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Abstract. Let D be the open unit disk of the complex plane. Its boundary, the

unit circle of the complex plane, is denoted by ∂D. Let

Kn :=

{

pn : pn(z) =
n
∑

k=0

akz
k, ak ∈ C , |ak| = 1

}

.

The class Kn is often called the collection of all (complex) unimodular polynomials
of degree n. Given a sequence (εn) of positive numbers tending to 0, we say that a
sequence (Pn) of unimodular polynomials Pn ∈ Kn is (εn)-ultraflat if

(1− εn)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + εn)

√
n+ 1 , z ∈ ∂D , n ∈ N .

The existence of ultraflat unimodular polynomials seemed very unlikely, in view of
a 1957 conjecture of P. Erdős (Problem 22 in [Er1]) asserting that, for all Pn ∈ Kn

with n ≥ 1,
max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, combining some prob-
abilistic lemmas from Körner’s paper [Kö] with some constuctive methods (Gauss
polynomials, etc.), which were completely unrelated to the deterministic part of
Körner’s paper, Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn

which is (εn)-ultraflat, where εn = O
(

n−1/17
√
logn

)

. Thus the Erdős conjecture
was disproved for the classes Kn.

In this paper we study ultraflat sequences (Pn) of unimodular polynomials Pn ∈
Kn in general, not necessarily those produced by Kahane in his paper [Ka]. We prove
a few conjectures of Saffari [Sa] (see also [QS2]). Most importantly the following one.

Uniform Distribution Conjecture for the Angular Speed. Let (Pn) be a εn-
ultraflat sequence of unimodular polynomials Pn ∈ Kn. Let

Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| .

In the interval [0, 2π], the distribution of the normalized angular speed α′
n(t)/n con-

verges to the uniform distribution as n → ∞. More precisely, we have

m{t ∈ [0, 2π] : 0 ≤ α′

n(t) ≤ nx} = 2πx+ on(x)

for every x ∈ [0, 1], where limn→∞ on(x) = 0 for every x ∈ [0, 1].
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1. Introduction

Let D be the open unit disk of the complex plane. Its boundary, the unit circle
of the complex plane, is denoted by ∂D. Let

Kn :=

{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}
.

The class Kn is often called the collection of all (complex) unimodular polynomials
of degree n. Let

Ln :=

{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}
.

The class Ln is often called the collection of all (real) unimodular polynomials of
degree n. By Parseval’s formula,

∫ 2π

0

|Pn(e
it)|2 dt = 2π(n+ 1)

for all Pn ∈ Kn. Therefore

(1.1) min
z∈∂D

|Pn(z)| <
√
n+ 1 < max

z∈∂D
|Pn(z)|

for all Pn ∈ Kn.

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). Examine that how close a
unimodular polynomial Pn ∈ Kn or Pn ∈ Ln can come to satisfying

(1.2) |Pn(z)| =
√
n+ 1 , z ∈ ∂D .

Obviously (1.2) is impossible if n ≥ 1. So one must look for less than (1.2),
but then there are various ways of seeking such an “approximate situation”. One
way is the following. In his paper [Li1] Littlewood had suggested that, conceivably,
there might exist a sequence (Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln)
such that (n + 1)−1/2|Pn(e

it)| converge to 1 uniformly in t ∈ R. We shall call
such sequences of unimodular polynomials “ultraflat”. More precisely, we give the
following definitions. In the rest of the paper, we assume that (nk) is a strictly
increasing sequence of positive integers.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is
ε-flat if

(1.3) (1 − ε)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + ε)

√
n+ 1 , z ∈ ∂D ,

or equivalently
max
z∈∂D

∣∣|Pn(z)| −
√
n+ 1

∣∣ ≤ ε
√
n+ 1 .
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Definition 1.3. Given a sequence (εnk
) of positive numbers tending to 0, we say

that a sequence (Pnk
) of unimodular polynomials Pnk

∈ Knk
is (εnk

)-ultraflat if

(1.4) (1− εnk
)
√
nk + 1 ≤ |Pnk

(z)| ≤ (1 + εnk
)
√
nk + 1 , z ∈ ∂D ,

or equivalently

max
z∈∂D

∣∣|Pnk
(z)| −

√
nk + 1

∣∣ ≤ εnk

√
nk + 1 .

The existence of an ultraflat sequence of unimodular polynomials seemed very
unlikely, in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er1]) asserting
that, for all Pn ∈ Kn with n ≥ 1,

(1.5) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, combining some prob-
abilistic lemmas from Körner’s paper [Kö] with some constuctive methods (Gauss
polynomials, etc.), which were completely unrelated to the deterministic part of
Körner’s paper, Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn

which is (εn)-ultraflat, where

(1.6) εn = O
(
n−1/17

√
logn

)
.

Thus the Erdős conjecture (1.5) was disproved for the classes Kn. For the more
restricted class Ln the analogous Erdős conjecture is unsettled to this date. It is a
common belief that the analogous Erdős conjecture for Ln is true, and consequently
there is no ultraflat sequence of unimodular polynomials Pn ∈ Ln. I thank H.
Queffelec for providing more details about the existence of ultraflat sequences (Pn)
of unimodular polynomials Pn ∈ Kn. The story is roughly the following.

