
Frontiers in Interpolation and Approximation
(Eds.) N. K. Govil, H. N. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados

c©2006 Taylor & Francis Books, Boca Raton, Florida

Inequalities for Exponential Sums via

Interpolation and Turán-Type Reverse Markov

Inequalities

T. Erdélyi
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Abstract

Interpolation was a topic in which Sharma was viewed as
an almost uncontested world expert by his collaborators and
many other colleagues. We survey recent results for exponen-
tial sums and linear combinations of shifted Gaussians which
were obtained via interpolation. To illustrate the method ex-
ploiting the Pinkus-Smith Improvement Theorem for spans of
Descartes systems, we present the proof of a Chebyshev-type
inequality. Finally, in Section 6 we present three simply for-
mulated new results concerning Turán-type reverse Markov in-
equalities.

1 Introduction and Notation

In his book [2] Braess writes “The rational functions and exponen-
tial sums belong to those concrete families of functions which are
the most frequently used in nonlinear approximation theory. The
starting point of consideration of exponential sums is an approxima-
tion problem often encountered for the analysis of decay processes
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in natural sciences. A given empirical function on a real interval
is to be approximated by sums of the form

∑n
j=1 aje

λjt, where the
parameters aj and λj are to be determined, while n is fixed.” Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.

So En is the collection of all n+ 1 term exponential sums with con-
stant first term. Schmidt [21] proved that there is a constant c(n)
depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(
0, 12(b− a)

)
. Here, and in what follows,

‖·‖[a,b] denotes the uniform norm on [a, b]. The main result, Theorem
3.2, of [5] shows that Schmidt’s inequality holds with c(n) = 2n− 1.
That is,

sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y} , y ∈ (a, b) . (1.1)

In this Bernstein-type inequality even the pointwise factor is sharp
up to a multiplicative absolute constant; the inequality

1

e− 1

n− 1

min{y − a, b− y} ≤ sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

, y ∈ (a, b) ,

is established by Theorem 3.3 in [5].
Bernstein-type inequalities play a central role in approximation

theory via a method developed by Bernstein himself, which turns
Bernstein-type inequalities into what are called inverse theorems of
approximation; see, for example, the books by Lorentz [16] and by
DeVore and Lorentz [8]. From (1.1) one can deduce in a standard
fashion that if there is a sequence (fn)

∞
n=1 of exponential sums with

fn ∈ En and

‖f − fn‖[a,b] = O(n−m(log n)−2) , n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then f is m times continuously
differentiable on (a, b). Let Pn be the collection of all polynomials
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of degree at most n with real coefficients. Inequality (1.1) can be
extended to En replaced by Ẽn, where Ẽn is the collection of all
functions f of the form

f(t) = a0 +
N∑

j=1

Pmj
(t)eλj t ,

a0 , λj ∈ R , Pmj
∈ Pmj

,
N∑

j=1

(mj + 1) ≤ n .

In fact, it is well-known that Ẽn is the uniform closure of En on
any finite subinterval of the real number line. For a complex-valued
function f defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup
x∈A

{|f(x)|} ,

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A
|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists. We focus on the class

Gn :=

{
f : f(t) =

n∑

j=1

aje
−(t−λj )

2
, aj , λj ∈ R

}
,

the class G̃n, the collection of all functions f of the form

f(t) =
N∑

j=1

Pmj
(t)e−(t−λj )

2
,

λj ∈ R , Pmj
∈ Pmj

,
N∑

j=1

(mj + 1) ≤ n ,

and the class G̃∗
n, the collection of all functions f of the form

f(t) =

N∑

j=1

Pmj
(t)e−(t−λj )

2
,
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λj ∈ [−n1/2, n1/2] , Pmj
∈ Pmj

,

N∑

j=1

(mj + 1) ≤ n .

