
that if g is in Lp(a, b), then g is in WLp(a, b). In the rest of this section w denotes a 
nonnegative weight function from L I ( - 1 ,  1). Let log-(x)"= min{log x, 0}. In [20, Theorems 
3-5] the following Nikolskii-type inequalities are proved. 

Theorem 5.3. Let 0 < a < 1, p = 2 / a  - 2 and log-(w) ~ W L p (  - 1, 1). 
c(a, K)  depending only on a and K = K(log-(w)) (see (5.12)) such that 

and 

max ( f (x) )  q <~ exp(c(a, K)(1 + qN)<~) f l  (f(x))qw(x) dx 
-l~<x~<l 

(f (,,x,l.w(.,.x) 1" 

~< (exp(c(ot, K)(I+ qNa)))I/q-l/P(f)l(f(x))qw(x)dx )i/q 
for every f ~ I GCAP [ N and 0 < q < p < oo. 

There is a constant 

(5.13) 

(5.14) 

In our next theorem we take only half as large p as in Theorem 5.3, but we assume that 
log-(w(cos 0)) ~ W L p ( - 7 ,  ~r) and we obtain the same conclusion. 

Theorem 5.4. Let 0 < a  < 1, p = 1 / a -  1 and log-(w(cos 0 ) )~ WLp( - ' n ' ,  "It). There is a 
constant c(a, K) depending only on a and K = K(log-(w(cos 0))) (see (5.12)) such that (5.13) 
and (5.14) hold for every f ~ IGCAP I N and 0 < q < p < oo. 

1 We remark that if 2 ~ a < 1, 0 < p  ~< 1, then the Szeg6 class 

{ f ~ L l ( - 1 ,  1)" f>~0, log(f(cos 0 ) ) ~ L l ( - r r  , 'n')} 

is properly contained in the classes of Theorem 5.4. The Nikolskii-type inequalities of our next 
theorem give better upper bounds for less wide classes. 

Theorem 5.5. Let w 
c(e, K)  depending only on • and K = K ( w - ' )  (see (5.12)) such that 

max ( f ( x ) )  ° <~ c(e, K)(1 + q N ) M f l a ( f ( x ) ) q w ( x  ) dx  
- l ~ x ~ < l  

and 

-" ~ WLI( - 1, 1) for some • > 0 and let M = 2 / •  + 2. There is a constant 

(5.15) 

(c(. . , (1+ .x) 1" 
(5.16) 

for every f ~ I GCAP [ N and 0 < q < p < ~. 



T. Erddlyi / Remez-type inequalities 181 

The Remez-type inequalities of Section 4 play a central role in the proof of Theorems 
5.3-5.5. Similarly to the proof of Theorem 5.2, it is sufficient to prove only the first inequality 
of each theorem, and then the second one follows immediately. To prove the first inequality of 
each theorem, the basic idea is to integrate only on a sufficiently large subset of [ -  1, 1], where 
both f II f IIz7)-~,1) and the weight function w are "sufficiently large", and to balance in an 
optimal way. 

We close this section with a Schur-type inequality [25, Theorem 7] for the class I GCAPI N 
with an almost sharp constant. 

Theorem 5.6. We have 

max ( f ( x ) ) q < ~ e ( l + q N )  max ( ( f ( x ) ) q l ~ ~ - x 2 ) ,  
- l < x < l  - l < x < l  

for every f ~ I GCAP I N and 0 < q < ~. 

(5.17) 

According to the well-known Schur inequality [55], if f is an ordinary polynomial and q is a 
positive integer, then the constant e in the above inequality can be replaced by 1. For ordinary 
algebraic polynomials and for arbitrary 0 < q < % Theorem 5.6 was also proved in [33, Remark 
3, p.18]. We remark that with an absolute constant c instead of e, Theorem 5.6 is a simple 
consequence of the Remez-type inequality (Theorem 4.2) for I GCAP I N. 

6. Remez-type inequalities for exponentials of logarithmic potentials on [ - 1 ,  1] and on the 
unit circle 

In this section we state our main results concerning Remez-type inequalities for exponentials 
of logarithmic potentials on [ - 1 ,  1] and on the unit circle. It turns out that each inequality 
from Section 4 has an analogue for exponentials of logarithmic potentials, by utilizing/L(C) in 
place of the generalized degree N. Our first theorem [24, Theorem 2.1] establishes a sharp 
Remez-type inequality for exponentials of logarithmic potentials on [ - 1, 1]. 

Theorem 6.1. Let 0 < s < 2; then 

max e ,c(x) (6.1/ 
-l x_ a 

for every ~ ~ ~ and c ~ R satisfying 

m({x ~ [-1, 1]" Q~,c(x)<. 1})>f 2 - s .  (6.2) 
) 

Furthermore, i f  Q~,c restricted to [ - 1 ,  1]/s continuous on [ -  1, 1], then equality in (6.1) holds if  
and only if  

o r  

and 

c =  - / z (C) log (¼(2-  s)), 

where iz* K denotes the equilibrium measure (cf. [61, Section III.2]) of  a compact set K c C. 
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We remark that Q,,c is upper semi-continuous on C, so the maximum on [ -  1, 1] is attained. 
We believe that the assumption that Q~,x restricted to [ - 1 ,  1] is continuous on [ - 1 ,  1] can be 
dropped from the second statement of Theorem 6.1. 

Concerning pointwise upper bounds for Q~,,c(x) we shall prove the following result that 
extends the validity of Theorem 4.3. 

Theorem 6.2. We have 

Q..c(X)<exp Cl~(C) min ~ _ x 2 ,  , O < s < l ,  - l < x < l ,  

for  every ~x ~.d" and c ~ R satisfying (6.2). Here c 1 is the same as in Theorem 3.3. 

(6.3) 

Theorem 6.2 is proved in [24, Theorem 2.2]. The case 1 < s < 2 is not studied here, see the 
comment right after Theorem 3.3. The analogue of the trigonometric Remez-type inequality 
(Theorem 4.4) is given by the following theorem. 

Theorem 6.3. We have 
1 max Q~,,c(eit) <~ exp(c2lx(C)s) ,  0<s~<urr  , 

--~r ~<t ~<'rr 

for every I~ ~ - ~  and c ~ • satisfying 

m ( ( t  E [--Tr, "n-): O ( e i t ] ) )  ~ ~,c ~ , <~1 >12 ar -- s . 

Here c 2 is the same as in Theorem 3.4. 

(6.4) 

(6.5) 

Theorem 6.3 is proved in [24, Theorem 2.9]. Using Theorems 6.1 and 6.3, in [24, Theorems 
2.7 and 2.10] we established Remez-type inequalities in Lp, 0 <p  < ~, for exponentials of 
logarithmic potentials on both [ - 1 ,  1] and the unit circle. These extend the results of 
Theorems 4.5 and 4.6. 

Theorem 6.4. Let  X be a nonnegative, nondecreasing function defined on [0, oo) such that X( x ) / x  
is nonincreasing on [0, oo). There is an absoute constant c n > 0 such that 

1 

f_ I(x(Qlz,c(X)) ) dx ~ 1 q- l _ v / -  ~ dx 

~< (1 + exp(c l lP l~ (C)vrs ) ) fA(X(Q~x(x ) ) )P  dx ,  (6.6) 

1 for every I~ ~.d ' ,  c ~ •, 0 < p < ~, 0 < s <~ -~ and A c [ - 1 ,  1] with m ( A )  >1 2 - s. Here Cll =5V~- 
is a suitable choice. 

Theorem 6.5. Let  X be the same as in Theorem 6.4. There is an absolute constant c12 ) 0 such 
that 

"iT 

f ~ (x (Q~"c(x) ) )  u d x  <~ (1 + exp(c l zp l~ (C)s ) ) fA(X(Q~,x (x ) ) )P  dx, (6.7) 
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1 1 for every Ix ~.,~', c ~ R, 0 < p < % 0 < s <~ - ~  and A c [ - 1, 1] with r e ( A )  >1 2 7 - s. I f  0 < s <~ -i , 
then cx2 = 4 is a suitable choice. 

Theorems 6.4 and 6.5 can be proved from Theorems 6.1 and 6.3, respectively, similarly to the 
proof of Theorem 4.5. To obtain the first inequality of Theorem 6.4, the following version of 
Theorem 6.1 is useful. 

Corollary 6.6. We have 

m ( { x ~  [ - 1 ,  1]" Q~,c(S)> 

for every Ix ~ .~ ' ,  c ~ R and 0 < t < 1. 

1) max Q,,c(Y) >i 2t,  (6.8) 1 + vr/" -1,~y<1 

To close this section we present the proof of Theorem 6.2, following a typical method from 
[24]. This will illustrate that our extension is far from a simple density argument. 

