THE L_{q} NORM OF THE RUDIN-SHAPIRO POLYNOMIALS ON SUBARCS OF THE UNIT CIRCLE

Tamás Erdélyi

June 12, 2023

Abstract. Littlewood polynomials are polynomials with each of their coefficients in $\{-1,1\}$. A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin-Shapiro polynomials. Let P_{k} and Q_{k} denote the Rudin-Shapiro polynomials of degree $n-1$ with $n:=2^{k}$. For polynomials S we define

$$
M_{q}(S,[\alpha, \beta]):=\left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left|S\left(e^{i t}\right)\right|^{q} d t\right)^{1 / q}, \quad q>0
$$

Let $\gamma:=\sin ^{2}(\pi / 8)$. We prove that

$$
\frac{\gamma}{4 \pi}(\gamma n)^{q / 2} \leq M_{q}\left(P_{k},[\alpha, \beta]\right)^{q} \leq(2 n)^{q / 2}
$$

for every $q>0$ and $32 \pi / n \leq \beta-\alpha$. The same estimates hold for P_{k} replaced by Q_{k}.

1. Introduction and Notation

Let $\alpha<\beta$ be real numbers. The Mahler measure $M_{0}(S,[\alpha, \beta])$ is defined for polynomials S as

$$
M_{0}(S,[\alpha, \beta]):=\exp \left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} \log \left|S\left(e^{i t}\right)\right| d t\right)
$$

It is well known, see [17] for instance, that

$$
M_{0}(S,[\alpha, \beta])=\lim _{q \rightarrow 0+} M_{q}(S,[\alpha, \beta]),
$$

where

$$
M_{q}(S,[\alpha, \beta]):=\left(\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left|S\left(e^{i t}\right)\right|^{q} d t\right)^{1 / q}, \quad q>0 .
$$

Key words and phrases. Rudin-Shapiro polynomials, L_{q} norms, Mahler measure, subarcs of the unit circle.

2020 Mathematics Subject Classifications. 11C08, 41A17

It is a simple consequence of the Jensen formula that

$$
M_{0}(S,[0,2 \pi])=|c| \prod_{k=1}^{n} \max \left\{1,\left|z_{k}\right|\right\}
$$

for every polynomial of the form

$$
S(z)=c \prod_{k=1}^{n}\left(z-z_{k}\right), \quad c, z_{k} \in \mathbb{C}
$$

See [3 p. 271] or [2 p. 3] for instance. Let $D:=\{z \in \mathbb{C}:|z|<1\}$ denote the open unit disk of the complex plane. Let $\partial D:=\{z \in \mathbb{C}:|z|=1\}$ denote the unit circle of the complex plane. Littlewood polynomials are polynomials with each of their coefficients in $\{-1,1\}$. A special sequence of Littlewood polynomials is the sequence the Rudin-Shapiro polynomials, They appear in Harold Shapiro's 1951 thesis [21] at MIT and are sometimes called just the Shapiro polynomials. They also arise independently in Golay's paper [16]. They are remarkably simple to construct recursively as follows. Let

$$
P_{0}(z):=1, \quad Q_{0}(z):=1
$$

and

$$
\begin{aligned}
P_{k+1}(z) & :=P_{k}(z)+z^{2^{k}} Q_{k}(z), \\
Q_{k+1}(z) & :=P_{k}(z)-z^{2^{k}} Q_{k}(z),
\end{aligned}
$$

for $k=0,1,2, \ldots$. Note that both P_{k} and Q_{k} are polynomials of degree $n-1$ with $n:=2^{k}$ having each of their coefficients in $\{-1,1\}$. In what follows P_{k} and Q_{k} denote the RudinShapiro polynomials of degree $n-1$ with $n:=2^{k}$. It is well known, and easy to check by using the parallelogram law, that

$$
\left|P_{k+1}(z)\right|^{2}+\left|Q_{k+1}(z)\right|^{2}=2\left(\left|P_{k}(z)\right|^{2}+\left|Q_{k}(z)\right|^{2}\right), \quad z \in \partial D
$$

Hence

$$
\begin{equation*}
\left|P_{k}(z)\right|^{2}+\left|Q_{k}(z)\right|^{2}=2^{k+1}=2 n, \quad z \in \partial D \tag{1.1}
\end{equation*}
$$