Littlewood [Li1] had constructed polynomials Pn ∈ Kn so that on one hand
|Pn(z)| ≤ B

√
n+ 1 for every z ∈ ∂D, and on the other hand |Pn(z)| ≥ A

√
n+ 1

with an absolute constant A > 0 for every z ∈ ∂D except for a small arc. In the
light of this result he asked how close we can get to satisfying |Pn(z)| =

√
n+ 1 for

every z ∈ ∂D if Pn ∈ Kn. The first result in this direction is due to Körner [Kör].
By using a result of Byrnes, he showed that there are absolute constants 0 < A < B
such that A

√
n+ 1 ≤ |Pn(z)| ≤ B

√
n+ 1 for every z ∈ ∂D. Then Kahane [Ka]

constructed a sequence (Pn) of polynomials Pn ∈ Kn for which

(1− εn)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + εn)

√
n+ 1 , z ∈ ∂D ,

with a sequence (εn) of positive real numbers converging to 0. Such a sequence is
called (εn)-ultraflat.

Kahane’s construction seemed to indicate a very rigid behavior for the phase
function αn, where

Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| .
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Saffari [Sa] had conjectured in 1991 that for every ultraflat sequence (Pn), α
′
n(t)/n

converges in measure to the uniform distribution on [0, 1], that is,

(1.7) m {t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} → 2πx , 0 ≤ x ≤ 1 ,

where m is the Lebesgue measure on the Borel subsets of [0, 2π). Since it can
be seen easily that Xn := α′

n(t)/n is uniformly bounded, the method of moments
applies and everything could be obtained from

(1.8)

∫ 1

0

Xq
n(t) dt =

1

q + 1
, q = 0, 1, . . . .

This was proved by Saffari [Sa] for q = 0, 1, 2 . Then in 1996 Queffelec and Saffari
[QS2] used Kahane’s method with a slight modification to show the existence of an
ultraflat sequence (Pn) which satisfies (1.7). They also showed that (1.8) is true
for q = 3 (and almost for q = 4) for any ultraflat sequence (Pn) of polynomials
Pn ∈ Kn. When their work was submitted to Journal of Fourier Analysis and
Applications, the editor in chief, J. Benedetto, and one of his students discovered
an error in Byrnes work which, as a result, invalidated Körner’s work. It was
discovered that the deterministic part of Körner’s [Kö] work was incorrect, and it
was based on the incorrect “Theorem 2” of Byrnes’ paper [By]. For details of the
story see the forthcoming paper by by J.S. Byrnes and B. Saffari [BS].

Fortunately Kahane’s work was independent of Byrnes’. It contained though
an other slight error which was corrected in [QS2]. Ultraflat sequences (Pn) of
polynomials Pn ∈ Kn do exist! It is important to note this, otherwise the work
of this paper would be without object. In this paper we answer Saffari’s Problem
affirmatively, namely we show that (1.7) (or equivalently (1.8)) is true for every
ultraflat sequence (Pn) of unimodular polynomials Pn ∈ Kn.

An interesting related result to Kahane’s breakthrough is given in [Be]. For an
account of some of the work done till the mid 1960’s, see Littlewood’s book [Li2]
and [QS2].

In this paper we study ultraflat sequences (Pn) of unimodular polynomials Pn ∈
Kn in general, not necessarily those produced by Kahane in his paper [Ka]. With
trivial modifications our results remain valid even if we study ultraflat sequences
(Pnk

) of unimodular polynomials Pnk
∈ Knk

. It is left to the reader to formulate
these analogue results.

2. The Phase Problem: Results and Conjectures of Saffari

Let (εn) be a sequence of positive numbers tending to 0. So εn < 1/3 for
all sufficiently large large n = 1, 2, . . . . The assumption that the sequence (Pn)
of unimodular polynomials Pn ∈ Kn is (εn)-ultraflat will be denoted by (Pn) ∈
UF((εn)). Let (Pn) ∈ UF((εn)). We write

(2.1) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| .

It is a simple exercise to show that αn can be chosen to be in C∞(R). This is
going to be our understanding throughout the paper. We think of t as time. The
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ultraflatness condition (1.3) means that the mobile point Pn(e
it) moves inside a

narrow annulus centered at the origin and of inner radius (1 − εn)
√
n+ 1 and of

outer radius (1 + εn)
√
n+ 1. Our purpose is the phase problem, that is the study

of the phase αn(t), or rather the (instantaneous) angular speed α′
n(t). Writing

Pn(e
it) =

n∑

k=0

exp(ikt+ iθk) , θk ∈ R, k = 0, 1, . . . , n ,

we see that we have n+1 unit vectors whose endpoints exp(iθk), k = 0, 1, . . . , n,
rotate along the unit circle. That (Pn) ∈ UF((εn)) is equivalent to saying that there
is a choice of initial positions exp (iθk) so that the resultant vector has endpoint
Pn(e

it) moving in the above mentioned narrow annulus. Our intuition may tell us
two things. First that, since the “components” exp(ikt) have (respective) angular
speeds 0, 1, 2 . . . , n, then the “resultant angular speed is” is approximately their
average; in other words, we might expect to have

(2.2) α′
n(t) = n/2 + on(t)n , lim

n→∞
max

0≤t≤2π
on(t) = 0 , t ∈ [0, 2π] .