Proof of Theorem 6.2. For the sake of brevity let 

E g x =  {x~ [ - 1 ,  1]: Q~x( x )<  1}. (6.9) 

If K c C is a compact set, we denote by D . ( K )  the unbounded component of the complement 
C \ K .  This domain is referred to as the outer domain of K and its boundary aD®(K) is called 
the outer boundary of K. If K has positive logarithmic capacity [61, p.55], we denote by 
gD-(K)(Z, oo) the Green function with pole at oo for D®(K). We remark that go.~r)(Z, ~) is the 
smallest positive harmonic function on D . ( K ) \  {o0} that behaves like log I z[ + const, near ~ (cf. 
[51, p.333]). We may assume that 0 < s < 1, since the case s = 1 follows from Theorem 6.1. Let 
/z ~ ~ and c ~ R be such that (6.2) holds. For a fixed 0 < ~ < 1 - s we choose a compact set 
K c E~,,¢ such that 

m(E~,~) ~< e. (6.10) 

This, together with assumption (6.2), gives 

m ( K ) > ~ 2 - ( s + e ) .  (6.11) 

Note that Ix E.~,', (6.9), the definition of the Green function go.(r) and K c E~,~ imply that 

gD.(K)( Z, oo) -- e~,c( Z ) 

(see (2.15) for the definition of P~,,c) is superharmonic on D®(K), and 

lim inf (gD-(m(Z, ~) -- P~,,c(z)) >/0; 
z --* K 

z ~ D = ( K )  

therefore the minimum principle for superharmonic functions yields 

gO.(K)(Z, oo) -- p~ ,c ( z )  >t 0, 

(6.12) 

(6.13) 

for all z ~ D®(K). Applying Theorem 3.3 to the nth Fekete polynomials Fn, k ~ . ~  of K [51, 
p.331], we obtain 

1 Fmr(X  ) { S + ,  } 
-- log ~< C 1 rain ~ (6.14) 
n II F,,,K II K ~ - -  X 2 ' ' 
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for every - 1 ~< x ~< 1 and 0 < s + • ~< 1 ( 11 • II r denotes the uniform norm on K). By a theorem 
of Myrberg and Leja [51, Theorem 11.1, p.333] and m ( K ) > / 2 - s - •  > 0, the limit of the 
left-hand side of (6.14), as n ~oo,  exists for every x E [ - 1 ,  1 ] \K ,  and equals go, tr)(x). 
Therefore, 

gD,(Io(X, ~) <~ C a min / s + •  ¢77_2) (6.15) / ~ -  X 2 ' 

for every x ~ [ -  1, 1 ] \ K  and 0 < s + • ~< 1, and together with (6.13) this yields 

( S + •  ~/~_fi_.~ } (6.16) 
P.x (x )<~c  l m i n  Vii- x 2 , 

for every /x~cg ,  c E R ,  x ~ [ - 1 ,  1 ] \ K  and 0 < s + • ~ < l .  If x ~ K c E . ,  c, then P~,¢(x)<~O, 
thus (6.16) holds for every x ~ [ - 1 ,  1]. Taking the limit on the right-hand side of (6.16) as 
• ~ 0 +, we get the desired result. [] 

7. Remez-type inequalities for exponentials of logarithmic potentials on bounded domains of C 
with C 2 boundary 

In this section we establish the analogues of Theorems 6.1 (Corollary 6.6) and 6.4 for the 
case when the interval [ -  1, 1] is replaced by the closure of a bounded domain 12 c C with C 2 
boundary. Throughout this section re(A)  denotes the two-dimensional Lebesgue measure of a 
measurable set A c C. In [24, Theorem 2.4] we proved the following theorem. 

Theorem 7.1. Let 12 c C be a bounded domain with C 2 boundary. 
c13 = C13(12) ~ 0 depending only on 12 such that 

m(  ( z  ~ ~" Q~,ic(z) >~ exp(-/z(C)v~-)wrna~x_Q~,,c(w)} ) ~C13S, 

for every ~ ~ ,¢f , c ~ ~ and 0 < s < m( O ). 

There is a constant 

(7.1) 

Actually, in the above theorem we need only a slightly weaker geometric assumption for the 
boundary o f /2 ,  namely the following: there is an r > 0 depending only on O such that for each 
z ~ bO there is an open disk D z with radius r such that D z c 12 and Dz c~ ~12 = {z}. It is well 
known that if a12 is a C 2 curve, then this property holds. 

To prove Theorem 7.1, first we verified the following inequality for polynomials [24, 
Theorem 2.5]. 

Theorem 7.2. Let D = {z ~ C: [z[  < 1}. There is an absolute constant c14 > 0 such that 

max [ p ( u )  [ ~< exp(c14nv~- ), (7.2) 
u~D 

1 satisfying for every p ~ and 0 < s <~ -i 

m({z  ~ D" l p ( z ) l  ~ 1}) >t r r - s .  (7.3) 
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We also proved [24, Theorem 2.6] that the result of [24, Theorem 2.5] is essentially sharp; 
namely we have the following theorem. 

Theorem 7.3. There is an absolute constant C15 > 0 such that 

sup[ p(1) l >/exp(clsnl/s- ), (7.4) 

for every n ~ N and 0 < s <<. ½, where the supremum in (7.4) is taken for all p ~ ,  satisfying 
(7.3). 

Since p ~ . ~  implies that q~(t) -= I p(aeit)12 ~ j , r  for every a > 0, there is a close relation 
between our Remez-type inequality for trigonometric polynomials (Theorem 3.4) and Theorem 
7.2. The proof of Theorem 7.2 given in [24] rests on this observation. 

We close this section by giving an Lp, 0 <p  < 0% analogue of Theorem 7.1 [24, Theorem 2.8], 
which follows from Theorem 7.1 in the same way as Theorem 4.6 follows from Theorem 4.4. 

Theorem 7.4. Let 
c16(12) > 0 and c17 

for every Iz ~.Jt', c 

The assumption 

g'2 c C be a bounded domain with C 2 boundary. There are constants c16----- 
= c17(12) > 0 depending only on 12 such that 

z)) p din(z)  ~ (1 + exp(c16pla,(C)fs))fA(Q~,,¢(z))P d m ( z ) ,  

e[~, 0 < p  <oo, 0 <s~<c17 a n d A c 1 2  with m ( A ) > m ( 1 2 ) - s .  

(7.5) 

that 12 has C 2 boundary in both Theorems 7.1 and 7.4 may not be the best 
possible. However the domain 

O =  ( z = x  +iy"  0 < x  < 1, 0 < y  < 1 -  lX/]-'Z~-x 2} (7.6) 

shows that the conclusion of Theorems 7.1 and 7.4 is not true for arbitrary bounded domains. 

8. Nikolskii-type inequalities for exponentials of logarithmic potentials on [ -  1, 1], on the unit 
circle and on bounded domains of C with C 2 boundary 

Nikolskii-type inequalities for exponentials of logarithmic potentials can be easily obtained 
from Theorem 6.1 on [ - 1 ,  1], from Theorem 6.3 on the unit circle, and from Theorem 7.1 on 
bounded domains of C with C 2 boundary. One can easily modify the proof of Theorem 5.2 in 
order to prove our theorems in this section. In [24, Theorems 3.1-3.3] we established the 
following three Nikolskii-type inequalities. 

Theorem 8.1. There is an absolute constant c18 > 0 such that 

I[ Ql~,c [[ Lp(-1,1)~ (c,8(1 + (qlz(C))2)) 1/q-1/p [I Q~,,c 11Lq(-1,1), 

for every Iz ~.~', c ~ R and 0 < q < p <<. oo. 

(8.1) 

Theorem 8.2. There is an absolute constant c19 > 0 such that 

II Q~,,c(e i') II L,(-,~,~) ~ (C19(1 + qlz(C))) 1/q-1/p II Q~,,c(e it) II Lq(-,,,,~), 

for every lz ~.~", c ~ R and 0 < q < p <~ oo. 

(8.2) 
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Theorem 8_3. Let  12 c C 
C2o = C2o(12) > 0 depending only on 12 such that 

IIQ,,cl lz ,(a)  <~ (c20(1 + (ql.t~(C))2)) 1/q-1/p 

for  every Iz ~.dt', c ~ R and 0 < q < p <~ ~. 
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be a bounded domain with C 2 boundary. There exists a constant 

II Q+,,c [I cq(o), (8.3) 

We remark that Theorem 8.1 is an extension of Theorem 5.1, which states the same as 
Theorem 8.1 when the support o f /z  is a finite set. Similarly, one can easily check that Theorem 
8.2 extends the results of Theorem 5.2, which states the same as Theorem 8.2 when the support 
of ~ is a finite set (see the comment right after Theorem 7.3). Note that while a direct 
extension of Theorems 5.1 or 5.2 to exponentials of logarithmic potentials seems to be rather 
difficult, it is quite obvious via the corresponding extended Remez-type inequality. 

9. Bernstein- and Markov-type inequalities for generalized nonnegative algebraic and trigono- 
metric polynomials 

Bernstein's inequality [40, pp. 39-41] asserts that 

max [ p ' ( t ) l < ~ n  max I p ( t ) [ ,  (9.1) 
--~r~<t~<~v --~<t~<~r 

for every p ~ 3-n r (or p ~ J-if). The corresponding algebraic result [40, pp. 39-41] is known as 
Markov's inequality and states that 

max [ p ' ( x ) l < n  2 max I p ( x ) l ,  (9.2) 
- l~<x~<l  - l~<x~<l  

for all p ~ .~ r  (or p ~ . ~ ) .  The Chebyshev polynomials sin(nx + a ) ~  J"ff and T,,(x)= 
cos(n arccos x ) ~  show that inequalities (9.1) and (9.2) are sharp. By the substitution 
x = cos t, (9.1) yields 

n 

max I p ( x )  I, (9.3) I p ' ( y ) l  ~< ~ _ y 2  -l~<x<l 

for every p ~ and - 1 < y < 1. Bernstein- and Markov-type inequalities in weighted spaces 
and in Lp-norm play a significant role in proving inverse theorems of approximation and have 
their own intrinsic interest. To extend inequalities (9.1)-(9.3) to generalized nonnegative 
algebraic and trigonometric polynomials, we need some assumptions to insure the differentia- 
bility. Such a natural assumption is to have rj >1 1, j = 1, 2 , . . . ,  k ,  in the representation (2.11) of 
an f ~  I GCTPIN or in the representation (2.7) of an f ~ I GCAP I N. Under  this assumption 
the one-sided derivatives exist, they are finite, and their absolute values are equal to each other 
a t  every real number. In the rest of this section and in Sections 10 and 11, f '  means either the 
left- or the right-hand side derivative of f with respect to the real variable, which makes 
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I f ' ( t ) [  be well-defined for every t ~ g~, f ~  [GCTPIN and f e  [GCAPIN. Bernstein's in- 
equality is extended to I GCTP I N in [18, Theorem 3.1]. 

