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Abstract. Littlewood polynomials are polynomials with each of their coefficients in {−1, 1}.

A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit

circle of the complex plane is given by the Rudin-Shapiro polynomials. Let Pk and Qk denote
the Rudin-Shapiro polynomials of degree n− 1 with n := 2k. For polynomials S we define

Mq(S, [α, β]) :=

(

1

β − α

∫ β

α

∣

∣S(eit)
∣

∣

q
dt

)1/q

, q > 0 .

Let γ := sin2(π/8). We prove that

γ

4π
(γn)q/2 ≤ Mq(Pk, [α, β])

q ≤ (2n)q/2

for every q > 0 and 32π/n ≤ β − α. The same estimates hold for Pk replaced by Qk.

1. Introduction and Notation

Let α < β be real numbers. The Mahler measure M0(S, [α, β]) is defined for polynomials
S as

M0(S, [α, β]) := exp

(
1

β − α

∫ β

α

log |S(eit)| dt
)

.

It is well known, see [17] for instance, that

M0(S, [α, β]) = lim
q→0+

Mq(S, [α, β]) ,

where

Mq(S, [α, β]) :=

(
1

β − α

∫ β

α

∣∣S(eit)
∣∣q dt

)1/q

, q > 0 .
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It is a simple consequence of the Jensen formula that

M0(S, [0, 2π]) = |c|
n∏

k=1

max{1, |zk|}

for every polynomial of the form

S(z) = c
n∏

k=1

(z − zk) , c, zk ∈ C .

See [3 p. 271] or [2 p. 3] for instance. Let D := {z ∈ C : |z| < 1} denote the open unit
disk of the complex plane. Let ∂D := {z ∈ C : |z| = 1} denote the unit circle of the
complex plane. Littlewood polynomials are polynomials with each of their coefficients in
{−1, 1}. A special sequence of Littlewood polynomials is the sequence the Rudin-Shapiro
polynomials, They appear in Harold Shapiro’s 1951 thesis [21] at MIT and are sometimes
called just the Shapiro polynomials. They also arise independently in Golay’s paper [16].
They are remarkably simple to construct recursively as follows. Let

P0(z) := 1 , Q0(z) := 1 ,

and

Pk+1(z) := Pk(z) + z2
k

Qk(z) ,

Qk+1(z) := Pk(z)− z2
k

Qk(z) ,

for k = 0, 1, 2, . . . . Note that both Pk and Qk are polynomials of degree n−1 with n := 2k

having each of their coefficients in {−1, 1}. In what follows Pk and Qk denote the Rudin-
Shapiro polynomials of degree n− 1 with n := 2k. It is well known, and easy to check by
using the parallelogram law, that

|Pk+1(z)|2 + |Qk+1(z)|2 = 2(|Pk(z)|2 + |Qk(z)|2) , z ∈ ∂D .

Hence

(1.1) |Pk(z)|2 + |Qk(z)|2 = 2k+1 = 2n , z ∈ ∂D .

It is also well known, see Section 4 of [2] or [6] for instance, that

(1.2) Qk(z) = (−1)k+1P ∗

k (−z) , z ∈ ∂D ,

where P ∗

k (z) := zn−1Pk(1/z). Hence

(1.3) |Qk(z)| = |Pk(−z)| , z ∈ ∂D .

Peter Borwein’s book [2] presents a few more basic results on the Rudin-Shapiro polyno-
mials. Cyclotomic properties of the Rudin-Shapiro polynomials are discussed in [6]. Obvi-
ously M2(Pk, [0, 2π]) = 2k/2 by the Parseval formula. In 1968 Littlewood [19] showed that

M4(Pk, [0, 2π]) ∼ (4k+1/3)1/4. Here, and in what follows, ak ∼ bk means that lim
k→∞

ak
bk

= 1.