However, Saffari observed that this is true in average, that is

(2.3)
1

2π

∫ 2π

0

α′
n(t) dt = n/2 + onn , lim

n→∞
on = 0 ,

but that (2.2) itself is far from being true. He proves that α′
n(t) takes values at

least as large as 2n/3 + onn and as small as n/3 + onn with suitable constants on
and o∗n converging to 0. Secondly, one may suspect that, since all the components
exp(ikt+ iθk) turn counter-clockwise, then so does their resultant Pn(e

it), modulo
negligible fluctuations: in other words,

(2.4) min
0≤t≤2π

α′
n(t) ≥ onn

with suitable constants on converging to 0. Saffari [Sa] proves that this is indeed
true, moreover

(2.5) onn ≤ α′
n(t) ≤ n− onn

with suitable constants on converging to 0. He conjectures the following. Let
(Pn) ∈ UF((εn)). Then, with the notation (2.1), we have

(2.6) min
0≤t≤2π

α′
n(t) = onn and max

0≤t≤2π
α′
n(t) = n+ o∗nn

with suitable constants on and o∗n converging to 0.

In Section 4 we prove this conjecture. In fact, Saffari [Sa] conjectures something
much more specific:
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Conjecture 2.1 (Uniform Distribution Conjecture for the Angular Speed).
Suppose (Pn) ∈ UF((εn)). Then, with the notation (2.1), in the interval [0, 2π], the
distribution of the normalized angular speed α′

n(t)/n converges to the uniform dis-
tribution as n → ∞. More precisely, we have

(2.7) m{t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} = 2πx+ on(x)

for every x ∈ [0, 1], where limn→∞ on(x) = 0 for every x ∈ [0, 1], As a consequence,
the distribution of |P ′

n(e
it)|/n3/2 also converges to the uniform distribution as n →

∞. More precisely, we have

(2.8) m{t ∈ [0, 2π] : 0 ≤ |P ′
n(e

it)| ≤ n3/2x} = 2πx+ on(x)

for every x ∈ [0, 1], where limn→∞ on(x) = 0 for every x ∈ [0, 1].

In both statements the convergence of on(x) is uniform on [0, 1] by Dini’s Theo-
rem.

The basis of this conjecture was that for the special ultraflat sequences of uni-
modular polynomials produced by Kahane [Ka], (2.7) is indeed true. In Section 4
we prove this conjecture in general.

In the general case (2.7) can, by integration, be reformulated (equivalently) in
terms of the moments of the angular speed α′

n(t). This was observed and recorded
by Saffari [Sa]. For completeness we will present the proof of this equivalence in
Section 4 and we will settle Conjecture 2.1 by proving the following result.

Theorem 2.2 (Reformulation of the Uniform Distribution Conjecture). Let
(Pn) ∈ UF((εn)). Then, for any q > 0 we have

(2.9)
1

2π

∫ 2π

0

|α′
n(t)|q dt =

nq

q + 1
+ on,qn

q .

with suitable constants on,q converging to 0 as n → ∞ for every fixed q > 0.

An immediate consequence of (2.9) is the remarkable fact that for large values
of n ∈ N, the Lq(∂D) Bernstein factors

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0
|Pn(eit)|q dt

of the elements of ultraflat sequences (Pn) of unimodular polynomials are essentially
independent of the polynomials. More precisely (2.9) implies the following result.

Theorem 2.3 (The Bernstein Factors). Let q be an arbitrary positive real num-
ber. Let (Pn) ∈ UF((εn)). We have

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0 |Pn(eit)|q dt
=

nq+1

q + 1
+ on,qn

q+1 ,
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and as a limit case,
max0≤t≤2π |P ′

n(e
it)|

max0≤t≤2π |Pn(eit)|
= n+ onn .

with suitable constants on,q and on converging to 0 as n → ∞ for every fixed q.

In Section 3 we will show the following result which turns out to be stronger
than Theorem 2.2.

Theorem 2.4 (Negligibility Theorem for Higher Derivatives). Let (Pn) ∈
UF((εn)). For every integer r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| ≤ on,rn

r

with suitable constants on,r > 0 converging to 0 for every fixed r = 2, 3, . . . .

We will show in Section 4 how Theorem 2.1 follows from Theorem 2.4.

Finally we give an extension of Saffari’s Uniform Distribution Conjecture to
higher derivatives. This will be shown in Section 4.

Theorem 2.5 (Distribution of the Modulus of Higher Derivatives of Ul-
traflat Sequences of Unimodular Polynomials). Suppose (Pn) ∈ UF((εn)).
Then (

|P (r)
n (eit)|
nr+1/2

)1/r

converges to the uniform distribution as n → ∞. More precisely, we have

m
{
t ∈ [0, 2π] : 0 ≤ |P (r)

n (eit)| ≤ nr+1/2xr
}
= 2πx+ or,n(x)

for every x ∈ [0, 1], where limn→∞ or,n(x) = 0 for every fixed r = 1, 2, . . . and
x ∈ [0, 1].