Theorem 9.1. There is an absolute constant C21 > 0 such that 

max [ f ' ( t ) l  < c e l N  max f ( t ) ,  

for every f E I GCTP I N of  the form (2.11) with each rj >t 1, j = 1, 2 , . . . ,  k. 

Using the substitution x = cos t in Theorem 9.1, we immediately obtain [18, Theorem 3.2]. 

Theorem 9.2. We have 

c2]N 
max ), [ f ' ( Y ) [  ~< ~ _ y 2  _l~<x<<l f ( x  - 1  < y  < 1, 

for every f ~ I GCAP I N o f  the form (2.7) with each r~ >t 1, j = 1, 2 , . . . ,  k. 

Our next result [18, Theorem 3.3] extends Markov's inequality to [GCAP [ N. 

Theorem 9.3. There is an absolute constant C22 > 0 such that 

max I f ' (x) l<~CE2 N2 max f ( x ) ,  
- l<x~<l  - l < x < l  

for every f ~ [GCAP [ N o f  the form (2.7) with each rj >t 1, j = 1, 2 , . . . ,  k. 

Theorems 9.1-9.3 were proved in [18] based on Remez-type inequalities. How can the 
Remez-type inequalities of Section 4 be used to obtain the above theorems? It is far from 
obvious. 

Sketch of the proof of Theorem 9.1. Step 1. It is sufficient to prove the theorem in the case 
when f ~ [GCTP I N has only real zeros. This is shown by a variational method in [18, Lemmas 
4.8 and 4.9]. 

Step 2. If zj, j = 1, 2 , . . . ,  k, are distinct in the representation (2.11) of an f ~  IGCTP I N, 
then we say that  f has a zero at zy with multiplicity rj. A routine application of Rolle's 
Theorem and a simple calculation show that if f e [GCFPIN has only real zeros and each 
rj >/1 in its representat ion (2.11), then I f '  I e [GCTP ] N, I f '  [ has only real zeros, and at least 
one of any two adjacent zeros of I f '  I has multiplicity 1. 

Step 3. We state [18, Lemma 4.7], which is the heart of the proof. 

Lemma 9.4. Assume that g ~ [GCTP I N has ony real zeros, and at least one o f  any two adjacent 
zeros o f  g has multiplicity at least 1. Then, there is an absolute constant c23 > 0 and an interval 
I c ff~ such that m ( I )  >1 c23/N and 

g( ' r )>~e  -1 max g ( t ) ,  f o r e v e r y , e I .  (9.4) 
--~r~t~r 
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To prove this lemma we applied the Remez-type inequality of Theorem 4.4. Observe that 
Theorem 4.4 guarantees an absolute constant c24 > 0 such that 

C24 
(9.5) m(E)>~ N '  

where 

E := {,r E [ - w ,  "rr)" g( ' r )>~e -1 max g(t)).  (9.6) 

Since E is not necessarily an interval, (9.5) may seem to be far from the conclusion of Lemma 
9.4. However, by exploiting the additional pieces of information on g, we showed in [18] that E 
contains an interval I such that re(I)>1 c23/N. This needs a few additional tricks, and the 
Remez-type inequality of (9.5) is the central piece of the proof. 

Step 4. Because of the periodicity of f and Step 1, it is sufficient to prove that 

[ f ' ( ' r r ) l  <~c21N max f ( t ) ,  (9.7) 

for every f ~  IGCTP IN of the form (2.11) with each rj >t 1 and zj ~ R, j = 1, 2 , . . . ,  k. By Step 
2, g := I f '  I ~ I GCTP I N satisfies the assumption of Lemma 9.4. Denote the endpoints of the 
interval I of Lemma 9.4 by a and b. From Lemma 9.4 we deduce 

eN b e ~ blf ' ( t) ldt<~ max I f ' ( / ) [  < ~ - -  I f ' ( t ) l d t  
-~r<t<rr b a c23 

<~c21Nlf(b)- f (a) l  <.c21N max f ( t ) ,  
- -  ~r ~< t <~ ~r 

which proves the theorem. [] 

Another much more obvious application of the Remez-type inequalities of Section 4 is to 
obtain Theorem 9.3 from Theorem 9.2. 

Proof of Theorem 9.3. As a corollary of Theorem 4.2 we have 

max l f ( x  ) ~< e max f (x ) ,  (9.8) 
- l < x <  - ,~<x<a  

for every f ~  IGCAP [ N, where a = 1 - (5N) -2 and N>~ 1. Combining this with Theorem 9.2, 
we deduce that 

c21N 
max If'(x)l< _ max f (x)<Z5ec21N 2 max f (x) ,  (9.9) 

-~<x<,~ (5N) 1 - l a x < l  -a<~x~a 

for every f ~ [GCAP I N of the form (2.7) with each rj >1 1, j = 1, 2,. . . ,  k, and the result follows 
by a linear transformation. [] 

The sharp Lp version of Bernstein's inequality was first established in [65, Vol. II, (3.17), 
p a l ]  for p >t 1. It states 

'17 "I1" f [Q ' ( t ) [  p d t < ~ n P f  [Q(t)]  p dt ,  (9.10) 
- - ' I T  -- '11" 
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for every Q ~ ff-r. For 0 < p  < 1, first Klein [35] and later Osval'd [50] proved (9.10) with a 
multiplicative constant c(p). In [46] Nevai proved that c ( p ) =  8 /p  is a possible choice. 
Subsequently, MAt6 and Nevai [44] showed the validity of (9.10) with a multiplicative absolute 
constant, and then Arestov [1] proved (9.10) (with the best constant 1) for every 0 < p  < 1. 
Recently von Golitschek and Lorentz [64] found a very elegant proof of Arestov's Theorem. 

Markov's inequality in Lp states 

f'_ IQ'(x)l" dx < c +ln2p[ 1 IQ(x)l" dx,  (9.11) 
1 "-1 

for every Q ~,~r, where c25 > 0 is an absolute constant. This can be deduced from the above 
Lp Bernstein-type inequalities, by the substitution x = cos t and by using Nikolskii-type 
inequalities (cf. [41,44]). To find the best constant in (9.11) is still an open problem. The 
following extensions of Bernstein's and Markov's inequalities in L.,  0 <p  < 0% to generalized 
nonnegative polynomials were obtained in [25, Theorems 10 and 11]. 

Theorem 9.5. Let X be a nonnegative, nondecreasing and convex function defined on [0, ~) and 
let 0 < p ~ 1. There is an absolute constant C26 > 0 such that 

L ~  X ~ dt ~ X(C26(f(t)) p) dt, 

for every f ~ IGCTP I N of  the form (2.11) with each rj >_. 1, and for every 0 <p <~ 1. 

Corollary 9.6. We have 
'IT 'IT 

f_ I f ' ( t ) l  q dt < c ~ l N q f  ( f ( t ) )  q dt,  
"IT --"IT 

for every f ~ I GCTP I N of the form (2.11) with each rj >1 1, and for every 0 < q < ~. 

To see this, just apply Theorem 9.5 with p -- q and X(x) = x for 0 < q ~< 1, and with p = 1 
and g ( x ) = x  q f o r l < q < ~ .  

Theorem 9.7. There is an absolute constant C27 > 0 such that 

f-" 11 f ' ( x )  I" dx <...c~;1N2pf11(f(x))'_ dx,  

for every f ~ I GCAPIN of the form (2.7) with each rj >1 1, 
O < p < ~ .  

j = l ,  2 , . . . , k ,  and for every 

In the proof of Theorems 9.5 and 9.7 we used the L® Bernstein- and Markov-type 
inequalities of Theorems 9.1-9.3, the Lp Remez-type inequalities of Section 4 (Theorems 4.5 
and 4.6) and the Nikolskii-type inequalities of Section 5 (Theorems 5.1 and 5.2). The nice 
method, developed in [44], to prove Bernstein-type inequalities for ordinary trigonometric 
polynomials in Lp, 0 < p  < 0% is presented in the next section, where some weighted analogues 
of Theorems 9.5 and 9.7 are discussed. 
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I0. Weighted Bernstein- and Markov-type inequalities for generalized nonnegative polynomials 

In this section weighted Markov- and Bernstein-type inequalities are established for general- 
ized nonnegative polynomials and generalized nonnegative polynomial weight functions. The 
magnitude of 

max_l<.x<_l I f ' ( x ) w ( x ) l  
max_~<x<~ [ f ( x ) w ( x ) [  ' (10.1) 

[ f ' ( y ) w ( y )  [ 
- 1 < y  ~< 1, (10.2) 

max_l~x,  1 1 f ( x ) w ( x ) [ '  

and their corresponding Lp analogues, respectively, for polynomials f ~ r  and generalized 
Jacobi weight functions 

k 
W ( Z )  = H [ Z - - Z j [  rj ,  Z j ~ C ,  - - l < r j < o e ,  j = l ,  2 , . . . , k ,  (10.3) 

j=l 

was examined by a number of authors [12,34,36,41,45,47,52]; however, a multiplicative constant 
depending on the weight function appears in these estimates. In [23] the magnitude of (10.1) 
and (10.2) was examined, when both f and w are generalized nonnegative polynomials. In 
these inequalities only the generalized degree of f ,  the generalized degree of w and a 
multiplicative absolute constant appear. The results are new and (in a sense) sharp, even when 
f is an ordinary polynomial. 

Our  motivation was to find tools to examine systems of orthogonal polynomials simultane- 
ously, associated with generalized Jacobi, or at least generalized nonnegative polynomial weight 
functions of degree at most F. In Section 12 we give sharp estimates in this spirit for the 
Christoffel function on [ - 1 ,  1] and for the distances of the consecutive zeros of orthogonal 
polynomials, associated with generalized nonnegative polynomial weight functions of degree at 
most F. 

