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Abstract. With the notation K := R (mod 2π),

‖p‖Lλ(K) :=

�Z
K
|p(t)|λ dt

�1/λ

and Mλ(p) :=

�
1

2π

Z
K
|p(t)|λ dt

�1/λ

we prove the following result.

Theorem 1. Assume that p is a trigonometric polynomial of degree at most n with
real coefficients that satisfies

‖p‖L2(K) ≤ An1/2 and ‖p′‖L2(K) ≥ Bn3/2 .

Then
M4(p)−M2(p) ≥ εM2(p)

with

ε :=

�
1

111

��
B

A

�12

.

We also prove that

M∞(1 + 2p)−M2(1 + 2p) ≥ (
p

4/3 − 1)M2(1 + 2p)

and
M2(p)−M1(p) ≥ 10−31M2(p)

for every p ∈ An, where An denotes the collection of all trigonometric polynomials
of the form

p(t) := pn(t) :=
nX

j=1

aj cos(jt + αj) , aj = ±1 , αj ∈ R .
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Introduction

We give shorter and more direct proofs of some of the main results from Little-
wood’s papers [Li-61], [Li-62], [Li-66a], [Li-66b], and [Li-68]. There are two reasons
for doing this. First our approaches are, we believe, much easier, and secondly
they lead to explicit constants. Littlewood himself remarks that his methods were
“extremely indirect.” Motivation and discussion of these types of results may be
found in [Bo-02]. Kahane’s paper [Ka-85] is also central among those related to the
subject of this paper.

2. New Results

We use the notation K := R (mod 2π). Let

‖p‖Lλ(K) :=
(∫

K

|p(t)|λ dt

)1/λ

and Mλ(p) :=
(

1
2π

∫
K

|p(t)|λ dt

)1/λ

.

Theorem 1. Assume that p is a trigonometric polynomial of degree at most n with
real coefficients that satisfies

(1) ‖p‖L2(K) ≤ An1/2

and

(2) ‖p′‖L2(K) ≥ Bn3/2 .

Then
M4(p)−M2(p) ≥ εM2(p)

with

ε :=
(

1
111

) (
B

A

)12

.

Let the Littlewood class An be the collection of all trigonometric polynomials of
the form

p(t) := pn(t) :=
n∑

j=1

aj cos(jt + αj) , aj = ±1 , αj ∈ R .

Note that for the Littlewood class An we have

(
B

A

)12

= 3−6 .
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Corollary 2. We have

M4(p)−M2(p) ≥ M2(p)
80920

for every p ∈ An. The merit factor(
M4

4 (p)
M4

2 (p)
− 1

)−1

is bounded above by 20230 for every p ∈ An.

If Qn is a polynomial of degree n of the form

Qn(z) =
n∑

k=0

akzk , ak ∈ C ,

and the coefficients ak of Qn satisfy

ak = an−k , k = 0, 1, . . . n ,

then we call Qn a conjugate-reciprocal polynomial of degree n. We say that the
polynomial Qn is unimodular, if |ak| = 1 for each k = 0, 1, 2, . . . , n. Note that if
p ∈ An, then

1 + 2p(t) = eintQ2n(eit)

with a conjugate-reciprocal unimodular polynomial Q2n of degree exactly 2n. One
can ask how flat a conjugate reciprocal unimodular polynomial can be. Here we
reprove a result of Erdős [Er-62]. His proof is much longer and his constant ε > 0
is unspecified. This result has already been recorded in [Er-01].

Theorem 3. Let ∂D denote the unit circle. Let P be a conjugate reciprocal uni-
modular polynomial of degree n. Then

max
z∈∂D

|P (z)| ≥ (1 + ε)
√

n + 1

with ε :=
√

4/3− 1. As a consequence, we have

M∞(1 + 2p)−M2(1 + 2p) ≥ (
√

4/3− 1)M2(1 + 2p)

for every p ∈ An.

In our next theorem we give the numerical value of an unspecified constant
appearing in another main result of Littlewood. In the proof we will need to refer
to only a two-page-long (very clever) piece of Littlewood’s paper [Li-66a].

Theorem 4. We have

M2(p)−M1(p) ≥ 10−31M2(p)

for every p ∈ An.

Based on the fact that for a fixed trigonometric polynomial p the function

λ → λ log(Mλ(p))

is a convex function on [0,∞), we can state explicit numerical values of certain
unspecified constants in some other related Littlewood results. For example, as a
consequence of Theorem 4, we have
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Theorem 5. We have

log(Mλ(p))− log(M2(p)) ≥ λ− 2
λ

log
(

1
1− 10−31

)
, λ > 2 ,

and

log(M2(p))− log(Mλ(p)) ≥ 2− λ

λ
log

(
1

1− 10−31

)
, 1 ≤ λ < 2 ,

for every p ∈ An.

3. Proofs

Proof of Theorem 1. For the sake of brevity let µn := µn(p) = M2(p). Note that
Bernstein’s inequality in L2(K) implies B ≤ A. Without loss of generality we may
assume that

(3) ‖p‖4L4(K) ≤ 2π
33
32

µ4
n .

Then by the Bernstein Inequality for trigonometric polynomials in L4(K) we can
deduce that

‖p′‖L4(K) ≤ n‖p‖L4(K) ≤ n

(
33
32

)1/4

(2π)1/4µn ≤ π−1/4

(
33
64

)1/4

An3/2 .

Hence, combining this with (2) and Hölder’s Inequality, we obtain

B2n3 ≤
∫

K

|p′(t)|2 dt ≤ ‖p′‖2/3
L1(K)‖p′‖4/3

L4(K) ≤ ‖p′‖2/3
L1(K)π

−1/3

(
33
64

)1/3

A4/3n2 .