For every fixed r = 1, 2, . . . , the convergence of on,r(x) is uniform on [0, 1] by
Dini’s Theorem.

3. Proof of Theorem 2.4

To prove Theorem 2.4 we need a few lemmas. The first one is a standard poly-
nomial inequality ascribed to Bernstein. Its proof is a simple exercise in complex
analysis (an application of the Maximum Principle), and it may be found in a num-
ber of books. See [BE, p. 390], for example. We will use the more or less standard
notation

D(z0, R) := {z ∈ C : |z− z0| < R} , and D(z0, r) := {z ∈ C : |z− z0| ≤ R} .
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Lemma 3.1. We have
|p(z)| ≤ |z|n max

u∈D(0,1)
|p(u)|

for every polynomial p of degree at most n with complex coefficients, and for every
z ∈ C with |z| > 1. As a corollary (consider eintTn(t)), if

Tn(t) =

n∑

k=−n

cke
ikt , ck ∈ C ,

satisfies |Tn(t)| ≤ M for all t ∈ R, then it satisfies |Tn(t)| ≤ MenIm(t) for all t ∈ C.

The main tool to prove Theorem 2.4 is the following well-known Jensen’s For-
mula. For its proof, see, for example, E.10 c] of Section 4.2 in [BE].

Lemma 3.2 (Jensen’s Formula). Suppose h is a nonnegative integer and

f(z) =

∞∑

k=h

ckz
k , ch 6= 0 ,

is analytic on a disk D(0, R′) with some R′ > R. Suppose that the zeros of f in
D(0, R) \ {0} are a1, a2, . . . , am, where each zero is listed as many times as its
multiplicity. Then

log |ch|+ h logR+

m∑

k=1

log
R

|ak|
=

1

2π

∫ 2π

0

log |f(Reiθ)| dθ .

Lemma 3.3. Suppose (εn) is a sequence of numbers from (0, 1/3) tending to 0.
Suppose (Pn) ∈ UF((εn)). Then Pn does not have a zero in the open annulus

{
z ∈ C : 1− 1

2nδn
< |z| < 1 +

1

2nδn

}
,

where the positive numbers δn = max{2/ log(1/(3εn)), 1/n} tend to 0.

Proof of Lemma 3.3. Associated with a polynomial

pn(z) =

n∑

j=0

ajz
j , aj ∈ C ,

we define

(3.1) p∗n(z) = znpn(1/z) =

n∑

j=0

an−jz
j .

Let (Pn) ∈ UF((εn)), that is, Pn ∈ Kn satisfies

(1− εn)
√
n+ 1 < |Pn(z)| < (1 + εn)

√
n+ 1
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for every z ∈ C with |z| = 1. In fact, in this proof we will not use that Pn ∈ Kn,
we will use only that Pn is a polynomial of degree n with complex coefficients that
satisfies

(1− εn)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + εn)

√
n+ 1 , z ∈ ∂D .

Then

(1− εn)
2(n+ 1) < z−nPn(z)P

∗
n(z) = |Pn(z)|2 < (1 + εn)

2(n+ 1)

for every z ∈ ∂D. We define

(3.2) Qn(z) = Pn(z)P
∗
n(z)− (n+ 1)zn .

Then Qn is a polynomial of degree 2n and

−3εn(n+ 1) < z−nQn(z) = |Pn(z)|2 − (n+ 1) < 3εn(n+ 1)

for every z ∈ ∂D. From this we conclude that

(3.3) |Qn(z)| < 3εn(n+ 1)

for every z ∈ C with |z| = 1. Using Lemma 3.1 and (3.3), we obtain that

(3.4) |Qn(z)| ≤ |z|2n3εn(n+ 1) < n+ 1

for every z ∈ C for which

1 ≤ |z| < 1 +
1

nδn

with δn = max{2/ log(1/(3εn)), 1/n}. Suppose that Pn has a zero in the annulus

{
z ∈ C : 1− 1

2nδn
< |z| < 1 +

1

2nδn

}
.

Then PnP
∗
n has a zero z0 in the annulus

{
z ∈ C : 1 ≤ |z| < 1 +

1

nδn

}
.

Hence by (3.2) we have

|Qn(z0)| = |Pn(z0)P
∗
n(z0)− (n+ 1)zn0 | = (n+ 1)|z0|n ≥ n+ 1 ,

which is impossible by (3.4). �

Lemma 3.4. Suppose (εn) is a sequence of numbers from (0, 1/3) tending to 0.
Suppose (Pn) ∈ UF((εn)). Let 1/n < R < 2. Let z0 ∈ ∂D. Then Pn has at most
5nR zeros in the disk D(z0, R).