The following weighted Bernstein- and Markov-type inequalities are proved in [23, Theorems 
1-31. 

Theorem 10.1. There is an absolute constant C28 > 0 such that 

max I f ' ( t ) w ( t ) l c 2 8 ( F +  1 ) ( N + F )  max f ( t ) w ( t ) ,  
-- ~ <~ t <<. ~ -- ~T <~ t <~ ~r 

for every f ~  [GCTP[N of the form (2.11) with each rj>~ 1, j = 1, 2 , . . . , k ,  
w ~ I GCTP I r. 

and for every 

By the substitution x = cos t, from Theorem 10.1 we easily obtain the following theorem. 

Theorem 10.2. We have 

[ f ' ( y ) w ( y ) ]  < 
c28(r + 1)(N + F)  

max f ( x ) w ( x ) ,  
fl _ y 2  -l~<x~<l 
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for every f ~ I G C A P l u  of the form (2.7) with each r i >~ 1, j = 1, 2 , . . . ,  k, and for every 
w E I GCAP I r. 

The weighted Markov-type inequality is given by the following theorem. 

Theorem 10.3. There is an absolute constant C29 > 0 such that 

max I f ' ( x ) w ( x ) l  <~c29(N+F) 2 max f ( x ) w ( x ) ,  
- l < x < l  -l~<x<l 

for every f ~ I GCAPIN of the form (2.7) with each r~ >1 1, j = 1, 
w ~ I GCAP I r. 

, . . . , k ,  and for every 

I conjecture that in the inequalities of Theorems 10.1 and 10.2 the multiplicative factor F + 1 
can be dropped. If this conjecture were true, we would obtain Theorem 10.3 as a simple 
consequence of Theorem 10.2, using the Remez-type inequality of Theorem 4.2 (see the proof 
of Theorem 9.3). Since this conjecture is not settled yet, Theorem 10.3 is much more than a 
simple consequence of the corresponding trigonometric result of Theorem 10.2. 

In the rather lengthy proofs of Theorems 10.1 and 10.3 in [23], the Remez-type inequalities 
of Section 4 play a central role again. 

Now we establish the Lp, 0 < p  < oo, analogues of Theorems 10.1 and 10.3. The rest of this 
section has never been published before. 

Theorem 10.4. Let X be a nonnegative, nondecreasing and convex function defined on [0, ~). 
There is an absolute constant c3o >~ 1 such that 

f x~ ( I f ' ( t ) l v w ( t )  ) dt <~ f x . - 7  ( s  + r) (r/p + 1) p - - ~  (c3°( f ( t ) )pw(t) )dt '  

foreveryf~ IGCTP I s of the form (2.11) with each rj >/1, j = 1, 2 , . . . ,  k, forevery w ~ IGCTP I r 
and for every 0 < p <~ 1. 

Similarly to Corollary 9.6, from the above theorem we can easily deduce the following 
corollary. 

Corollary 10.5. Let c30 be the same as in Theorem 10.4. We have 

; ( )  I f ' ( t ) l V w ( t ) d t < c ~ ( N + F )  v F -.~ P + 1 ( f ( t ) )Pw( t )  dt, 

for every f ~ IGCTP I N of the form (2.11) with each rj >1 1, j = 1, 2 , . . . ,  k, for every w ~ IGCTP I r 
and for every 0 < p < oo. 

Corollary 10.5 plays a central role in the proof of the following theorem. 

Theorem 10.6. There is an absolute constant C31 > 0 such that 

1 
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for every f ~ I GCAP [ N of the form (2.7) with each rj >1 1, j = 1, 2, . . . ,  k, for every w ~ I GCAP I r 
and for every 0 < p < ~. 

The proof of these quite general Lp Bernstein- and Markov-type inequalities illustrates well 
how to use our inequalities for generalized nonnegative polynomials, as pieces of the proof of 
some other inequalities. We present the proof of Theorems 10.4 and 10.6 in details. 

Proof of Theorem 11}.4. The inequality of Theorem 10.4 is obvious if N = 0; hence in the sequel 
we assume that N>~ 1 (if f ~  IGCTPIN is of the form (2.11) with each rj>~ 1, then N > 0  
implies N >t 1). Let n := IN + F], 0 < p  ~< 1, m := 2Jp, Dn(t) := lET= _, eiJt I, let g ~ I GCTP I N 
be of the form (2.11) with each rj/> 1, j = 1, 2 , . . . ,  k, and let v ~ IGCTP I t .  Let 

and 

G :=gD~ ~ IGCTP I N+2n/p (10.4) 

F : =  gO2u I/p ~ IGCTPI N + 2 n / p + r / p .  (10.5) 
Applying the Nikolskii-type inequality of Theorem 5.2 to F defined by (10.5), we obtain 

max (g(~-) (Dn( ' r ) )m(u(r) ) l /P)  p 

~ C  9 l + p  N + - - + - -  f (g(O)(D,(O)) (v(O)) 1/,) dO 
P P -~ 

< c32(N + r ) f  = (g(O)(On(O))m)Pv(o) dO 
- - ' I T  

= c32(N + r)f" (g(O))Pv(o)(D,(O)) 2 dO, (10.6) 
- - " W  

where c32 > 0 is a suitable absolute constant. Applying the weighted L= Bernstein-type 
inequality of Theorem 10.1 to G defined by (10.4) and v 1/p ~ I GCTP t r /p ,  we obtain for every 

r)(r) + P --p + 1 -~<,~<~max G(r ) (v ( r ) )  1/p (10.7) 

t ~ R that  

,G'( t ) ' (v( t ) ) l /P <~c28(N(1+ 2 )  

Combining (10.6) and (10.7) we conclude 

I g ' ( t ) (Dn( t ) )  m + m g ( t ) D ~ ( t ) ( D n ( t ) ) m - l l p v ( t )  

( g(~'))PV(~')( Dn(T)) 2 ( c 2 s ( N  + r + - + max  
p -~r<r<~ 

F )P ~ p 
-- + 1 c 3 2 ( N + r ) f  (g(o)) U(O)(Dn(O)) 2 d0, ~< c33(N-t-/-')P P (10.8) 

with some absolute constant c33 > 0. Putting t = 0 in (10.8) and noticing that 

D'(O)=O and (Dn(O))m=(2n+ I)Z/P>~(N+F) :/p, (10.9) 



T. Erddlyi / Remez-type inequalities 193 

we can deduce that 

Ig'(O)l"v(O)<c34(N+F) p 
P 11. _ 

+ 1 L(g(O))Pv(O)(2~) 1(2n + 1)-I(D,,(O)) 2 dO, 

(10.10) 

where c34 = C32C33 :> 0 is an absolute constant. Now let f ~  [GCTP[ N be of the form (2.11) 
with each r; >i 1, j = 1, 2 , . . . ,  k, and let w ~ [GCTP [ r. Applying (10.10) to g(z) =f(z + t) and 
v(~') = w(~- + t), we obtain 

[f'(t)lPw(t) 

<c34(N+F)" + 1 _ (f(o))Pw(O)(2~)-l(2n+ 1)-l(D,,(O-t)) 2 

Hence, 

dO. 

(10.11) 

(N + r l " ( r / p  + 1)" < c34(f(O))Pw(O)(2"tr)  1(2n + l ) - l ( D n ( O  - t))2 dO. 

(10.12) 

Observe that 

f; .  (2rr)- l (En + 1)-l(Dn(O-t)) 2 d 0 =  1; (10.13) 
IT 

therefore (10.12), together with the Jensen inequality, yields 

X (N + r)'(r/p + 1)" 

F < X(c34(f(O))"w(O))(2,rr)-l(2n + 1)-l(D,,(O-t)) 2 dO. (10.14) 

Integrating both sides of (10.14) with respect to t, and using Fubini's Theorem and (10.13), we 
get the theorem. [] 

Proof of Theorem 10.6. We may assume that N >I 1 as in t h e  proof of Theorem 10.4. We 
distinguish two cases. 

Case 1: p >1 1. Let f ~ I GCAP I N be of the form (2.7) with each r i >1 1, j = 1, 2 , . . . ,  k, and let 
w ~ IGCAP [ r. Then g(t) :=f(cos  t) ~ [GCTP [ N is of the form (2.11) with each r; >/1, j = 
1, 2 , . . . ,  k, and v(t) = w(cos t) ~ I G C T P  t r. Applying Corollary 10.5 to g and v, we obtain 

f~  ]g'(t)J'v(t) dt < c ~ I ( N + F ) "  + 1 L (g(t))"v(t) dt. (10.15) 
- - ' I t  "IT 

Let 

and 
g : = ( N + F + 8 )  -~, 8 -=cos  g (10.16) 

(10.17) 
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Applying the Lp Remez-type inequality of Theorem 4.6 to gPv ~ I GCTP [ pN+F with s := 43  ~< 
4(N + F + 8)-  ~ < ½, we obtain 

fg( t )Pv( t )  dt ~ 1 + exp N + F +  8 (g(t))Pv(t) dt 

<~ c~s f A(g(t))Pv(t ) dt, 

with a suitable absolute constant  c35 > 0. Combining (10.15) and (10.18), we conclude 

fAlg'(t)lPv(t)dt<~c~6(N+F)p(F 

with a suitable absolute constant  c36 > O. Using and 
definitions (10.16) and (10.17), we deduce 

(10.18) 

p 

fA(g(t))Pv(t) dt, (10.19) 

the substitution x = cos t recalling 

ff -x2) dx 

p(F )P 8(f(x))Pw( ~c~6(N+F ) p +  l L x)(1-x2) -~/2 dx. (10.20) 