Therefore
π1/3

(
64
33

)1/3
B2

A4/3
n ≤ ‖p′‖2/3

L1(K) ,

that is
π1/2

(
64
33

)1/2
B3

A2
n3/2 ≤ ‖p′‖L1(K) .

Combining this with (1), we have

γnµn ≤ γn
A

(2π)1/2

√
n ≤ π1/2

(
64
33

)1/2
B3

A2
n3/2 ≤ ‖p′‖L1(K)

with

γ :=

(
128
33

)1/2
πB3

A3
.

Now let

E := E(n, p, γ) :=
{

t ∈ [0, 2π) : (|p(t)| − µn)2 ≥
(γµn

16

)2
}

.
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Then using Hölder’s Inequality and then Bernstein’s Inequality for trigonometric
polynomials in L2(K), we can deduce that

γnµn ≤
∫ 2π

0

|p′(t)| dt ≤
∫

[0,2π]\E
|p′(t)| dt +

∫
E

|p′(t)| dt

≤ 2 · (2n) · 2γ

16
µn +

∫
E

|p′(t)| dt ≤ γ

2
nµn +

√
m(E)

(∫
E

|p′(t)|2 dt

)1/2

≤ γ

2
nµn +

√
m(E) n

(∫ 2π

0

|p(t)|2 dt

)1/2

≤ γ

2
nµn +

√
m(E) n(2π)1/2µn .

Hence
γ

2
nµn ≤

√
m(E)n(2π)1/2µn ,

that is

(4) β :=
γ2

8π
≤ m(E) .

So we have

2π(M4(p)4 −M2(p)4) = ‖p‖4L4(K) − 2πµ4
n

=
∫ 2π

0

(p(t)2 − µ2
n)2 dt

≥ m(E)
(γµn

16

)2

µ2
n ≥

γ2

8π

(γµn

16

)2

µ2
n

=
1

211π

(
128
33

)2

π4

(
B

A

)12

µ4
n .

Combining this with (3) we obtain

M4(p)−M2(p) ≥ 2−14

(
B

A

)12 (
128
33

)2

π2M2(p) ,

and the theorem is proved Here we used

M4(p)4 −M2(p)4 ≥ (M4(p)−M2(p))4M2(p)3 ,

which is a consequence of the Mean Value Theorem. Note that

1
111

≤ 2−14

(
128
33

)2

π2 ≤ 1
110

.

�

Proof of Theorem 3. Let P be a conjugate reciprocal unimodular polynomial of
degree n. To prove the statement, observe that Malik’s inequality [MMR, p. 676]
gives

max
z∈∂D

|P ′(z)| ≤ n

2
max
z∈∂D

|P (z)| .
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(Note that the fact that P is conjugate reciprocal improves the Bernstein factor for
P on ∂D from n to n/2.) Using the fact that each coefficient of P is of modulus 1,
then applying Parseval’s formula and Malik’s inequality, we obtain

2π
n2(n + 1)

3
≤ 2π

n(n + 1)(2n + 1)
6

=
∫

∂D

|P ′(z)|2 |dz| ≤ 2π
(n

2

)2

max
z∈∂D

|P (z)|2 ,

and
max
z∈∂D

|P (z)| ≥
√

4/3
√

n + 1

follows. �

Proof of Theorem 4. Let p ∈ An. For the sake of brevity let µn := µn(p) = M2(p).
Let N(p, v) be the number of real roots of p − vµn = 0 in (−π, π). Littlewood
proves (see Theorem 1 (i) of [Li-66a]) that if p ∈ An and

1
2π

∫ 2π

0

|p(t)| dt = cµn ,

then
N(p, v) ≥ 2−16c11n , |v| ≤ 2−5c3 .

The reader may wish to find this lower bound hidden in the proof of Theorem 1
(i) of Littlewood’s paper [Li-66a]. Hence, by estimating the total variation in the
usual way, γnµn ≤ ‖p′‖L1(K) with γ := 2−20c14. If c ≤ 2−1/14, then the proof of
the theorem is finished. If c ≥ 2−1/14, then γ ≥ 2−21, so in the sequel we may
assume that γ ≥ 2−21 holds. Now let

E := E(n, p, γ) :=
{

t ∈ [0, 2π) : (|p(t)| − µn)2 ≥
(γµn

16

)2
}

.

Estimating the total variation of p on [0, 2π] \E, hen using Hölder’s Inequality and
then Bernstein’s Inequality for trigonometric polynomials in L2(K), we can deduce
that

γnµn ≤
∫ 2π

0

|p′(t)| dt ≤
∫

[0,2π]\E
|p′(t)| dt +

∫
E

|p′(t)| dt

≤ 2 · (2n) · 2γ

16
µn +

∫
E

|p′(t)| dt ≤ γ

2
nµn +

√
m(E)

(∫
E

|p′(t)|2 dt

)1/2

≤ γ

2
nµn +

√
m(E) n

(∫ 2π

0

|p(t)|2 dt

)1/2

≤ γ

2
nµn +

√
m(E) n(2π)1/2µn .

Hence
γ

2
nµn ≤

√
m(E)n(2π)1/2µn ,

that is

β :=
γ2

8π
≤ m(E) .
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So we have

4π((M2(p))2 −M2(p)M1(p)) =
∫ 2π

0

(|p(t)| − µn)2 dt

≥ m(E)
(γµn

16

)2

≥ γ2

8π

(γµn

16

)2

=
γ4

211π
µ2

n ≥ 2−95π−1µ2
n .

This implies
M2(p)−M1(p) ≥ 2−97π−2M2(p) ,

and the theorem is proved. �
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