Rudin-Shapiro like polynomials in L4 on the unit circle ∂D of the complex plane are studied
in [4]. Let K := R (mod 2π). Let m(A) denote the one-dimensional Lebesgue measure of
A ⊂ K. In 1980 Saffari conjectured the following result. He did not publish this conjecture
himself, and it first appeared in print in the work of Doche and Habsieger [9].
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Theorem 1.1. We have

Mq(Pk, [0, 2π]) = Mq(Qk, [0, 2π]) ∼
2(k+1)/2

(q/2 + 1)1/q
=

(2n)1/2

(q/2 + 1)1/q

for all real exponents q > 0. Equivalently, we have

lim
k→∞

m

({
t ∈ K :

∣∣∣∣
Pk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})

= lim
k→∞

m

({
t ∈ K :

∣∣∣∣
Qk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})
= 2π(β − α)

whenever 0 ≤ α < β ≤ 1.

Theorem 1.1 was proved for all even values of q ≤ 52 by Doche [8] and Doche and
Habsieger [9]. Rodgers [20] proved Theorem 1.1 for all q > 0. See also [10]. An application
of Theorem 1.1 may be found in [15]. An extension of Saffari’s conjecture is Montgomery’s
conjecture below proved by Rodgers [20] as well.

Theorem 1.2. We have

lim
k→∞

m

({
t ∈ K :

Pk(e
it)√

2k+1
∈ E

})

= lim
k→∞

m

({
t ∈ K :

Qk(e
it)√

2k+1
∈ E

})
= 2m(E)

for any rectangle E ⊂ D := {z ∈ C : |z| < 1} .
In [11] we proved the following lower bound for the Mahler measure of the Rudin-Shapiro

polynomials on subarcs of the unit circle ∂D.

Theorem 1.3. There is an absolute constant c > 0 such that

M0(Pk, [α, β]) ≥ cn1/2

for all k ∈ N and for all α, β ∈ R such that

32π

n
≤ (logn)3/2

n1/2
≤ β − α ≤ 2π .

The same lower bound holds for M0(Pk, [α, β]) replaced by M0(Qk, [α, β]).

It looks plausible that Theorem 1.3 holds whenever 32π/n ≤ β − α , but we have not
been able to handle the case 32π/n ≤ β −α ≤ (logn)3/2n−1/2. Nevertheless our Theorem
2.2 gives a lower bound for the values Mq(Pk, [α, β]) and Mq(Qk, [α, β]) for every q > 0 and
32π/n ≤ β − α. See also [7] on sums of monomials with large Mahler measure on subarcs
of the unit circle ∂D. In [13] the asymptotic values of M0(Pk, [0, 2π]) and M0(Qk, [0, 2π]),
conjectured by Saffari, have been found. Namely in [13] we showed the following.
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Theorem 1.4. We have

lim
n→∞

M0(Pk, [0, 2π])

n1/2
= lim

n→∞

M0(Qk, [0, 2π])

n1/2
=

(
2

e

)1/2

.

Properties of the Rudin Shapiro polynomials have played a a central role in [1] as well as
in [14] to prove a longstanding conjecture of Littlewood on the existence of flat Littlewood
polynomials Sn of degree n satisfying the inequalities

c1n
1/2 ≤ |Sn(e

it)| ≤ c2n
1/2, t ∈ R ,

with absolute constants c1 > 0 and c2 > 0.

New Results

Let γ := sin2(π/8) and n := 2k The Lebesgue measure of a set E ⊂ R is denoted by
m(E).

Theorem 2.1. Let E := {t ∈ [α, β] : |Pk(t)| ≥ γn} . We have

m(E) ≥ (β − α)γ

4π

for every 32π/n ≤ β − α. The same estimate holds for Pk replaced by Qk.

Theorem 2.2. We have

γ

4π
(γn)q/2 ≤ Mq(Pk, [α, β])

q ≤ (2n)q/2

for every q > 0 and 32π/n ≤ β − α. The same estimate holds for Pk replaced by Qk.

3. Lemmas

Let n := 2k, γ := sin2(π/8), zj := eitj , tj := 2πj/n, j ∈ Z.

Lemma 3.1. We have

max{|Pk(zj)|2, |Pk(zj+r)|2} ≥ γ2k+1 = 2γn , r ∈ {−1, 1} ,

for every j = 2u, u ∈ Z. The same estimate holds for Pk replaced by Qk.