Hence, by (10.16) and p >/1, we obtain 

[ f'(x)lPw(x) dx 
6 

~< (sin g)l-p f~ I f ' ( x ) [  PW(X)(1 --X2) (p-1)/2 dx 

- 

- - + 1  _x2) 1/2 dt ~< (sin g)I-Pc~6 (N + F) p P 

<~(sing)'-P(sing)-lc~6(N+F)P( r )P~ P + 1 f_,(f(x))Pw(x)dx 

 c 7(N+r)2p(r )Pfs(f( -- + 1 x))Pw(x) dx, (10.21) 
p 

with a suitable absolute constant  c37 > O, which gives the theorem after  a l inear  transformation. 
Case 2 : 0  < p  ~< 1. Let f ~ I G C A P  [ N be of the form (2.7) with each r~ >~ 1, j = 1, 2 , . . . ,  k, 

and let w ~ [GCAP I r.  Since 0 < p  ~< 1, we have 

( I f '  (cos t ) [ [sin t [ a/p + a ) Pw (cos t ) d t 

~< f A [ ( f ( c o s / )  [sin , 11/P)'lPw(cos t ) d t  

"k- fA( f(cos t)p -1 Isin t l 1/u-11cos / l)Pw(cos t ) d t ,  (10.22) 
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for every measurable subset of [-,n-, rr]. Applying Corollary 10.5 to 

g(t) :=f(cos t) Isin tl 1/p ~ IGCTP[N+I/p 
(which is of the form (2.11) with each rj >/1, j = 1, 2, . . . ,  k) and 

v(t),= w(cos t), 

we obtain 
1/p" r ,p 

(f(cos t)lsin tl )1 w(cos t) dt 
- - T g  

( 1 
~<c30 N + F +  - 

P 
Applying the Lp Remez-type 

(f(cos t)lsin tll/P)Pw(cos t )d t  
- - ' i T  

~ l + e x p  N + F + 8  f(cos 

- -  + 1 (f(cos /)lsin tI1/P)Pw(cos t) dt. (10.25) 
P -at 

inequality of Theorem 4.6 to gPv ~ I GCTP I pN+r+ 1, we deduce 

:~-- C30C38 > 0 is a 

fA(f'(cos t) Isin 

<~ c38f4(f(cos t)) p Isin t I w(cos t) dt, (10.26) 
H 

where A is the same as in Case 1, and c38 > 0 is a suitable absolute constant. Combining 
(10.25) and (10.26), we get 

w h e r e  c39 

fA (f(c°s t)[sin t l l/p)' Pw(cos t) dt 

<c39 N + F + -  +1 ( f ( )  ) ( ) . _ c o s t l s i n t l l / P P w c o s t d t ,  
p 

suitable absolute constant. This, together with (10.22) implies 

(10.27) 

tll/p+l)Pw(cos t) dt 

( ~<c39 N + F + - - + 1  f (  ) ) ( ) _.cost Isin t l l/p,Pw.cos t dt 
P 

+ fA ( f (c°s t) p - '  I sin t I' / p - '  I cos t I ) Pw (cos t) d t. 

S u b s t i t u t i n g  x = c o s  t ,  w e  o b t a i n  

f~_sI f ' ( x )  lPw(x)(1-x2) p/: dx 

( 1 ) ' ( F  )P 8 ( f (  x 
~<C39 N + F + - -  + 1 f ))Pw(x)dx p 

+p-P ( f ( x ) ) 'w (x ) (1 -x2 )  -'/2 dx, 

(10.28) 

(10.29) 

(10.23) 

(10.24) 

t) Isin tll/P)Pw(cos t) dt 
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where ~ is defined by (10.16). Hence by 0 < p  ~< 1, we deduce 

f l_ f ' ( x ) I  Pw(x) dx <~ (sin g)-p fa~ -a [ f'(x)lPw(x)(1--x2)P/2 dx  

~<(sin 3) c39 N + F + - -  + 1  f(x))Pw(x)dx 
p 

+p-P(sin g)-P(sin i~) -p f~_(f(x))Pw(x) dx 

~c3,(N+r) p + l  f (f(x));w(x)dx, 

and the desired inequality follows from this by a linear transformation. [] 

(10.30) 

11. Remez-, Nikolskii- and Markov-type inequalities for generalized nonnegative algebraic 
polynomials with restricted zeros 

In this section sharp Remez-, Nikolskii- and Markov-type inequalities are established for 
generalized nonnegative polynomials of the form (2.7) under the assumptions 

k 

Y'~rj<~N and E rj<~K, O<~K<~N. (11.1) 
j = l  {j:lzjl <1} 

The Remez- and Nikolskii-type inequalities are new even for ordinary polynomials of degree at 
most n having at most k, 0 ~< k ~< n, zeros in the open unit disk. When K = N, the results of this 
section contain the corresponding inequalities from Sections 4, 5 and 9 for all f ~ I GCAP I N. 

Denote by ~ , k ,  0 ~< k ~< n, the set of all p ~.~,, which have at most k zeros (by counting 
multiplicities) in the open unit disk. Let I GCAP [ N.r, 0 ~< K < N, be the set of all f ~ [GCAP [ N 
of the form (2.7) for which 

E rj<~K. (11.2) 
{j:[ zj[ <I} 

To establish a sharp Remez-type inequality for the classes ~r,k, we need the weighted 
Chebyshev polynomials T,,,k of the form 

n-k  Tn,,(x ) = (x + 1) Q(x), 
satisfying the properties 

Q ~ ,  k = 0 , 1 , . . . , n ,  

T,,,, equioscillates k + 1 times on [ - 1 ,  1], 

max IZ,,,k(x)l = 1 
- l ~ < x < l  

(11.3) 

and 

(11.4) 

(11.5) 

T,,.,(1) = 1. (11.6) 
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More precisely, (11.4) and (11.5) mean that T,,,k achieves the values 

+ max IZ,,,k(X)l = +1 
- l < x < l  

k + 1 times on [ -  1, 1] with alternating sign. The existence and uniqueness of such weighted 
Chebyshev polynomials T,,,k are well known from the theory of weighted Chebyshev approxima- 
tion. Explicit formulae for Tn, k seem to be known only when k = 0, k = n - 1 or k = n. In [6, 
Theorem 3.1] we proved the following sharp Remez-type inequality for 9~, k. 

Theorem 11.1. Given 0 ~ k < n integers and 0 < s < 2, we have 

max I p ( x ) l  <<.T.,k[ 2 + s )  
= ' 

for every p ~],~,k satisfying 

m ( { x ~ [ - 1 , 1 ] ' l p ( x )  < 1}) >_- 2 - s .  

Equality in (11.7) holds if and only if 

+ 2 x  s ) 
p ( x ) =  +_T,,,k 2---s + 2 - s  " 

(11.7) 

( l l .S)  

(11.9) 

The case k = n (when there are no restrictions for the zeros of Theorem 11.1) gives the 
Remez inequality (Theorem 3.1). When k = 0, Theorem 3.1 yields [17, Corollary]. 

By estimating Tn,k((2 + s ) / ( 2 -  s)) (which is by no means straightforward), we gave a sharp 
numerical version of Theorem 11.1 and we extended this to the classes IGCAPIN.K [6, 
Theorem 3.2]. 

Theorem 11.2. Given 0 < s <~ 1 and 0 < K <<. N, there is an absolute constant 0 < C4o < 9 such 
that 

max f ( x )  < e x p ( c 4 o ( ~  + Ns)),  (11.10) 
- l < x < l  

for every f ~ I GCAP I N,r satisfying 

m({x ~ [ -  1, 1]" f ( x )  < 1}) >t 2 - s. (11.11) 

We did not discuss the case 1 < s < 2, which does not seem to be as important as the case 
0 < s ~< 1 in applications. 

As a consequence of Theorem 11.2, we proved the following Nikolskii-type inequalities for 
I GCAP I N,,~ [6, Theorem 3.3] similarly to the proof of Theorem 5.2. 

Theorem 11.3. Let X be a nonnegative, nondecreasing function defined on [0, ~) such that 
X(x) /x  is nonincreasing. Given 0 < K < N, 0 < q <p < ~, there is an absolute constant 0 < c41 ~< 
81e 2 such that 

II x(f)II L,<-la)< (c41 max{l, q2NK, qN}) 1/q-1/p II x(f)II Lq(-1,1), (11.12) 

for every f ~ [GCAP [ N,K satisfying (11.11). 
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The case K = N in Theorem 11.3 gives Theorem 5.1, as a special case. If qK >/1, then the 
Nikolskii factor in the unrestricted case (K = N)  is like (c~41 qN) 2/q-2/p, while in our restricted 

cases it improves to (c~41qNf-N--g) 2/q-2/p. 
Theorem 11.2 plays a significant role in the proof of a sharp Markov-type inequality [6, 

Theorem 3.4] for IGCAP I N,K, as well. However, unlike Theorem 11.3, our next theorem is far 
from being a simple consequence of Theorem 11.2. 

T h e o r e m  11.4. Given 0 ~ K <~ N, there is an absolute constant C42 > 0 such that 

max I f ' ( x ) l  <~c42N(K+ 1) max f ( x ) ,  
- l ~ < x ~ < l  - l ~ < x ~ l  

for every f • I GCAP [ u,r of  the form (2.7) with each rj >1 1, j = 1, 2 , . . . ,  k. 

(11.13) 

The condition that each rj. >i 1, j" = 1, 2 , . . . ,  k, is needed to insure that I f ' ( z j )  I < m if zj ~ 
and f ( z  i) = 0. Theorem 11.4 is a generalization of a number of earlier results. Inequality 

• r (11.13) is proved in [2] for polynomials f ~,~,k, 0 ~< k ~<n, having only real zeros. Another 
proof of (11.13) is given in [19, Theorem 1] for all f ~n~,k, 0 ~< k ~< n. Less general or less sharp 
results can be found in [30,39,43,54,57,58]. The unrestricted generalized polynomial case 
(K = N)  of Theorem 11.4 extends the results of Theorem 9.3. Up to the constant c41, Theorem 
11.4 is sharp even for the class ~ . k  [57, Example 1]. 

