
ON THE OSCILLATION OF THE MODULUS

OF THE RUDIN-SHAPIRO POLYNOMIALS

AROUND THE MIDDLE OF THEIR RANGES

Tamás Erdélyi
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Abstract. Let either Rk(t) := |Pk(e
it)|2 or Rk(t) := |Qk(e

it)|2, where Pk and Qk are the

usual Rudin-Shapiro polynomials of degree n − 1 with n = 2k. The graphs of Rk on the

period suggest many zeros of Rk(t)− n in a dense fashion on the period. Let N(I, Rk − n)
denote the number of zeros of Rk − n in an interval I := [α, β] ⊂ [0, 2π]. Improving earlier

results stated only for I := [0, 2π], in this paper we show that

n|I|

8π
−

2

π
(2n logn)1/2 − 1 ≤ N(I, Rk − n) ≤

n|I|

π
+

8

π
(2n logn)1/2 , k ≥ 2 ,

for every I := [α, β] ⊂ [0, 2π], where |I| = β − α denotes the length of the interval I.

1. Introduction

Let D := {z ∈ C : |z| < 1} denote the open unit disk of the complex plane. Let ∂D :=
{z ∈ C : |z| = 1} denote the unit circle of the complex plane. Littlewood polynomials are
polynomials with each of their coefficients in {−1, 1}. A special sequence of Littlewood
polynomials are the Rudin-Shapiro polynomials, They appear in Harold Shapiro’s 1951
thesis [18] at MIT and are sometimes called just the Shapiro polynomials. They also arise
independently in Golay’s paper [15]. They are remarkably simple to construct and are a
rich source of counterexamples to possible conjectures. The Rudin-Shapiro polynomials
are defined recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

Pk+1(z) := Pk(z) + z2
k

Qk(z) ,

Qk+1(z) := Pk(z)− z2
k

Qk(z) ,
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for k = 0, 1, 2, . . . . Note that both Pk and Qk are polynomials of degree n − 1 with
n := 2k having each of their coefficients in {−1, 1}. In signal processing, the Rudin-
Shapiro polynomials have good autocorrelation properties and their values on the unit
circle are small. Binary sequences with low autocorrelation coefficients are of interest in
radar, sonar, and communication systems.

It is well known and easy to check by using the parallelogram law that

|Pk+1(z)|
2 + |Qk+1(z)|

2 = 2(|Pk(z)|
2 + |Qk(z)|

2) , z ∈ ∂D .

Hence

(1.1) |Pk(z)|
2 + |Qk(z)|

2 = 2k+1 = 2n , z ∈ ∂D .

It is also well known (see Section 4 of [3], for instance), that

Qk(−z) = P ∗

k (z) := zn−1Pk(1/z) , z ∈ ∂D ,

and hence

(1.2) |Qk(−z)| = |Pk(z)| , z ∈ ∂D .

Despite the simplicity of their definition not much is known about the Rudin-Shapiro
polynomials. Various properties of the Rudin-Shapiro polynomials are discussed in [4] and
[5]. As for k ≥ 1 both Pk and Qk have odd degree, both Pk and Qk have at least one real
zero. The fact that for k ≥ 1 both Pk and Qk have exactly one real zero was proved in
[4]. It has been shown in [9] that the Mahler measure (geometric mean) and the maximum
modulus of the Rudin-Shapiro polynomials Pk and Qk of degree n − 1 with n := 2k on
the unit circle of the complex plane have the same size. That is, in addition to (1.1),
the Mahler measure of the Rudin-Shapiro polynomials of degree n − 1 with n := 2k is
bounded from below by cn1/2, where c > 0 is an absolute constants. In [10] various results
on the zeros of the Rudin-Shapiro polynomials are proved and some open problems are
raised. In [11] a conjecture of Saffari on the asymptotic value of the Mahler measure of
the Rudin-Shapiro polynomials is proved.

For a monic polynomial

(1.3) P (z) =

n
∏

j=1

(z − αj) = zn +

n−1
∑

j=0

ajz
j , aj ∈ C , a0 6= 0 ,

let

H(P ) :=
1

|a0|1/2
max
z∈∂D

|P (z)| .