Lemma 3.1 tells us that the modulus of the Rudin-Shapiro polynomials Pk is certainly
not smaller than (2γn)1/2 at least at one of any two consecutive n-th root of unity, where
n := 2k. This is a crucial observation proved in [11] and plays a key role in [12], [13], [14]
and [15] as well. Our Lemma 3.2 below follows from Lemma 3.1 reasonably simply.
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Lemma 3.2. We have

|Pk(e
it)|2 ≥ γn , t ∈ [tj − γ/n, tj + γ/n] ,

for every j ∈ Z such that

(3.1) |Pk(zj)|2 ≥ γ2k+1 = 2γn .

The same estimate holds with Pk replaced by Qk.

Proof of Lemma 3.2. By (1.3) it is sufficient to prove the lemma only for Pk. The proof of
the lemma is a simple combination of the Mean Value Theorem and Bernstein’s inequality
applied to the nonnegative trigonometric polynomial Rk of degree n − 1 with n = 2k

defined by Rk(t) := Pk(e
it)Pk(e

−it). Recall that (1.1) implies 0 ≤ Rk(t) = |Pk(e
it)|2 ≤ 2n

for every t ∈ R. Note also that the Bernstein factor is n/2 rather than n for the class of
nonnegative trigonometric polynomials of degree at most n, see Lemma 3.3 below. Suppose
j ∈ Z satisfies (3.1) and t ∈ R satisfies |t− tj | ≤ γ/n. Then by the Mean Value Theorem
there is a ξ between tj and t such that

Rk(tj)−Rk(t) ≤ |Rk(tj)−Rk(t)| = |tj − t||R′

k(ξ)| ≤
γ

n

n

2
max
τ∈K

{Rk(τ) ≤
γ

n

n

2
2n = γn .

Therefore, recalling (3.1), we get

Rk(t) ≥ Rk(tj)− γn = 2γn− γn = γn , t ∈ [tj − γ/n , tj + γ/n] .

�

Let K := R (mod 2π), as before.

Lemma 3.3. We have

max
τ∈K

|T ′(τ)| ≤ n

2
max
τ∈K

T (τ)

for every trigonometric polynomial T of degree at most n that is nonnegative on R.

Proof of Lemma 3.3. Suppose T is a trigonometric polynomial of degree at most n that is
nonnegative on R. The Bernstein inequality, see [3] for instance, asserts that

max
τ∈K

|Q′(τ)| ≤ nmax
τ∈K

|Q(τ)|

for every real trigonometric polynomial Q of degree at most n. Applying the Bernstein
inequality to the real trigonometric polynomial Q := T − M of degree at most n with

M :=
1

2
max
τ∈K

|Q(τ)| gives the lemma. �
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4. Proof of the theorems

Proof of Theorem 2.1. By (1.3) it is sufficient to prove the theorem only for Pk. Observe

that Lemmas 3.1 and 3.2 imply that E contains at least
(β − α)n

4π
− 4 disjoint intervals of

length at least 2γ/n, hence

m(E) ≥
(
(β − α)n

4π
− 4

)
2γ

n
≥ (β − α)n

8π

2γ

n
=

(β − α)γ

4π

whenever 32π/n ≤ β − α. �

Proof of Theorem 2.2. By (1.2) it is sufficient to prove Theorem 2.1 for Pk. The upper
bound of the theorem follows immediately from (1.1). Now we prove the lower bound of
the theorem. Using Theorem 2.1 we have

Mq(Pk, [α, β])
q :=

1

β − α

∫ β

α

|Pk(t)|q dt ≥
1

β − α

∫

E

|Pk(t)|q dt

≥ 1

β − α
m(E)(γn)q/2 ≥ 1

β − α

(β − α)γ

4π
(γn)q/2

≥ γ

4π
(γn)q/2

whenever 32π/n ≤ β − α. �

5. More observations and problems

Let Pk and Qk be the usual Rudin-Shapiro polynomials of degree n− 1 with n := 2k.
As for k ≥ 1 both Pk and Qk have odd degree n − 1 = 2k − 1, both Pk and Qk have

at least one real zero. The fact that for k ≥ 1 both Pk and Qk have exactly one real zero
was proved by Brillhart in [5]. Another interesting observation made in [6] is the fact that
Pk and Qk cannot vanish at any roots of unity different from −1 and 1. In [12] we proved
that the Rudin-Shapiro polynomials Pk and Qk have only o(n) zeros on the unit circle ∂D.
Observe, see [6] for instance, that

Pk(1) = 2[(k+1)/2], Qk(−1) = (−1)k+12[(k+1)/2],

and

Pk(−1) = Qk(1) =
1

2
(1 + (−1)k)2[k/2],

where [x] denotes the integer part of a real number x.