To give a picture on the methods used to prove inequalities for (generalized) polynomials 
with restricted zeros would be the subject to another survey paper. Here we mention only one 
of the most important tools, the idea of Lorentz polynomials of the form 

n 

p ( x )  • aj(1 + x)J(1 "-J = - x )  , with all a~ >/0 or with all aj ~< 0. (11.14) 
j=0  

By an observation of Lorentz, every p ~ , [ , 0  can be written in the above form. In many cases 
the information on the sign of che coefficients in the above representation can be exploited in a 
straightforward way, while the information on the position of the zeros of p given by p ~-~,[,0 
may seem difficult to handle. As an example, we present a lemma with its proof, which plays an 
important role in the proof of Theorem 11.1. 

L e m m a  11.5. Let 0 <~ k <~ n be fixed integers and let 0 < s < 2 and 0 <~ A be fixed real numbers. I f  
I p(1) l <~A holds for every p • ,~rk  of the form p(x)  = (1 +x)" -kQ(x )  with Q • ~  satisfying 

m({x • [ -  1, 1]: I p ( x ) l  -<< 1}) > / 2 - s ,  (11.15) 

then [ p(1) l < A  holds for every p •~r . k  satisfying (11.15). 

Proof. Let p •~nrk satisfy (11.15) and p (1 )~  0. Then there are polynomials w •'~n-k,O and 
Q •  r _-- --  "~n--k,0 a n d  it is ~k  such that p wQ and w(x)>lO for every 1~<x~<1. Since w •  r 
nonnegative on [ -  1, 1], it is of the form 

n - k  

w ( x )  = ~ aj(1 + x ) J ( 1 - x )  " -k- j ,  with all ai~>0. (11.16) 
j = 0  
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Using the nonnegativity of the coefficients a j, we obtain 

I p ( x ) l  >/ lao(1 + x ) " - k a ( x ) l ,  

for every -1~<x~<1.  Hence (11.15) implies that 
(11.15), and the assumption of the lemma yields 
proved. [] 

(11.17) 

q(x) "= ao(1 + x) n-kQ(x) e ~ , k  satisfies 
I q(1)l = [p(1)] ~<A, thus the lemma is 

A Bernstein-type analogue of Theorem 11.4 is established in [19, Theorem 3] for the classes 
g~,k, k = 0 ,  1 , . . . , n ,  n =0 ,  1, . . . .  Very recently with P. Borwein [8] we have found 
the "right" Bernstein-type analogue of Theorem 11.4 for the classes .~r,j,, k = 0, 1 , . . . ,  n, n -- 
0, 1, . . . .  Markov- and Bernstein-type inequalities for other classes of constrained polynomials 
may be found in, e.g., [13,15,16,28]. The close relation between the location of the zeros of a 
polynomial p and the smallest positive integer d for which p can be written as 

d 

p(x)  = ~ aj(1 - x ) i ( 1  +x) a-j, with all aj >f 0 or with all a i ~< 0, (11.18) 
j = 0  

and the corresponding trigonometric results are discussed in [21,27,29]. 

12. Generalized Jacobi weight functions, Christoffel functions, and zeros of orthogonal polyno- 
mials 

In this section we give various applications of the inequalities of the previous sections in the 
theory of orthogonal polynomials. 

Let a be a nonnegative, finite Borel measure on [ - 1 ,  1]. Given 0 < p  < % we define the 
Christoffel functions 

l lQ(t)l  p 
An(a, p ,  z ) : =  min f d~( , ) ,  (12.1) 

~.~r i a ( z ) l  p Q . - I  - 1  

and the generalized Christoffel functions 

inf f l  ( f ( t ) )  p d a ( t ) ,  
 k*n(O  , p,  Z):m f IGCAPIn-1 -1 ( f ( z ) )  p 

for z e C and n = 1, 2, . . . .  For M > 0 and - 1 ~< x < 1 we also introduce the functions 

and 

AM(X) := m a x { M - l l / 1 - x  2 , M -a} 

wM(x)= fl,_. 

(12.2) 

(12.3) 

w(t) dt, (12.4) 
I <aM(X) 

where we assume that w(t) is defined if I t - x  I < AM(X). 
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For g( >t 0) ~ La(0, 2rr), the Szeg6 function D(g,  z) is defined by 

( 1 f:,, l+ze -i° ) 
D ( g ,  z ) : = e x p  ~ log g(O) 1 - z  e - i °  dO , Izl  < 1. (12.5) 

The boundary value D(g,  e it) c a n  be defined as the nontangential limit of D(g,  z); this exists 
for almost every real t. It is important  to note that D(g,  z) ~ HZ( I z [ ~< 1) and I D(g,  e i t )  [ 2 ___ 

I g( t )  l holds for almost every real t. Other  properties of the Szeg5 function may be found in, 
e.g., [32, Chapter  V]. 

In [26, Theorems 2.1, 2.2, 3.1 and 3.2] we give sharp lower and upper bounds for the 
Christoffel functions and generalized Christoffel functions on [ - 1 ,  1] associated with general- 
ized Jacobi weight functions. The lower bounds are given by the following pair of theorems. 

Theorem 12.1. Given 0 <p  < ~, 0 <~F< ~, and n = 1, 2 , . . . ,  let M =  1 +p(n  - 1 ) / ( F + p  + 1). 
There exists an absolute constant C43 > 0 such  that 

rr+p+lu~ /~n(O~, p ,  X) <~43 , ,M(X), - 1 <~x <~ 1, 

for every measure a satisfying d a  = w dt  with w ~ I GCAP I r. 

Theorem 12.2. Let 0 < p < % 0 <~ F < % and n = 1, 2, . . . .  Let w = w ( T ) / w  (B), where W (T) and 
w (m belong to I GCAP I r ,  and let da  = w dt. Let d denote the number o f  different zeros of  w (m. 
There exists an absolute constant c44 > 0 such that 

,~,,(a, p,  x)<~cr+Pa+P+lWM(X), - 1  <~x <~ 1, 

with 

p ( n - l - d ) - F  
M-~- 

2 F + 4 + p  

whenever M >1 1, and 

p, x) <- c2'wM(x),  
with 

M =  
p ( n - 1 ) - r  

2 F +  4 

-1-<<x~<l ,  

whenever M > O. 

Since A*(a, p)  ~< Z,(a ,  p), we give lower bounds for a*(a ,  p)  instead of a,,(a, p). Our first 
theorem deals with the case d a ( t )  = w(t)  dt, where w ~ ]GCAP [ r,  and the second one gives a 
lower bound in a more general case, when the weight function w satisfies the Szeg6 condition 
of logarithmic integrability. 

Theorem 12.3. Given 0 <p  < ~, 0 ~ F < oo and 1 ~ n < ~, let M = 1 +p(n  - 1 ) / ( F  + p  + 1). 
There exists an absolute constant c45 > 0 such that 

a * ( a ,  p,  x )>Cr+ '+ lWM(X) ,  - l  < x  < 1, 

for every measure a satisfying da  = w dt  with w ~ IGCAP I r. 
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Theorem 12.4. Let w be a nonnegative integrable weight function on [ - 1 ,  1] such that 
log(w(cos • )) ~ Ll ( - ' r r ,  rr). Let 0 < p < 0% and let da  = w dt.  There exists an absolute constant 
c46 > 0 such that 

A*(O~, p, X)>~C46Zlp(n_l)+1(x)lO(w(cos "), r e i ° ) l : ,  - 1  < x  ~< 1, 

where r = ( p (n  - 1) + 1)/ (  p (n  - 1) + 3), x = Cos 0 and D(g,  z)  is the SzegJ function defined by 
(12.5). 

As an application of our Nikolskii-type inequalities of Section 5 for generalized nonnegative 
polynomials, we give an upper bound for A*(a, p, x) for every measure a such that d a  = w dt 
with w ~ [GCAP [ r and for every x ~ [ - 1 ,  1]. To eliminate some technical details, instead of 
Theorem 12.3 we prove the following theorem. 

Theorem 12.3". Given 0 < p < % 0 <~ F < oo and 1 <<. N ~ R, we have 

p ,  x )  >_. - -  
1 w(x)¢ ']  - x 2  

2c 9 p(n  - 1) + F + 1 ' 
- 1 < x < 1 ,  

for every measure a satisfying da  = w dt  with w ~ [GCAP [ r. Here c 9 is the same as in Theorem 
5.2. 

Proof. If f ~ I GCAP I ,,- 1, where 1 ~< N < oo, then g(O) := I f(cos 0) sin 01 ~ I GCTP I ,,, and 
thus, applying Theorem 5.2 to the function g with q = 1 and p = oo, after the substitution 
x = cos 0, we obtain 

n + 1 i f ( t )  
f ( x ) < ~ 2 c 9 v / ~ _ x  2 f d t ,  - l < x < l .  (12.6) 

Replacing f ~  [GCAP 1,_1 by fVw ~ [GCAP [ v(,-1)+r, 0 < p  < oo, we obtain 

( f ( x ) ) P w ( x ) < ~ 2 c 9 P ( n  - 1 ) + F +  l f_, ( f ( t ) ) P w ( t )  d t '  - l < x < l ,  
~f l - -x  2 1 

for every f ~ [GCAP [ ,,_ 1 
x*(a, p, x). [] 

(12.7) 

and w ~ I G C A P I r ,  and the theorem follows by the definition of 

To study the zeros of orthogonal polynomials, we use the standard notation. Let a be a 
nonnegative finite Borel measure with supp a c [ - 1, 1], and let {P,,}~=0 denote the correspond- 
ing orthonormal polynomials. In addition, {xj, n}7-1 denote the zeros of p ,  in decreasing order, 
x0, . := 1, x ,  + 1,, := - 1, and Oj,,, are defined by x j,,, = cos Oj,, for j = 0, 1 , . . . ,  n + 1. In [26, 
Theorem 4.1] sharp lower and upper bounds for the distance of consecutive zeros of orthogonal 
polynomials associated with generalized Jacobi weight functions with positive exponents (in 
other words generalized nonnegative polynomial weight functions) are established. The novelty 
of these estimates lies in the fact that our constants depend only on the degree of the weight 
function (and not on the weight function itself). 