In other words, Gn is the collection of n term linear combinations
(over R) of shifted Gaussians. Note that G̃n is the uniform closure of
Gn on any finite subinterval of the real line. Let W (t) := exp(−t2).
Combining Corollaries 1.5 and 1.8 in [9] and recalling that for the
weight W the Mhaskar-Rachmanov-Saff number an defined by (1.4)
in [9] satisfies an ≤ c1n

1/2 with a constant c1 independent of n, we
obtain that

inf
P∈Pn

‖(P − g)W‖Lq(R) ≤ c2n
−m/2‖g(m)W‖Lq(R)

with a constant c2 independent of n, whenever the norm on the right-
hand side is finite for some m ∈ N and q ∈ [1,∞]. As a consequence

inf
f∈G̃∗

n

‖f − gW‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−k(gW )(k)(t)‖Lq(R)

with a constant c3 independent of n whenever the norms on the right-
hand side are finite for each k = 0, 1, . . . ,m with some q ∈ [1,∞].
Replacing gW by g, we conclude that

inf
f∈G̃∗

n

‖f − g‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−kg(k)(t)‖Lq(R) (1.2)

with a constant c3 independent of n whenever the norms on the right-
hand side are finite for each k = 0, 1, . . . ,m with some q ∈ [1,∞].

2 A survey of recent results

Theorems 2.1–2.5 were proved in [12].

Theorem 2.1 There is an absolute constant c4 such that

|U ′
n(0)| ≤ c4n

1/2 ‖Un‖R
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for all Un of the form Un = PnQn with Pn ∈ G̃n and an even Qn ∈
Pn. As a consequence

‖P ′
n‖R ≤ c4n

1/2 ‖Pn‖R
for all Pn ∈ G̃n.

We remark that a closer look at the proof shows that c4 = 5 in the
above theorem is an appropriate choice in the theorem above.

Theorem 2.2 There is an absolute constant c5 such that

‖U ′
n‖Lq(R) ≤ c

1+1/q
5 n1/2 ‖Un‖Lq(R)

for all Un ∈ G̃n and q ∈ (0,∞).

Theorem 2.3 There is an absolute constant c6 such that

‖U (m)
n ‖Lq(R) ≤ (c

1+1/q
6 nm)m/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . ..

We remark that a closer look at the proofs shows that c5 = 180π in
Theorem 2.2 and c6 = 180π in Theorem 2.3 are suitable choices.

Our next theorem may be viewed as a slightly weak version of
the right inverse theorem of approximation that can be coupled with
the direct theorem of approximation formulated in (1.2).

Theorem 2.4 Suppose q ∈ [1,∞], m is a positive integer, ε > 0,
and f is a function defined on R. Suppose also that

inf
fn∈G̃n

‖fn − f‖Lq(R) ≤ c7n
−m/2(log n)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n. Then f is m times differentiable

almost everywhere in R. Also, if

inf
fn∈G̃∗

n

‖fn − f‖Lq(R) = c7n
−m/2(log n)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n, then, in addition to the fact that

f is m times differentiable almost everywhere in R, we also have

‖(1 + |t|)m−jf (j)(t)‖Lq(R) < ∞ , k = 0, 1, . . . ,m .
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Theorem 2.5 There is an absolute constant c8 such that

‖U ′
n‖Lq[y−δ/2,y+δ/2] ≤ c

1+1/q
8

(n
δ

)
‖Un‖Lq [y−δ,y+δ]

for all Un ∈ G̃n, q ∈ (0,∞], y ∈ R, and δ ∈ (0, n1/2].

In [18] H. Mhaskar writes “Professor Ward at Texas A&MUniver-
sity has pointed out that our results implicitly contain an inequality,
known as Bernstein inequality, in terms of the number of neurons,
under some conditions on the minimal separation. Professor Erdélyi
at Texas A&M University has kindly sent us a manuscript in prepa-
ration, where he proves this inequality purely in terms of the number
of neurons, with no further conditions. This inequality leads to the
converse theorems in terms of the number of neurons, matching our
direct theorem in this theory. Our direct theorem in [17] is sharp
in the sense of n-widths. However, the converse theorem applies to
individual functions rather than a class of functions. In particular, it
appears that even if the cost of approximation is measured in terms
of the number of neurons, if the degrees of approximation of a par-
ticular function by Gaussian networks decay polynomially, then a
linear operator will yield the same order of magnitude in the error in
approximating this function. We find this astonishing, since many
people have told us based on numerical experiments that one can
achieve a better degree of approximation by non-linear procedures
by stacking the centers near the bad points of the target functions”.