Proof. We use Jensen’s formula on the disk D(z0, 2R). Note that (Pn) ∈ UF((εn))
implies

log |Pn(z0)| ≥
1

2
log(n+ 1) + log(1− εn) ≥

1

2
log(n+ 1)− 1

2
,
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while on the boundary of the disk D(z0, 2R) one can estimate |Pn(z)| by the Bern-
stein inequality given by Lemma 3.1:

|Pn(z)| ≤ (1 + εn)
√
n+ 1(1 + 2R)n ,

that is,

log |Pn(z)| ≤
1

2
log(n+ 1) +

1

3
+ n(2R) .

on the boundary of D(z0, 2R). Now if m denotes the number of zeros of Pn in
D(z0, R), then by Jensen’s formula

1

2
log(n+ 1)− 1

2
+m log 2 ≤ 1

2
log(n+ 1) +

1

3
+ 2nR ,

whence

m ≤ 3nR

log 2
≤ 5nR ,

and the lemma is proved. �

Our last lemma is a well-known inequality in approximation theory.

Lemma 3.5 (Bernstein’s Inequality). If Pn is a polynomial of degree at most
n with complex coefficients, then

max
z∈∂D

|P ′
n(z)| ≤ n max

z∈∂D
|Pn(z)| .

Now we are ready for the proof of Theorem 2.4.

Proof of Theorem 2.4. It is easy to find a formula for αn(t) in terms of Pn. One
can easily verify formula (8.2) from Saffari’s paper [Sa], which asserts that

(3.5) α′
n(t) = Re

(
eitP ′

n(e
it)

Pn(eit)

)
.

Observe that if z1, z2, . . . , zn denote the zeros of Pn in the complex plane, then

zP ′
n(z)

Pn(z)
=

n∑

j=1

z

z − zj
=

n∑

j=1

(
1 +

zj
z − zj

)
.

Since Pn is unimodular, its zeros satisfy

(3.6) 1/2 ≤ |z1|, |z2|, . . . , |zn| ≤ 2 .

To see the upper bound, for example, let

Pn(z) =

n∑

j=0

ajz
j, aj ∈ C , |aj | = 1 .
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Now if z0 ∈ C and |z0| > 2, then
∣∣∣∣∣∣

n∑

j=0

ajz
j
0

∣∣∣∣∣∣
≥ |z0|n − (|z0|n−1 + |z0|n−2 + · · ·+ |z0|1 + |z0|0) = |z0|n − |z0|n − 1

|z0| − 1
> 0 .

Using (3.5) and (3.6) and substituting z0 = eit0 , we can give the following upper
bound (the constants Am below depend only on m):

|α(r)
n (t0)| =

∣∣∣∣
dr−1

dtr−1

(
Re

(
eitP ′

n(e
it)

Pn(eit)

))
(t0)

∣∣∣∣ ≤
∣∣∣∣
dr−1

dtr−1

(
eitP ′

n(e
it)

Pn(eit)

)
(t0)

∣∣∣∣

=

∣∣∣∣∣

r−1∑

m=0

Am
dm

dzm

(
zP ′

n(z)

Pn(z)

)
(z0) e

imt0

∣∣∣∣∣

=

∣∣∣∣∣

r∑

m=0

Am
dm

dzm

(
n∑

k=1

(
1 +

zk
z − zk

))
(z0) e

imt0

∣∣∣∣∣

≤
∣∣∣∣A0

z0P
′
n(z0)

Pn(z0)

∣∣∣∣+
r−1∑

m=1

|Am|m!

n∑

k=1

|zk||z0 − zk|−(m+1)

≤
∣∣∣∣A0

z0P
′
n(z0)

Pn(z0)

∣∣∣∣+ 2

r−1∑

m=1

|Am|m!

n∑

k=1

|z0 − zk|−(m+1) .

(3.7)

Now we define the annulus

Eµ = D

(
z0,

2µ

2nδn

)
\D

(
z0,

2µ−1

2nδn

)
, µ = 1, 2, . . . ,

where δn := max{2/ log(1/(3εn)), 1/n} as in Lemma 3.3. We denote the number of
zeros of Pn in Eµ by mµ. By Lemma 3.4 mµ ≤ 5n2µ/(2nδn). Combining this with
(3.7) and Lemmas 3.5 and 3.3, we obtain

|α(r)
n (t)| ≤ C0

n(1 + εn)
√
n

(1− εn)
√
n

+ Cr

r−1∑

m=1

n∑

k=1

|z0 − zk|−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

mµ

(
2µ−1

2nδn

)−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

5n2µ

2nδn

(
2µ−1

2nδn

)−(m+1)

≤ 2C0n+ Cr

r−1∑

m=1

∞∑

µ=1

2 · 2−(µ−1)m5n(2nδn)
m

≤ 2C0n+ C′
rn

rδn ≤ C′′
r n

rδn ,

where Cr, C
′
r, and C′′

r are positive constants depending only on r. Since

δn := max{2/ log(1/(3εn)), 1/n}

tends to 0 together with εn > 0, the theorem is proved. �
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4. Proof of Conjecture 2.1, Theorem 2.2 and Theorem 2.3

Our first tool is a classical polynomial inequality of Bernstein available in many
books. See [BE, Corollary 5.1.5], for example.