R i b l i o t h e e k ~mm,~sse- ~ 
, CYJI-C~mm vom W'rsk~de 

,.~.. Amsterdern 
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Theorem 12.5. Let  0 <~ F < ~ and let d a  = w dt, where w ~ IGCAP [ r. There exist two absolute 
constants c47 > 0 and c48 > 0 such that the zeros o f  the corresponding orthogonal polynomials 

satisfy 

cr4v +1 
Oj.n--Oj_l,n<.~ - , j = l ,  2 , . . . , n + l ,  (12.8) 

n 

and 

Oj, n -- Oj-  1 ,n ~ 

C o r n = l ,  2, . . . .  

c4r8 +1 
~ ,  j =  2, 3 , . . . , n ,  (12.9) 

n 

We believe that (12.9) actually holds for j" = 1 and j = n + 1 as well, but, alas, our method 
does not seem to work in these cases. The latter would generalize [45, Theorem 3, p.367] and 
[47, Theorem 9.22, p.166]. To prove the upper estimate (12.8), we used the Markov-Stieltjes 
inequality [32, formula (5.4), p.29] for the Christoffel numbers A,,,,,, = A,(a, 2, X m , n )  , m = 

0, 1 , . . . ,  n + 1, and Theorem 12.1. To prove the lower estimate (12.9), our method was based on 
that of Erd6s and Tur~in (cf. [32, pp. 111, 112], [45, p.369] and [47, pp. 164, 165]) combined with 
the weighted Markov- and Bernstein-type inequalities of Section 10 (Theorems 10.1 and 10.2). 

The zero estimates of the following three theorems were given in [20, Theorems 6-8]. To 
formulate these, we use the notation introduced in Section 5, right after the proof of Theorem 
5.2. 

Theorem 12.6. Let  0 < a < 1, p = 2 / a  - 2, da  = w dt  and log-(w(t)) ~ WLp(  - 1, 1). There is a 
constant c(a, K )  depending only on a, K = K(log-(w)) (see (5.12)) and II w II L,( - 1, 1) such that 

Oj, , ,-Oj_l, , ,<~c(a, K ) n  a - l ,  j = l ,  2 , . . . , n + l .  

Theorem 12.7. Let  0 < a < 1, p = 1 / a  - 1, da  = w dt  and log-(w(cos 0)) ~ WLp( - r r ,  "rr). 
There is a constant c(a,  K )  depending only on a, K = K ( l o g - w ( c o s  0)) (see (5.12)) and 
II w II L,~-x,a) such that 

Oj,n-Oj_l,n~C(a,g)n a-l, j = l , 2 , . . . , n +  1. 

If a = ½, then p = 1 and Theorem 12.7 gives an upper bound for the distance of the 
consecutive zeros of orthogonal polynomials associated with weight functions from the Szeg6 
class. This special case is proved in [47, pp. 157, 158] for x j, n instead of Oj, n. 

The following theorem is due to Erd6s and Turin  [59, pp. 113,114] when w- 1 ~ La( - 1, 1). A 
generalization, when w-" ~ L~( - 1, 1) for some • > 0, is established in [47, p.158], but with xj,n 
instead of 0j,,,. 

Theorem 12.8. Let  w - "  ~ WLI( - 1, 1) for  some • > 0 and let da  = w dt .  There is a constant 
c(• ,  K )  depending only on e, K = K ( w - ' )  (see (5.12)) and II w II ,,<-a,1) such that 

log n 
Oj,n-Oj_l,n<C(•,K)~, j =  l, 2 , . . . , n  + l ,  n>_.2. 

n 
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We give the short proof of Theorems 12.6-12.8 from [20], where a method of Lengyel [59, 
pp. 112-115] is improved. Our improvement is based on the Nikolskii-type inequalities of 
Theorems 5.3-5.5. 

1 Proof of Theorems 12.6-12.8. Let 1 < j  ~< n + 1 be a fixed integer and let 3/= ~(0j, n + 0 r_ 1,n ). 
We define p( x ) --- p( cos 0) by 

)2m (sin(aN,  O,, )2m 
2 p ( x ) =  Ns in (½(3 /+0) )  + N s i n ( ½ ( 3 / - 0 ) )  ' (12.10) 

where N and m are certain positive integers. Then p ~ r ( N _ l )  (see [59, 6.11.3]). By [59, 6.11] 
we have 

P(xk,.) <~ (N sin(¼(Oj.-Oj-l,.))) 
so by the Gaussian quadrature formula, 

-2m 
, k =  1, 2 , . . . , n ,  (12.11) 

fllP(X)W(X ) dx <~ (N sin(¼(0j, ,-  Oj_l,,,)))-2mfX_lW(X ) dx, (12.12) 

if m(N-  1) ~ 2'n - 1. Further p(cos 3/) >t ½, hence 

1 02.13) max Ip(x)[  > 3- 
-1<x<1 

Under the conditions of Theorems 12.6 or 12.7, Theorems 5.3 or 5.4, respectively, together with 
(12.12) and (12.13) give 

½ ~< exp(c(a,  K)na)(N sin(¼(Oj,~-Oj_l,.)))-2mf~lw(x ) dx, (12.14) 

thus 

(12.15) 
Oj,n--Oj_l, n (c(a ,g)n")(  fl_ ) 1/,2m) 

- -  ~<N -1 exp - 2 w(x) dx 
'~ "rl" m 1 

Choosing m = [n a] and N = [n l-a] in (12.15), we obtain Theorems 12.6 and 12.7. 
Under the conditions of Theorem 12.8, Theorem 5.5, (12.12) and (12.13) give 

1 -2m 1 W(X) d x ,  ~<c(e, K ) e x p ( m  log n)(N sin(¼(0j, ,-  0j_l,n))) f l  (12.16) 

, 2 w ( x )  dx  (12.17) 2~r ~c(e K)N -] exp m 1 

therefore 

Now the choices m = [log n], N = [n / log  n] give the desired result. [] 

To see the sharpness of Theorems 12.6 and 12.7, we introduce the generalized Pollaczek 
weight functions by 

wt3(x)=exp(-(1-x2)-t3), 0~</3 < oo. (12.18) 
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A result of Lubinsky and Saff [42, p.411, (16)] implies that for the above weight functions, we 
have 

On+ l,n -- On,n = "ff -- On,n >~ C([3)n -1/(213+1), 0 ~ /3 <~ oo, (12.19) 

where c(/3) depends only on/3. If/3 = (2/a - 2) -1, 0 < a < 1, then log-(w~(x)) is in WLp( - 1, 1) 
with p = 2/a - 2 and log-(w~(cos 0)) is in WLp(-.a-, "rr) with p = 1/a - 1. Further n -1 / (2 /3+1)  

= n a- l ,  therefore (12.19) shows the sharpness of Theorems 12.6 and 12.7. 
Let fl_lW(X) dx = 1 and w(x) > 0 a.e. on [ - 1 ,  1]. In [37] the function 

,)= inf(fAw(cos t ) s i n  t dt:  A c [ 0 ,  rr], m(A)  >~e} 

is introduced, for every w as above and 0 ~< • ~< rr, where m(-) denotes the Lebesgue measure. 
It is easy to see that ~b(w, •) is a continuous, increasing function of • on [0, rr], positive in 
(0, a'r] and it satisfies ~b(w, 0 ) =  0 and ~b(w, r r ) =  1. This implies that for every n e ~ the 
equation ~b(w, • ) =  e x p ( - n e )  has a unique solution, which will be denoted by e,(w). The 
quantity •,,(w) plays a central role in estimating the maximal distance between consecutive 
zeros of the monic polynomials T, ,p (x )=x"-B ,_ I ,  p satisfying 

fl Ixn B~_l.p(x)lPw(x ) d x =  min [ x " - q ( x ) l P w ( x )  dx. (12.20) 
- 1  q e -~ . ' -  1 

Namely, it is shown in [37] that the maximal distance between consecutive zeros of T,,,p is 
bounded by ce,(w), where c depends only on w. An important step of the proof is an 
application of the trigonometric Remez-type inequality of Theorem 3.4. The results of [37] 
extend Theorems 12.7 and 12.8. 

13. Remez-type inequalities for Miintz polynomials and Miintz-type theorems on closed subsets 
of [0, 1] with positive measure 

Let A = {Aj};~0, 0 = )t o < A 1 < • • •. A beautiful theorem of Miintz and Szhsz says that 

H(A):=span{x ~o, x ~1, xX2,...} 

(the span means the collection of finite linear combinations 
coefficients) is dense in C[0, 1] in the uniform norm if and only if 

oo 

(13.1) 

of the elements with real 

j = l  

Proofs of the Miintz-Sz~sz Theorem may be found in [10,31,63] with various generalizations 
and extensions in [4,9,38,49,60]. This is very much a theorem about continuous functions on 
intervals. If inf{Aj+ 1 -Aj :  j = 1, 2 , . . .}  > 0, it can be proved that exactly the same theorem 
holds in C(A), provided A c [0, oo) is a compact set with nonempty interior. This result is due 
to [11]. When A has no interior, it is by no means obvious what happens. In [7, Theorem 1] we 
proved the following theorem. 