It is also well known, see Section 4 of [2] or [6] for instance, that

$$
\begin{equation*}
Q_{k}(z)=(-1)^{k+1} P_{k}^{*}(-z), \quad z \in \partial D \tag{1.2}
\end{equation*}
$$

where $P_{k}^{*}(z):=z^{n-1} P_{k}(1 / z)$. Hence

$$
\begin{equation*}
\left|Q_{k}(z)\right|=\left|P_{k}(-z)\right|, \quad z \in \partial D \tag{1.3}
\end{equation*}
$$

Peter Borwein's book [2] presents a few more basic results on the Rudin-Shapiro polynomials. Cyclotomic properties of the Rudin-Shapiro polynomials are discussed in [6]. Obviously $M_{2}\left(P_{k},[0,2 \pi]\right)=2^{k / 2}$ by the Parseval formula. In 1968 Littlewood [19] showed that $M_{4}\left(P_{k},[0,2 \pi]\right) \sim\left(4^{k+1} / 3\right)^{1 / 4}$. Here, and in what follows, $a_{k} \sim b_{k}$ means that $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1$. Rudin-Shapiro like polynomials in L_{4} on the unit circle ∂D of the complex plane are studied in [4]. Let $K:=\mathbb{R}(\bmod 2 \pi)$. Let $m(A)$ denote the one-dimensional Lebesgue measure of $A \subset K$. In 1980 Saffari conjectured the following result. He did not publish this conjecture himself, and it first appeared in print in the work of Doche and Habsieger [9].

Theorem 1.1. We have

$$
M_{q}\left(P_{k},[0,2 \pi]\right)=M_{q}\left(Q_{k},[0,2 \pi]\right) \sim \frac{2^{(k+1) / 2}}{(q / 2+1)^{1 / q}}=\frac{(2 n)^{1 / 2}}{(q / 2+1)^{1 / q}}
$$

for all real exponents $q>0$. Equivalently, we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} m\left(\left\{t \in K:\left|\frac{P_{k}\left(e^{i t}\right)}{\sqrt{2^{k+1}}}\right|^{2} \in[\alpha, \beta]\right\}\right) \\
= & \lim _{k \rightarrow \infty} m\left(\left\{t \in K:\left|\frac{Q_{k}\left(e^{i t}\right)}{\sqrt{2^{k+1}}}\right|^{2} \in[\alpha, \beta]\right\}\right)=2 \pi(\beta-\alpha)
\end{aligned}
$$

whenever $0 \leq \alpha<\beta \leq 1$.
Theorem 1.1 was proved for all even values of $q \leq 52$ by Doche [8] and Doche and Habsieger [9]. Rodgers [20] proved Theorem 1.1 for all $q>0$. See also [10]. An application of Theorem 1.1 may be found in [15]. An extension of Saffari's conjecture is Montgomery's conjecture below proved by Rodgers [20] as well.

Theorem 1.2. We have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} m\left(\left\{t \in K: \frac{P_{k}\left(e^{i t}\right)}{\sqrt{2^{k+1}}} \in E\right\}\right) \\
= & \lim _{k \rightarrow \infty} m\left(\left\{t \in K: \frac{Q_{k}\left(e^{i t}\right)}{\sqrt{2^{k+1}}} \in E\right\}\right)=2 m(E)
\end{aligned}
$$

for any rectangle $E \subset D:=\{z \in \mathbb{C}:|z|<1\}$.
In [11] we proved the following lower bound for the Mahler measure of the Rudin-Shapiro polynomials on subarcs of the unit circle ∂D.

Theorem 1.3. There is an absolute constant $c>0$ such that

$$
M_{0}\left(P_{k},[\alpha, \beta]\right) \geq c n^{1 / 2}
$$

for all $k \in \mathbb{N}$ and for all $\alpha, \beta \in \mathbb{R}$ such that

$$
\frac{32 \pi}{n} \leq \frac{(\log n)^{3 / 2}}{n^{1 / 2}} \leq \beta-\alpha \leq 2 \pi
$$