Lemma 4.1 (Bernstein’s Inequality for Trigonometric Polynomials). We
have

max
0≤t≤2π

|T (m)(t)| ≤ nm max
0≤t≤2π

|T (t)| , m = 1, 2, . . . ,

for every trigonometric polynomial T of degree at most n with complex coefficients.

First we prove Theorem 2.2 for positive integers q. We need the following lemma:

Lemma 4.2. Suppose (εn) is a sequence of numbers from (0, 1/3) tending to 0.
Suppose (Pn) ∈ UF((εn)). Using notation (2.1), we have

(4.1) max
0≤t≤2π

|R(m)
n (t)| = on,mnm+1/2 , m = 1, 2, . . . ,

with suitable constants on,m converging to 0 as n → ∞ for every m = 1, 2, . . . .

Proof of Lemma 4.2. Let δn := max{2/ log(1/(3εn)), 1/n}, as in the proof Lemma
3.3. Let (Pn) ∈ UF((εn)), that is, Pn ∈ Kn satisfies

(4.2) (1− εn)
√
n+ 1 < |Pn(z)| < (1 + εn)

√
n+ 1 , z ∈ ∂D .

(In fact, in this proof we will not use that Pn ∈ Kn, we will use only that Pn is a
polynomial of degree n with complex coefficients that satisfies (4.2).) We will use
the p∗n notation introduced by (3.1).

Step 1. By Lemma 3.3,

(4.3) Tn(t) := e−intPn(e
it)P ∗

n(e
it)

has no zeros in the strip

(4.4) En :=

{
z ∈ C : |Im(z)| ≤ 1

4nδn

}
.

Therefore
T̃n(t) :=

√
e−intPn(eit)P ∗

n(e
it)

is a well-defined analytic function in in the strip En.

Step 2. We show that

|T̃ ′
n(t)| ≤ onn

3/2 , t ∈ R ,

with suitable constants on converging to 0. Indeed, Tn is a trigonometric polynomial
of degree n (with complex coefficients). Note that (4.2) implies that

(4.5) −3εn(n+ 1) < Tn(t)− (n+ 1) < 3εn(n+ 1) .
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Combining this with Lemma 4.1 (Bernstein’s Inequality for Trigonometric Polyno-
mials), we obtain

max
0≤t≤2π

|T ′
n(t)| = max

0≤t≤2π

∣∣∣∣
d

dt
(Tn(t)− (n+ 1))

∣∣∣∣
≤ n max

0≤t≤2π
|Tn(t)− (n+ 1)| ≤ n3εn(n+ 1)

≤ 6εnn
2 .

(4.6)

Now

|T̃ ′
n(t)| =

∣∣∣∣∣
T ′
n(t)

2
√
Tn(t)

∣∣∣∣∣ ≤
6εnn

2

(1 − εn)
√
n+ 1

≤ 6εn
(1− εn)

n3/2

≤ 9εnn
3/2 = onn

3/2 , t ∈ R ,

(4.7)

with suitable constants on converging to 0.

Step 3. Let

Fcn :=
{
z ∈ C : |Im(z)| ≤ c

n

}
.

We show that there is a sufficiently small absolute constant c > 0 such that

(4.8) |T̃ ′
n(t)| ≤ onn

3/2 , t ∈ Fcn ,

with suitable constants on converging to 0. To see this, first note that

(4.9) |T̃ ′
n(t)| =

∣∣∣∣∣
T ′
n(t)

2
√
Tn(t)

∣∣∣∣∣ ,

where Tn is defined by (4.3). Using (4.6) and Lemma 3.1 we obtain that

(4.10) |T ′
n(t)| ≤ o′nn

2en(c/n) = onn
2 , t ∈ Fcn ,

and similarly (4.5) and Lemma 3.1 give

(4.11) |Tn(t)| ≥ n/2 , t ∈ Fcn ,

for a sufficiently small absolute constant c > 0, with suitable constants o′n and on
converging to 0.

Now (4.9) – (4.11) imply that

(4.12) |T̃ ′
n(t)| ≤ onn

3/2 , t ∈ Fcn ,

for a sufficiently small absolute constant c > 0, with suitable constants on converg-
ing to 0.

Step 4. From Step 3 we conclude by the Cauchy Integral Formula that

|T̃ (m)
n (t)| = (m− 1)!

∣∣∣∣∣

∫

∂D(t,c/n)

T ′
n(ξ) dξ

(ξ − t)m

∣∣∣∣∣

≤ 2πc

n
(m− 1)!on,1n

3/2
( c
n

)−m

= on,mnm+1/2 ,
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with suitable constants on,m converging to 0 as n → ∞ for every fixed m = 1, 2, . . . .

Step 5. Note that for t ∈ R we have

(4.13) Rn(t) = |Pn(e
it)| =

√
e−intPn(eit)P ∗

n(e
it) = T̃n(t) ,

hence by Step 4 max0≤t≤1 |R(m)
n (t)| = on,mnm+1/2 with suitable constants on,m

converging to 0 as n → ∞ for every fixed m = 1, 2, . . . . This proves the lemma. �

Now we are ready to prove Theorem 2.2 for positive integers q.