E ;V (13.2) 
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Theorem 13.1. Suppose A t > q J, j = 1, 2 , . . . ,  where q > 1 and suppose A c [0, ~) /s any set o f  
positive Lebesque measure. Then H ( A )  fails to be dense in C(A)  in the uniform norm. 

In fact, under the assumptions of Theorem 13.1, if y ~ A  is a point of positive Lebesgue 
density, then every function f from the uniform closure of H(A) on A is of the form 

oo 

f ( x )  := E aj x~j, x ~ [0, y).  (13.3) 
j=0 

If Aj ~ N, j = 1, 2 , . . . ,  then this means that every function f from the uniform closure of H ( A )  
on A can be extended analytically throughout the open disk {z ~ C: I z l < y}, provided y ~ A  
is a point of positive Lebesgue density. 

This in turn rests on the following "left-hand side" Remez-type inequality [7, Inequality 1]. 

Theorem 13.2. Suppose A c [p, 1] is a closed set o f  measure at least • > O. Suppose Aj >t q J, j = 
1, 2 , . . . ,  where q > 1. Then 

n n 
E ajx xj max E aj xxj <~ c(p,  • ,  q)mx a~A , 

O<x<~p j=O j=o 

where c( p, •, q) depends only on p, • and q and not on A, n and A.  

We conjecture that both Theorems 13.1 and 13.2 can be generalized to the case when 
E~-~_ ]Aj-1 < ~; however, to prove these seems to be extremely difficult. On the other hand, using 
Tietze's and Miintz's Theorems, one can easily show that A 0 = 1 and F.7=lA7 ~ = ~ imply that 
H(A)  is dense in C[A] in the uniform norm for every compact set A c [0, ~). Consequently the 

-1  inequality of Theorem 13.2 cannot hold if F.j=]Aj = ~. 
In a seminal paper [11], Clarkson and Erd6s proved the following theorem. 

Theorem 13.3. Suppose inf{Aj+ 1 -A j :  j = 1, 2, . . .} > 0 and E~=]A7 ] < ~. Then, 

n [ ~oa]Xx ~ max ~a~xX~  <~ e ( A ,  ~) max , 0 < ,~ <1 ,  
0 < x ~ l  j = 0  1-6~<x<l  j =  

where c(A,  ~) depends only on A = {Aj}~ 0 and ~, but not on n. 

Theorem 13.3 is not stated explicitly in [11], it may be found in [56, p.54]; another distinct 
proof is given in [7, Inequality 1 (Interval Case)]. Theorem 13.3 implies immediately that if 
inf{Aj+ 1 - Aj: j = 1, 2, . . .} > 0 and Y'.7=l)t71 < ~, then H ( A )  fails to be dense in C([a, b]) in the 
uniform norm for every [a, b] c [0, oo). Moreover, it follows from [11] that in the above case 
every function f from the uniform closure of H ( A )  on [a, b] is of the form 

0o 

f ( x )  := E aj x~j, x ~ [0, b). (13.4) 
j=0 

This is a critical, but only a small piece of our proof of the "left-hand side" Remez-type 
inequality of Theorem 13.2. Our proof relies on an examination of generalized Chebyshev 
polynomials T,,{[a0, A1,... , An]: A} on a compact set A c [0, ~). These are defined to be 

( nl t Tn( X ) =.= C X x" Jr E aj X:tj , 
j=0 
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where we choose {aj}~-0 a to minimize 

n - l a j x A J  , 
max x ~ + ~ 
x~A j = 0  

and c is chosen so that 

maxlZn(x)l  = 1 and lim Tn(x)=  +o~. 
x~A x--+~ 

It is well known that such a T,,, n = 1, 2 , . . . ,  exists and it is unique. In particular, we 
established estimates for the size of their zeros when A = [0, 1]. In this special case it is easy to 
see that the generalized Chebyshev polynomials T,, = Tn{[A 0' A1,..., A,,]: [0, 1]} are character- 
ized by the following properties: 

(i) T~ ~ H~(A):= span{x ~°, x~ ' , . . . ,  x~-}; 
(ii) T n equioscillates n + 1 times on [0, 1]; 

(iii) maXo~x<~lITn(x) l = 1; 
(iv) T,(1)= 1. 

To be precise, property (ii) means that T,, achieves the values _+max0~x~ ~ [ T~(x) [ = +_ 1, n + 1 
times on [0, 1] with alternating sign. 

Denseness and approximation questions in Markov spaces are intimately and essentially tied 
to the behavior of the associated Chebyshev polynomials, see, for example, [3,4,7]. We showed 
in [5, Theorems 2.1 and 2.2] that lacunary Miintz spaces (satisfying inf{Aj+l/hj: j = 1, 2 , . . .  } > 1) 
are completely characterized by the property that their associated Chebyshev polynomials 
Tn{h 0, h i , . . . ,  h,,]: [0, 1]}, n -- 1, 2 , . . . ,  have uniformly bounded coefficients. This allowed us to 
give an essentially sharp Bernstein-type inequality [5, Theorem 3.1] for these spaces. 

Theorem 13.4. I f  Ao = O, t~ 1 ~ 1 and Aj+I//~j ~ q > 1 for every j = 1, 2 , . . . ,  
constant c(A) depending only on A = {A j}7= 0 such that 

c (A)  
I p ' ( y ) l ~ < ~  max I p ( x ) l ,  

1 - y  0 < x < l  

for every p ~ H( A ) and 0 <~ y < 1. 

then there is a 

(13.5) 

In [5, Theorem 4.1], from Theorem 13.4 we rederived the conclusion of Theorem 13.1 for 
lacunary Miintz systems. On the other hand, it can be proved that if (13.5) holds for every 
p ~ H(A) ,  then there is a q > 1 depending only on c(A) such that A t >/q J, j = 2, 3, . . . .  The 
following question may be simple to answer, but I do not know the answer at the moment. 

Problem 13.5. Is there a sequence A = {a~}7= 0 with A 0 = 0, a 1 >/1 and in f j~Aj+ l /A j  = 1 such 
that (13.5) holds for every p ~ H(A)  and 0 ~< y < 1? 

Markov- and Bernstein-type inequalities for Miintz systems may be found in [3,48] as well. 
To convince the reader that the generalization of Theorem 13.2 to the case when lET= 1/~; 1 < 0o 

would be highly nontrivial, we show that it would solve Newman's problem [49, P(10.5), p.50] 
concerning the density of the classes 

( / H k ( A ) : =  p =  I-Ip~" p j ~ H ( A ) , j = l , 2 , . . . , k  , 
j = l  



T. Erd~lyi / Remez-type inequalities 207 

in C[0, 1] in the uniform norm, when Aj =j2, j = 0, 1, . . . .  Indeed, assume that the following 
Remez-type inequality is true. 

Conjecture 13.6. Let 7".7=1A71 < ~. For every 0 < e< 1 there is a constant c(E, A) depending 
only on • and A = {Aj}~ o such that ] p(0) l ~< c(E, A) for every p ~ H(A) with m({x ~ [0, 1]: 
I p(x)  l < 1}) >/e, where m( ')  denotes the Lebesgue measure. 

If Conjecture 13.6 were true, then Hk(A) would fail to be dense in C[0, 1] in the uniform 
norm for every k ~ •, whenever ETffi ) t - '  1 j < oo. Indeed, Conjecture 13.6 implies that 

m({x ~ [0, 1]" Iq(x) I  >~a-a I q ( 0 ) l } ) > / 1 -  (2k) -1, (13.6) 

for every q ~ H ( A )  with a = c((2k) -1, A) + 1. Hence 

m({x ~ [0, 1]" I p ( x ) l  > a-klp(0)l}) ½, (13.7) 

for every p ~ H k ( A )  (if P = P l P 2 " ' ' P k  with p i t H ( A ) ,  j = l ,  2 , . . . , k ,  then Ip(x)[>~ 
a -k [ p(0)[ holds for every x ~ [0, 1] satisfying [ pi(x) [ >/a -1 [ py(0) ] for each j = 1, 2 , . . . ,  k). 

1 ~<x ~< 1, and f(0) = 1. If there were a p ~ Hk(A)  Now let f ~  C[0, 1] be such that f ( x )  = 0 if 
such that 

max I p ( x ) - f ( x ) l  ~< ½a -k, (13.8) 
0 < x ~ l  

then it would contradict (13.7). Similarly, Conjecture 13.6 would imply that if E~ffi 1A71 < o% and 
A c [0, 1] is of positive measure, then Hk(A) fails to be dense in C(A) in the uniform norm for 
every k ~ N. 

What happens in Theorems 13.1 and 13.2 (and in the corresponding conjectures under the 
assumption L-~jffilAj-~ < oo) if we allow sets of measure 0? We have the following pair of 
theorems. 

Theorem 13.7. Let A --{Aj}~ 0 be an arbitrary sequence of distinct positive real numbers. Then 
there exists a nonempty perfect set E c [0, 1] such that H(A) is dense in C(E) in the uniform 
norm. On the other hand, if Y'.7=lA71 < 0% then there is a countable closed set E c [0, 1] such that 
H(A) fails to be dense in C(E) in the uniform norm. 

The first statement is due to Totik (private communication), while the second one is proved 
in [7, Theorem 5]. In [7, Theorem 3] we also observe the following theorem. 

Theorem 13.8. Let A = {Aj}~ 0 be an arbitrary sequence of distinct positive real numbers. Then 
there exist a nonempty perfect set E c [0, 1] and Miintz polynomials Pm ~ H ( A )  such that 
maxx ~ El Pro(x) [ < 1 and lim m _.® I Pm(O) [ = ~. 
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