The same lower bound holds for $M_{0}\left(P_{k},[\alpha, \beta]\right)$ replaced by $M_{0}\left(Q_{k},[\alpha, \beta]\right)$.
It looks plausible that Theorem 1.3 holds whenever $32 \pi / n \leq \beta-\alpha$, but we have not been able to handle the case $32 \pi / n \leq \beta-\alpha \leq(\log n)^{3 / 2} n^{-1 / 2}$. Nevertheless our Theorem 2.2 gives a lower bound for the values $M_{q}\left(P_{k},[\alpha, \beta]\right)$ and $M_{q}\left(Q_{k},[\alpha, \beta]\right)$ for every $q>0$ and $32 \pi / n \leq \beta-\alpha$. See also [7] on sums of monomials with large Mahler measure on subarcs of the unit circle ∂D. In [13] the asymptotic values of $M_{0}\left(P_{k},[0,2 \pi]\right)$ and $M_{0}\left(Q_{k},[0,2 \pi]\right)$, conjectured by Saffari, have been found. Namely in [13] we showed the following.

Theorem 1.4. We have

$$
\lim _{n \rightarrow \infty} \frac{M_{0}\left(P_{k},[0,2 \pi]\right)}{n^{1 / 2}}=\lim _{n \rightarrow \infty} \frac{M_{0}\left(Q_{k},[0,2 \pi]\right)}{n^{1 / 2}}=\left(\frac{2}{e}\right)^{1 / 2}
$$

Properties of the Rudin Shapiro polynomials have played a a central role in [1] as well as in [14] to prove a longstanding conjecture of Littlewood on the existence of flat Littlewood polynomials S_{n} of degree n satisfying the inequalities

$$
c_{1} n^{1 / 2} \leq\left|S_{n}\left(e^{i t}\right)\right| \leq c_{2} n^{1 / 2}, \quad t \in \mathbb{R}
$$

with absolute constants $c_{1}>0$ and $c_{2}>0$.

New Results

Let $\gamma:=\sin ^{2}(\pi / 8)$ and $n:=2^{k}$ The Lebesgue measure of a set $E \subset \mathbb{R}$ is denoted by $m(E)$.

Theorem 2.1. Let $E:=\left\{t \in[\alpha, \beta]:\left|P_{k}(t)\right| \geq \gamma n\right\}$. We have

$$
m(E) \geq \frac{(\beta-\alpha) \gamma}{4 \pi}
$$

for every $32 \pi / n \leq \beta-\alpha$. The same estimate holds for P_{k} replaced by Q_{k}.
Theorem 2.2. We have

$$
\frac{\gamma}{4 \pi}(\gamma n)^{q / 2} \leq M_{q}\left(P_{k},[\alpha, \beta]\right)^{q} \leq(2 n)^{q / 2}
$$

for every $q>0$ and $32 \pi / n \leq \beta-\alpha$. The same estimate holds for P_{k} replaced by Q_{k}.

3. Lemmas

Let $n:=2^{k}, \gamma:=\sin ^{2}(\pi / 8), z_{j}:=e^{i t_{j}}, t_{j}:=2 \pi j / n, j \in \mathbb{Z}$.
Lemma 3.1. We have

$$
\max \left\{\left|P_{k}\left(z_{j}\right)\right|^{2},\left|P_{k}\left(z_{j+r}\right)\right|^{2}\right\} \geq \gamma 2^{k+1}=2 \gamma n, \quad r \in\{-1,1\}
$$

for every $j=2 u, u \in \mathbb{Z}$. The same estimate holds for P_{k} replaced by Q_{k}.
Lemma 3.1 tells us that the modulus of the Rudin-Shapiro polynomials P_{k} is certainly not smaller than $(2 \gamma n)^{1 / 2}$ at least at one of any two consecutive n-th root of unity, where $n:=2^{k}$. This is a crucial observation proved in [11] and plays a key role in [12], [13], [14] and [15] as well. Our Lemma 3.2 below follows from Lemma 3.1 reasonably simply.

Lemma 3.2. We have

$$
\left|P_{k}\left(e^{i t}\right)\right|^{2} \geq \gamma n, \quad t \in\left[t_{j}-\gamma / n, t_{j}+\gamma / n\right]
$$

for every $j \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left|P_{k}\left(z_{j}\right)\right|^{2} \geq \gamma 2^{k+1}=2 \gamma n \tag{3.1}
\end{equation*}
$$