Problem 5.1. Is it true that if k is odd then Pk has a zero on the unit circle partialD
only at −1 and Qk has a zero on the unit circle ∂D only at 1, while if k is even then

neither Pk nor Qk has a zero on the unit circle ∂D?

Combining (1.2) with the observation that the Rudin-Shapiro polynomials Pk and Qk

of degree n − 1 with n := 2k have only o(n) zeros on the unit circle ∂D, we can deduce
that the products PkQk have n− o(n) zeros in the open unit disk D, where o(n) denotes
real numbers such that o(n)/n converges to 0 as n tends to ∞.
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Problem 5.2. Is there an absolute constant c > 0 such that both of the Rudin-Shapiro

polynomials Pk and Qk have at least cn zeros in the open unit disk D?

Problem 5.3. Is it true that both of the Rudin-Shapiro polynomials Pk and Qk have

n/2− o(n), zeros in the open unit disk D?

Problem 5.4. Is it true that Theorem 1.3 remains valid for all 32π/n ≤ β − α ≤ 2π?

Problem 5.5. Is there an absolute constant c > 0 such that

M0(|Pk|2 − n, [0, 2π]) := exp

(
1

2π

∫ 2π

0

log ||Pk(e
it)|2 − n| dt

)
≥ cn1/2?

6. A connection to sew-reciprocal polynomials

A polynomial S of the form

S(z) =

2m∑

j=0

ajz
j , aj ∈ R , a2m 6= 0 ,

is called skew-reciprocal if

(6.2)) am−j = (−1)jam+j , j = 1, 2, . . . , m .

A beautiful observation of Mercer [18] states the following.

Theorem 6.1. Skew-reciprocal Littlewood polynomials do not have any zeros on the unit

circle ∂D.

The Rudin-Shapiro polynomials Pk and Qk of degree n− 1 with n := 2k are quite close
to be skew-reciprocal. However, as the degrees of Pk and Qk are odd, Theorem 6.1 does
not apply to the Rudin-Shapiro polynomials. Having a middle term in the polynomial S
in the proof below is crucial.

Proof of Theorem 6.1. Let S be a skew-reciprocal Littlewood polynomial of the form

S(z) =

2m∑

j=0

ajz
j , aj ∈ {−1, 1} , j = 0, 1, . . . , 2m, a2m 6= 0 ,

with
am−j = (−1)jam+j , j = 1, 2, . . . , m .

For notational convenience we assume that m = 2µ is even; the proof in the case when
m = 2µ− 1 is odd can be handled similarly. We have z−mS(z) = A(z) +B(z), where the
function

A(z) :=

µ∑

j=0

am+2j(z
2j + z−2j) , z ∈ ∂D ,
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takes purely real values on the unit circle ∂D, and the function

B(z) :=

µ∑

j=1

am+2j−1(z
2j−1 − z−2j−1) , z ∈ ∂D ,

takes purely imaginary values on the unit circle ∂D. Suppose to the contrary that S
vanishes at a point z0 on the unit circle ∂D. Then z0 is a common zero of A and B. We

study the greatest common divisor of the polynomials Ã(z) := zmA(z) and B̃(z) := zmB(z)
over the field F2. We have

Ã(z) − zB̃(z) =
m∑

j=0

z2j − z
m∑

j=1

z2j−1 = 1

over the field F2, showing that the greatest common divisor of the polynomials Ã and B̃
over the field F2 is 1. Hence A(z) and B(z) cannot have a common zero on the unit circle
∂D, a contradiction. �

Note that the same approach works to prove that skew-reciprocal polynomials with only
odd coefficients do not have any zeros on the unit circle ∂D.
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15. T. Erdélyi, Improved results on the oscillation of the modulus of the Rudin-Shapiro polynomials

on the unit circle, Proc. Amer. Math. Soc. 151 (2023), 2733–2740.

16. M.J. Golay, Static multislit spectrometry and its application to the panoramic display of infrared

spectra, J. Opt. Soc. America 41 (1951), 468–472.
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