Let
αj = ρje

iθj , ρj > 0 , θj ∈ [0, 2π) .

For I := [α, β] ⊂ [0, 2π] let N(I, P ) denote the number of the values j ∈ {1, 2, . . . , n} for
which θj ∈ I. In 1950 Erdős and Turán [14] proved the following result.
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Theorem 1.1. We have
∣

∣

∣

∣

N(I, P )−
n|I|

2π

∣

∣

∣

∣

≤ 16(n logH(P ))1/2

for every monic polynomial of the form (1.3) and for every I := [α, β] ⊂ [0, 2π), where
|I| = β − α denotes the length of the interval I.

In [19] K. Soundararajan proved that the constant 16 in the above result may be re-
placed by 8/π. Another improvement of the Erdős-Turán theorem may be found in [8], for
example. Rudin-Shapiro polynomials play a key role in [2] as well as in [13] to prove the
existence of flat Littlewood polynomials, a recent breakthrough result. More on Rudin-
Shapiro polynomials may be found in [6,7,17].

2. New Results

Let either Rk(t) := |Pk(e
it)|2 or Rk(t) := |Qk(e

it)|2, and n := 2k. In [1] we combined
close to sharp upper bounds for the modulus of the autocorrelation coefficients of the
Rudin-Shapiro polynomials with a deep theorem of Littlewood (see Theorem 1 in [16]) to
prove that there is an absolute constant A > 0 such that the equation Rk(t) = (1+η)n with
n := 2k has at least An0.5394282 distinct solutions in [0, 2π) whenever η is real, |η| ≤ 2−8,
and n is sufficiently large. In this paper we improve this result substantially.

Theorem 2.1. Let k ≥ 0 and n := 2k be integers and let N(I, Rk−n) denote the number
of zeros of Rk(t)− n in an interval I := [α, β] ⊂ [0, 2π). We have

n|I|

8π
−

2

π
(2n logn)1/2 − 1 ≤ N(I, Rk − n) ≤

n|I|

π
+

8

π
(2n logn)1/2 , k ≥ 2 ,

for every I := [α, β] ⊂ [0, 2π], where |I| = β − α denotes the length of the interval I.

This extends the main result in [12] from the case I := [0, 2π) to the case I = [α, β] ⊂
[0, 2π]. In our proof of Theorem 2.1 we combine ideas used in [12] and a classical result of
Erdős and Turán [14] with a constant improved recently by Soundararajan [19].

3. Lemmas

In the proof of Theorem 2.1 we need the lemma below stated and proved as Lemma 3.1
in [9].

Lemma 3.1. Let k ≥ 2 and n := 2k be integers, and let

zj := eitj , tj :=
2πj

n
, j ∈ Z .

We have

Pk(zj) = 2Pk−2(zj) , j = 2u , u ∈ Z ,

Pk(zj) = (−1)(j−1)/22iQk−2(zj) , j = 2u+ 1 , u ∈ Z ,
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where i is the imaginary unit.

For a trigonometric polynomial of the form

(3.1) T (θ) = ±2 cos(mθ) +
m−1
∑

j=−m+1

aje
ijθ , aj ∈ C ,

let

H(T ) := max
θ∈R

|T (θ)| .

For I := [α, β] ⊂ [0, 2π] let N(I, T ) denote the number of zeros of T in I counted with
multiplicities.

Lemma 3.2. We have

N(I, T )−
m|I|

π
≤

8

π
(2m logH(T ))1/2

for every trigonometric polynomial T of the form (3.1) and for every I := [α, β] ⊂ [0, 2π],
where |I| := β − α.

Proof. This follows from the Erdős-Turán inequality (Theorem 1.1) with 16 replaced by
Soundararajan’s constant 8/π. �

Lemma 3.3. Let k ≥ 0 and n := 2k be integers. We have

N(I, Rk − n)−
n|I|

π
≤

8

π
(2n logn)1/2

for every I := [α, β] ⊂ [0, 2π], where |I| := β − α.