The same estimate holds with P_{k} replaced by Q_{k}.
Proof of Lemma 3.2. By (1.3) it is sufficient to prove the lemma only for P_{k}. The proof of the lemma is a simple combination of the Mean Value Theorem and Bernstein's inequality applied to the nonnegative trigonometric polynomial R_{k} of degree $n-1$ with $n=2^{k}$ defined by $R_{k}(t):=P_{k}\left(e^{i t}\right) P_{k}\left(e^{-i t}\right)$. Recall that (1.1) implies $0 \leq R_{k}(t)=\left|P_{k}\left(e^{i t}\right)\right|^{2} \leq 2 n$ for every $t \in \mathbb{R}$. Note also that the Bernstein factor is $n / 2$ rather than n for the class of nonnegative trigonometric polynomials of degree at most n, see Lemma 3.3 below. Suppose $j \in \mathbb{Z}$ satisfies (3.1) and $t \in \mathbb{R}$ satisfies $\left|t-t_{j}\right| \leq \gamma / n$. Then by the Mean Value Theorem there is a ξ between t_{j} and t such that

$$
R_{k}\left(t_{j}\right)-R_{k}(t) \leq\left|R_{k}\left(t_{j}\right)-R_{k}(t)\right|=\left|t_{j}-t\right|\left|R_{k}^{\prime}(\xi)\right| \leq \frac{\gamma}{n} \frac{n}{2} \max _{\tau \in K}\left\{R_{k}(\tau) \leq \frac{\gamma}{n} \frac{n}{2} 2 n=\gamma n .\right.
$$

Therefore, recalling (3.1), we get

$$
R_{k}(t) \geq R_{k}\left(t_{j}\right)-\gamma n=2 \gamma n-\gamma n=\gamma n, \quad t \in\left[t_{j}-\gamma / n, t_{j}+\gamma / n\right] .
$$

Let $K:=\mathbb{R}(\bmod 2 \pi)$, as before.
Lemma 3.3. We have

$$
\max _{\tau \in K}\left|T^{\prime}(\tau)\right| \leq \frac{n}{2} \max _{\tau \in K} T(\tau)
$$

for every trigonometric polynomial T of degree at most n that is nonnegative on \mathbb{R}.
Proof of Lemma 3.3. Suppose T is a trigonometric polynomial of degree at most n that is nonnegative on \mathbb{R}. The Bernstein inequality, see [3] for instance, asserts that

$$
\max _{\tau \in K}\left|Q^{\prime}(\tau)\right| \leq n \max _{\tau \in K}|Q(\tau)|
$$

for every real trigonometric polynomial Q of degree at most n. Applying the Bernstein inequality to the real trigonometric polynomial $Q:=T-M$ of degree at most n with $M:=\frac{1}{2} \max _{\tau \in K}|Q(\tau)|$ gives the lemma.

4. Proof of the theorems

Proof of Theorem 2.1. By (1.3) it is sufficient to prove the theorem only for P_{k}. Observe that Lemmas 3.1 and 3.2 imply that E contains at least $\frac{(\beta-\alpha) n}{4 \pi}-4$ disjoint intervals of length at least $2 \gamma / n$, hence

$$
m(E) \geq\left(\frac{(\beta-\alpha) n}{4 \pi}-4\right) \frac{2 \gamma}{n} \geq \frac{(\beta-\alpha) n}{8 \pi} \frac{2 \gamma}{n}=\frac{(\beta-\alpha) \gamma}{4 \pi}
$$

whenever $32 \pi / n \leq \beta-\alpha$.
Proof of Theorem 2.2. By (1.2) it is sufficient to prove Theorem 2.1 for P_{k}. The upper bound of the theorem follows immediately from (1.1). Now we prove the lower bound of the theorem. Using Theorem 2.1 we have

$$
\begin{aligned}
M_{q}\left(P_{k},[\alpha, \beta]\right)^{q} & :=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left|P_{k}(t)\right|^{q} d t \geq \frac{1}{\beta-\alpha} \int_{E}\left|P_{k}(t)\right|^{q} d t \\
& \geq \frac{1}{\beta-\alpha} m(E)(\gamma n)^{q / 2} \geq \frac{1}{\beta-\alpha} \frac{(\beta-\alpha) \gamma}{4 \pi}(\gamma n)^{q / 2} \\
& \geq \frac{\gamma}{4 \pi}(\gamma n)^{q / 2}
\end{aligned}
$$

whenever $32 \pi / n \leq \beta-\alpha$.

