Problem. Proposed by Tamás Erdélyi, Texas Aध̉M University, College Station, TX. Let \mathcal{L}_{k} denote the set of all polynomials of degree k with each of their $k+1$ coefficients in $\{-1,1\}$. Let M_{k} denote the largest possible multiplicity that a zero of a $P \in \mathcal{L}_{k}$ can have at 1 . Let $\left(C_{k}\right)$ be an arbitrary sequence of positive integers tending to ∞. Show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|k \in\{1,2, \ldots, n\}: M_{k} \geq C_{k}\right|=0
$$