Proof of Theorem 2.2 for integers q ≥ 0. Let (Pn) ∈ UF((εn)). Using our standard
notation introduced by (2.1), we introduce

(4.14) Sn(t) := Pn(e
it) =

n∑

k=0

ak,ne
ikt , |ak,n| = 1 .

We calculate
1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt

in two different ways. On one hand, using orthogonality, we have

(4.15)
1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt = iq

n∑

k=0

kq|ak,n|2 = iq
nq+1

q + 1
+ on,qn

q+1 ,

with suitable constants on,q converging to 0 as n → ∞ for every fixed q = 0, 1, . . . .

On the other hand, Theorem 2.4, Lemma 4.2, and (2.5) give

S(q)
n (t) =

q∑

k=0

(
q

k

)
dk

dtk

(
eiαn(t)

)
R(q−k)

n (t)

=
dq

dtq

(
eiαn(t)

)
Rn(t) +

q−1∑

k=0

(
q

k

)
dk

dtk

(
eiαn(t)

)
R(q−k)

n (t)

=
dq

dtq

(
eiαn(t)

)
Rn(t) +

q−1∑

k=0

(
q

k

)
cn,k(t)n

kon,q−k(t)n
q−k+1/2

=
(
eiαn(t)α′

n(t)
qiq + o′n,q(t)n

q
)
Rn(t) + o′′n,q(t)n

q+1/2

(4.16)

with suitable constants on,q−k(t), cn,k(t), o
′
n,q(t), and o′′n,q(t), where

max
0≤t≤2π

|on,q−k(t)|

converge to 0 for every fixed q and k = 0, 1, . . . , q − 1,

max
0≤t≤2π

|cn,k(t)|
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is bounded by a constant independent of n for every fixed k = 0, 1, . . . , q − 1, and

max
0≤t≤2π

|o′n,q(t)| and max
0≤t≤2π

|o′′n,q(t)|

converge to 0 as n → ∞ for every fixed q. Now (4.13), (4.14), and (4.16) yield

1

2π

∫ 2π

0

S(q)
n (t)Sn(t) dt

=
1

2π

∫ 2π

0

((
eiαn(t)α′

n(t)
q
iq + o′n,q(t)n

q
)
Rn(t) + o′′n,q(t)n

q+1/2
)
Rn(t)e

−iαn(t) dt

=
1

2π

∫ 2π

0

(
(n− on(t)n)

(
α′
n(t)

q
iq + o′n,q(t)n

q
)
+ o′′′n,q(t)n

q+1/2+1/2
)
dt

=
1

2π

∫ 2π

0

iq(n− on,q(t)n)α
′
n(t)

q
dt+ o∗n,qn

q+1 ,

(4.17)

with suitable constants o′n,q(t), o
′′
n,q(t), o

′′′
n,q(t), and o∗n,q, where

max
0≤t≤2π

|o′n,q(t)| , max
0≤t≤2π

|o′′n,q(t)| , max
0≤t≤2π

|o′′′n,q(t)|

and o∗n,q converge to 0 as n → ∞ for every fixed q.

Now (4.15) and (4.17) give the statement of the theorem for integers q ≥ 0. �

Proof of Conjecture 2.1. We introduce the normalized distribution functions

(4.18) Fn(x) := m{t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} , x ∈ [0, 1] .

Each Fn is continuous and nondecreasing on [0, 1], and

0 ≤ Fn(x) ≤ 2π , x ∈ [0, 1] .

Suppose that the conjecture is not true. Then we can find a subsequence (Fnk
) of

the sequence (Fn), and numbers y ∈ [0, 1] and ε > 0 such that

(4.19) |Fnk
(y)− 2πy| ≥ ε , k = 1, 2, . . . .

Then by Helly’s Selection Theorem, there is a subsequence (mk) of (nk) such that

(4.20) lim
k→∞

Fmk
(y) = F (y)

exists for every x ∈ [0, 1]. Then Theorem 2.2, (4.18), (2.4), (2.5), and the Lebesgue
Dominated Convergence Theorem imply that

∫ 1

0

xq dF (x) =
1

q + 1
, q = 1, 2, . . . .

That is, all the corresponding moments of the measure dF (x) and the function
x → 2πx are the same on [0, 1]. Therefore, using the uniqueness part of the Riesz
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Representation Theorem describing all continuous linear functionals on C[0, 1], we
obtain that F (x) = 2πx for all x ∈ [0, 1]. However, this contradicts (4.19) and
(4.20). So

m{t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx} = 2πx+ on(x)

for every x ∈ [0, 1], where limn→∞ on(x) = 0 for every x ∈ [0, 1].