5. More observations and problems

Let P_{k} and Q_{k} be the usual Rudin-Shapiro polynomials of degree $n-1$ with $n:=2^{k}$.
As for $k \geq 1$ both P_{k} and Q_{k} have odd degree $n-1=2^{k}-1$, both P_{k} and Q_{k} have at least one real zero. The fact that for $k \geq 1$ both P_{k} and Q_{k} have exactly one real zero was proved by Brillhart in [5]. Another interesting observation made in [6] is the fact that P_{k} and Q_{k} cannot vanish at any roots of unity different from -1 and 1 . In [12] we proved that the Rudin-Shapiro polynomials P_{k} and Q_{k} have only $o(n)$ zeros on the unit circle ∂D. Observe, see [6] for instance, that

$$
P_{k}(1)=2^{[(k+1) / 2]}, \quad Q_{k}(-1)=(-1)^{k+1} 2^{[(k+1) / 2]}
$$

and

$$
P_{k}(-1)=Q_{k}(1)=\frac{1}{2}\left(1+(-1)^{k}\right) 2^{[k / 2]}
$$

where $[x]$ denotes the integer part of a real number x.
Problem 5.1. Is it true that if k is odd then P_{k} has a zero on the unit circle partialD only at -1 and Q_{k} has a zero on the unit circle ∂D only at 1 , while if k is even then neither P_{k} nor Q_{k} has a zero on the unit circle ∂D ?

Combining (1.2) with the observation that the Rudin-Shapiro polynomials P_{k} and Q_{k} of degree $n-1$ with $n:=2^{k}$ have only $o(n)$ zeros on the unit circle ∂D, we can deduce that the products $P_{k} Q_{k}$ have $n-o(n)$ zeros in the open unit disk D, where $o(n)$ denotes real numbers such that $o(n) / n$ converges to 0 as n tends to ∞.

Problem 5.2. Is there an absolute constant $c>0$ such that both of the Rudin-Shapiro polynomials P_{k} and Q_{k} have at least cn zeros in the open unit disk D ?
Problem 5.3. Is it true that both of the Rudin-Shapiro polynomials P_{k} and Q_{k} have $n / 2-o(n)$, zeros in the open unit disk D ?
Problem 5.4. Is it true that Theorem 1.3 remains valid for all $32 \pi / n \leq \beta-\alpha \leq 2 \pi$?
Problem 5.5. Is there an absolute constant $c>0$ such that

$$
M_{0}\left(\left|P_{k}\right|^{2}-n,[0,2 \pi]\right):=\exp \left(\left.\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \log | | P_{k}\left(e^{i t}\right)\right|^{2}-n \right\rvert\, d t\right) \geq c n^{1 / 2} ?
$$

6. A CONNECTION TO SEW-RECIPROCAL POLYNOMIALS

A polynomial S of the form

$$
S(z)=\sum_{j=0}^{2 m} a_{j} z^{j}, \quad a_{j} \in \mathbb{R}, \quad a_{2 m} \neq 0
$$

is called skew-reciprocal if

$$
\begin{equation*}
a_{m-j}=(-1)^{j} a_{m+j}, \quad j=1,2, \ldots, m \tag{6.2}
\end{equation*}
$$

A beautiful observation of Mercer [18] states the following.
Theorem 6.1. Skew-reciprocal Littlewood polynomials do not have any zeros on the unit circle ∂D.

The Rudin-Shapiro polynomials P_{k} and Q_{k} of degree $n-1$ with $n:=2^{k}$ are quite close to be skew-reciprocal. However, as the degrees of P_{k} and Q_{k} are odd, Theorem 6.1 does not apply to the Rudin-Shapiro polynomials. Having a middle term in the polynomial S in the proof below is crucial.

Proof of Theorem 6.1. Let S be a skew-reciprocal Littlewood polynomial of the form

$$
S(z)=\sum_{j=0}^{2 m} a_{j} z^{j}, \quad a_{j} \in\{-1,1\}, \quad j=0,1, \ldots, 2 m, \quad a_{2 m} \neq 0
$$

with

$$
a_{m-j}=(-1)^{j} a_{m+j}, \quad j=1,2, \ldots, m
$$

For notational convenience we assume that $m=2 \mu$ is even; the proof in the case when $m=2 \mu-1$ is odd can be handled similarly. We have $z^{-m} S(z)=A(z)+B(z)$, where the function

$$
A(z):=\sum_{j=0}^{\mu} a_{m+2 j}\left(z^{2 j}+z^{-2 j}\right), \quad z \in \partial D
$$

