Problem. Proposed by Tamás Erdélyi, Texas A&M University, College Station, TX. Let \mathcal{L}_k denote the set of all polynomials of degree k with each of their k+1 coefficients in $\{-1,1\}$. Let M_k denote the largest possible multiplicity that a zero of a $P \in \mathcal{L}_k$ can have at 1. Let (C_k) be an arbitrary sequence of positive integers tending to ∞ . Show that

$$\lim_{n \to \infty} \frac{1}{n} |k \in \{1, 2, \dots, n\} : M_k \ge C_k| = 0.$$