To see the second statement of the theorem, we argue as follows. Using notation
(2.1) and Lemma 4.2 we have R′

n(t) = on(t)n
3/2 with a constant on(t) tending to

0 as n → ∞ for every t ∈ R. Therefore

|P ′
n(e

it)| = |R′
n(t)e

iαn(t)+iα′
n(t)e

iαn(t)Rn(t)| = on(t)n
3/2+|α′

n(t)|(1+εn(t))
√
n+ 1 ,

where on(t) and εn(t) tend to 0 as n → ∞ for every t ∈ R. Now the result follows
from the first part of the theorem. �

Proof of Theorem 2.2 for all real q > 0. This follows from the already proved
Conjecture 2.1 in a routine fashion. �

Proof of Theorem 2.3. This follows immediately from Theorem 2.2, (3.5), and from
the observation that

(4.21) Im

(
eitP ′

n(e
it)

Pn(eit)

)
= on(t)

with suitable constants on(t) such that max0≤t≤2π |on(t)| converge to 0 as n → ∞.
To see (4.21), we proceed as follows. Associated with a polynomial

pn(z) =
n∑

j=0

ajz
j , aj ∈ C ,

we define

pn(z) =

n∑

j=0

ajz
j .

Now let

(4.22) Qn(t) := Pn(e
it)P n(e

−it)− (n+ 1) = |Pn(e
it)|2 − (n+ 1) ,

a trigonometric polynomial of degree n. Now (Pn) ∈ UF((εn)) and (4.22) yield

|Qn(t)| ≤ 3εn(n+ 1) ,

hence by Lemma 4.1 (Bernstein’s Inequality for Trigonometric Polynomials), we
obtain that

|ieitP ′
n(e

it)Pn(e
−it)− ie−itP

′

n(e
−it)Pn(e

it)| = |Q′
n(t)| ≤ n3εn(n+ 1)

for every t ∈ R. Combining this with

Pn(e
it)P n(e

−it) = |Pn(e
it)|2 = n+ βn(t)n ,
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where βn(t) are suitable constants such that max0≤t≤2π |βn(t)| converge to 0 as
n → ∞, we conclude

∣∣∣∣−2 Im

(
eitP ′

n(e
it)

Pn(eit)

)∣∣∣∣ =
∣∣∣∣∣i
(
eitP ′

n(e
it)

Pn(eit)
−
(
eitP ′

n(e
it)

Pn(eit)

))∣∣∣∣∣

=

∣∣∣∣∣
ieitP ′

n(e
it)Pn(e

−it)

Pn(eit)Pn(e−it)
− ie−itP

′

n(e
−it)Pn(e

it)

Pn(eit)Pn(e−it)

∣∣∣∣∣

=

∣∣∣∣∣
ieitP ′

n(e
it)Pn(e

−it)− ie−itP
′

n(e
−it)Pn(e

it)

Pn(eit)Pn(e−it)

∣∣∣∣∣

≤ n3εn(n+ 1)

n+ βn(t)
= β∗

n(t)n ,

with suitable constants β∗
n(t) such that max0≤t≤2π |β∗

n(t)| converge to 0 as n → ∞.
This proves (4.21), and hence the theorem is also proved. �

Proof of Theorem 2.5. To see the second part of the theorem, we write, as in (2.1),

Pn(e
it) = Rn(t)e

iαn(t) ,

where, as before, Rn(t) = |Pn(e
it)|. Then

P (r)
n (z) =

r∑

k=0

(
r

k

)
R(k)

n (t)
d(r−k)

dtr−k

(
eiαn(t)

)

Now the theorem follows from (2.1), Theorem 2.4, Lemma 4.2, and Conjecture
2.1. �

5. Remarks.

If Qn is a polynomial of degree n of the form

Qn(z) =
n∑

k=0

akz
k , ak ∈ C ,

and the coefficients ak of Qn satisfy

ak = an−k , k = 0, 1, . . . n ,

then we call Qn a conjugate-reciprocal polynomial of degree n.

Remark 5.1. One can ask how flat a conjugate reciprocal unimodular polynomial
can be. We present a simple result here. Let Pn ∈ Kn be a conjugate reciprocal
polynomial of degree n. Then

max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n

with ε :=
√

4
3 − 1. This is an observation made by Erdős [Er2] but his constant

ε > 0 is unspecified.
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To prove the statement, observe that Malik’s inequality [MMR, p. 676] gives

max
z∈∂D

|P ′
n(z)| ≤

n

2
max
z∈∂D

|Pn(z)| .

(Note that the fact that Pn is conjugate reciprocal improves the Bernstein factor
on ∂D from n to n/2.) Using Pn ∈ Kn, Parseval’s formula, and Malik’s inequality,
we obtain

2π
n3

3
≤ 2π

n(n+ 1)(2n+ 1)

6
=

∫

∂D

|P ′
n(z)|2 |dz| ≤ 2π

(n
2

)2
max
z∈∂D

|Pn(z)|2 ,

and
max
z∈∂D

|Pn(z)| ≥
√
4/3

√
n

follows.

Remark 5.2. Assume that (Pn) is an ultraflat sequence of unimodular polynomials
Pn ∈ Kn. As before, we use notation (2.1). We denote the number of zeros of Pn

inside the open unit disk D by Z(Pn). We claim that

Z(Pn) =
n

2
(1 + on) ,

where on is a sequence converging to 0 as n → ∞. To see this we argue as follows.
By Conjecture 2.1 (that we proved) we have

αn(2π)− αn(0) =
1

2
(1 + on)(2π) = (1 + on)nπ

with constants on converging to 0 as n → ∞. So the “Argument Principle” yields
the result we stated.
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