takes purely real values on the unit circle ∂D, and the function

$$
B(z):=\sum_{j=1}^{\mu} a_{m+2 j-1}\left(z^{2 j-1}-z^{-2 j-1}\right), \quad z \in \partial D
$$

takes purely imaginary values on the unit circle ∂D. Suppose to the contrary that S vanishes at a point z_{0} on the unit circle ∂D. Then z_{0} is a common zero of A and B. We study the greatest common divisor of the polynomials $\widetilde{A}(z):=z^{m} A(z)$ and $\widetilde{B}(z):=z^{m} B(z)$ over the field \mathbf{F}_{2}. We have

$$
\widetilde{A}(z)-z \widetilde{B}(z)=\sum_{j=0}^{m} z^{2 j}-z \sum_{j=1}^{m} z^{2 j-1}=1
$$

over the field \mathbf{F}_{2}, showing that the greatest common divisor of the polynomials \widetilde{A} and \widetilde{B} over the field \mathbf{F}_{2} is 1. Hence $A(z)$ and $B(z)$ cannot have a common zero on the unit circle ∂D, a contradiction.

Note that the same approach works to prove that skew-reciprocal polynomials with only odd coefficients do not have any zeros on the unit circle ∂D.

References

1. Balister, B. Bollobás, R. Morris, J. Sahasrabudhe, and M. Tiba, Flat Littlewood polynomials exist, Ann. of Math. 192 (2020), no. 997-1003.
2. P. Borwein, Computational Excursions in Analysis and Number Theory, Springer, New York, 2002.
3. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
4. P. Borwein and M.J. Mossinghoff, Rudin-Shapiro like polynomials in L_{4}, Math. Comp. 69 (2000), 1157-1166.
5. J. Brillhart, On the Rudin-Shapiro polynomials, Duke Math. J. 40 (1973), no. 2, 335-353.
6. J. Brillhart, J.S. Lemont, and P. Morton, Cyclotomic properties of the Rudin-Shapiro polynomials, J. Reine Angew. Math. (Crelle's J.) 288 (1976), 37-65.
7. K.-K. S. Choi and T. Erdélyi, Sums of monomials with large Mahler measure, J. Approx. Theory 197 (2015), 49-61.
8. Ch. Doche, Even moments of generalized Rudin-Shapiro polynomials, Math. Comp. 74 (2005), no. 252, 1923-1935.
9. Ch. Doche and L. Habsieger, Moments of the Rudin-Shapiro polynomials, J. Fourier Anal. Appl. 10 (2004), no. 5, 497-505.
10. S.B. Ekhad and D. Zeilberger, Integrals involving Rudin-Shapiro polynomials and sketch of a proof of Saffari's conjecture, in Analytic number theory, modular forms and q-hypergeometric series 221 (2017), Springer Proc. Math. Stat., Springer, Cham, 253-265.
11. T. Erdélyi, The Mahler measure of the Rudin-Shapiro polynomials, Constr. Approx. 43 (2016), no. 3, 357-369.
12. T. Erdélyi, On the oscillation of the modulus of the Rudin-Shapiro polynomials on the unit circle, Mathematika 66 (2020), no. 1, 144-160.
13. T. Erdélyi, The asymptotic value of the Mahler measure of the Rudin-Shapiro polynomials, J. Anal. Math. 142 (2020), no. 2, 521-537.
14. T. Erdélyi, Do flat skew-reciprocal Littlewood polynomials exist?, Constr. Approx. 56 (2022), no. 3, 537-554.
15. T. Erdélyi, Improved results on the oscillation of the modulus of the Rudin-Shapiro polynomials on the unit circle, Proc. Amer. Math. Soc. 151 (2023), 2733-2740.
16. M.J. Golay, Static multislit spectrometry and its application to the panoramic display of infrared spectra, J. Opt. Soc. America 41 (1951), 468-472.
17. G.H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, London, 1952.
18. I.D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447.
19. J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Lexington, Massachusetts, 1968.
20. B. Rodgers, On the distribution of Rudin-Shapiro polynomials and lacunary walks on $S U(2)$, Adv. Math. 320 (2017), 993-1008.
21. H.S. Shapiro, Master thesis, MIT, 1951.

Department of Mathematics, Texas A\&M University College Station, Texas 77843
E-mail address: terdelyi@tamu.edu