Proof. Observe that Rk −n is of the form (3.1) with m := n−1. It follows from (1.1) that

H(Rk − n) = max
θ∈R

|Rk(θ)− n| ≤ n ,

and the lemma follows from Lemma 3.2 �

Replacing n by n/4 we get the following corollary.

Lemma 3.4. Let k ≥ 2 and n := 2k be integers. We have

N(I, Rk−2 − n/4)−
n|I|

4π
≤

4

π
(2n logn)1/2

for every I := [α, β] ⊂ [0, 2π], where |I| := β − α.
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4. Proof of Theorem 2.1

Proof of Theorem 2.1. Let k ≥ 0 and n := 2k be integers, and let I := [α, β] ⊂ [0, 2π].
Assume that Rk(t) = |Pk(e

it)|2. The case Rk(t) = |Qk(e
it)|2 follows from it by (1.2). The

upper bound of the theorem follows from Lemma 3.3. We now prove the lower bound of
the theorem, which is more subtle. Without loss of generality we may assume that

|I| ≥
4π

n
,

otherwise there is nothing to prove. For the sake of brevity let

Aj := Rk−2(tj)− n/4 , j ∈ Z .

Let tj := 2πj/n be the same as in Lemma 3.1. We define the integers h and M by

th < α ≤ th+1 < th+M+1 ≤ β < th+M+2 .

Observe that

(4.1) M ≥
n|I|

2π
− 2 .

We study the M -tuple 〈Ah+1, Ah+2, . . . , Ah+M〉. Lemma 3.4 implies that Rk−2(t) − n/4
has at most

(4.2)
n|I|

4π
+

4

π
(2n logn)1/2

zeros in I. Therefore the Intermediate Value Theorem yields that the number of sign
changes in the M -tuple 〈Ah+1, Ah+2, . . . , Ah+M 〉 is at most as large as the value in (4.2).
Hence (4.1) and (4.2) imply that there are integers

h+ 1 ≤ j1 < j2 < · · · < jN ≤ h+M

with

(4.3) N ≥
n|I|

2π
− 2−

n|I|

4π
−

4

π
(2n logn)1/2 =

n|I|

4π
−

4

π
(2n logn)1/2 − 2

such that

(4.4) AjνAjν+1 ≥ 0 , ν = 1, 2, . . . , N .

Using Lemma 3.1 we have either

16AjνAjν+1 =(4(Rk−2(tjν )− n/4))(4(Rk−2(tjν+1)− n/4))

=(4|Pk−2(e
itjν )|2 − n)(4|Pk−2(e

itjν+1)|2 − n)

=(|Pk(e
itjν )|2 − n)(|Qk(e

itjν+1)|2 − n)

=(|Pk(e
itjν )|2 − n)(n− |Pk(e

itjν+1)|2) ,

(4.5)
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or

16AjνAjν+1 =(4(Rk−2(tjν )− n/4))(4(Rk−2(tjν+1)− n/4))

=(4|Pk−2(e
itjν )|2 − n)(4|Pk−2(e

itjν+1)|2 − n)

=(|Qk(e
itjν )|2 − n)(|Pk(e

itjν+1)|2 − n)

=(n− |Pk(e
itjν )|2)(|Pk(e

itjν+1)|2 − n) .

(4.6)

Combining (4.4), (4.5), and (4.6), we can deduce that

(|Pk(e
itjν )|2 − n)(|Pk(e

itjν+1)|2 − n) = −16AjνAjν+1 ≤ 0 , ν = 1, 2, . . . , N .

Hence the Intermediate Value Theorem implies that Rk(t)−n = |Pk(e
it)|2−n has at least

one zero in each of the intervals

[tjν , tjν+1] , ν = 1, 2, . . . , N .

Recalling (4.3) we conclude that Rk(t)− n = |Pk(e
it)|2 − n has at least

N/2 ≥
n|I|

8π
−

2

π
(2n logn)1/2 − 1

distinct zeros in I. �
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12. T. Erdélyi, Improved results on the oscillation of the modulus of the Rudin-Shapiro polynomials

on the unit circle, Proc. Amer. Math. Soc. (to appear).
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