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The
collection of all linear combinations of of eλ0t, eλ1t, . . . , eλnt over R

will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+1 terms. New-
man’s inequality (see [3] and [19]) is an essentially sharp Markov-
type inequality for E(Λn) on [0, 1] in the case when each λj is non-
negative.

Theorem 2.6 (Newman’s Inequality) Let

Λn := {λ0 < λ1 < · · · < λn}
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be a set of nonnegative real numbers. Then

2

3

n∑

j=0

λj ≤ sup
06=P∈E(Λn)

‖P ′‖(−∞,0]

‖P‖(−∞,0]
≤ 9

n∑

j=0

λj .

An Lp version of this may be found in [3], [6], and [10].

Theorem 2.7 Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonneg-

ative real numbers. Let 1 ≤ p ≤ ∞. Then

‖Q′‖Lp(−∞,0] ≤ 9




n∑

j=0

λj


 ‖Q‖Lp(−∞,0]

for every Q ∈ E(Λn).

The following Lp[a, b] (1 ≤ p ≤ ∞) analogue of Theorem 2.7 has
been established in [1].

Theorem 2.8 Let Λn := {λ0 < λ1 < · · · < λn} be a set of real

numbers, a, b ∈ R , a < b, and 1 ≤ p ≤ ∞. There is a positive

constant c9 = c9(a, b) depending only on a and b such that

sup
06=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c9


n2 +

n∑

j=0

|λj |


 .

Theorem 2.8 was proved earlier in [4] and [10] under the addi-
tional assumptions that λj ≥ δj for each j with a constant δ > 0
and with c9 = c9(a, b) replaced by c9 = c9(a, b, δ) depending only
on a, b, and δ. The novelty of Theorem 2.8 was the fact that
Λn := {λ0 < λ1 < · · · < λn} is an arbitrary set of real numbers;
not even the non-negativity of the exponents λj is needed.

In [11] the following Nikolskii-Markov type inequality has been
proved for E(Λn) on (−∞, 0].

Theorem 2.9 Let Λn := {λ0 < λ1 < · · · < λn} be a set of non-

negative real numbers. Suppose 0 < q ≤ p ≤ ∞. Let µ be a

non-negative integer. There are constants c10 = c10(p, q, µ) > 0
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and c11 = c11(p, q, µ) depending only on p, q, and µ such that for

A := (−∞, 0] we have

c10




n∑

j=0

λj




µ+ 1
q
− 1

p

≤ sup
P∈E(Λn)

‖P (µ)‖LpA

‖P‖LqA
≤ c11




n∑

j=0

λj




µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0,
while the upper bound holds when µ = 0 and 0 < q ≤ p ≤ ∞, and

when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there are constants

c10 = c10(q, µ) > 0 and c11 = c11(q, µ) depending only on q and µ
such that

c10




n∑

j=0

λj




µ+ 1
q

≤ sup
P∈E(Λn)

|P (µ)(y)|
‖P‖Lq(−∞,y]

≤ c11




n∑

j=0

λj




µ+ 1
q

for every y ∈ R.

Motivated by a question of Michel Weber (Strasbourg) we proved
the following two theorems in [13].

Theorem 2.10 Let

Λn := {λ0 < λ1 < · · · < λn}

be a set of real numbers. Let a, b ∈ R , a < b, 0 < q ≤ p ≤ ∞, and

M(Λn, p, q) :=


n2 +

n∑

j=0

|λj |




1
q
− 1

p

.

There are constants c12 = c12(p, q, a, b) > 0 and c13 = c13(p, q, a, b)
depending only on p, q, a, and b such that

c12M(Λn, p, q) ≤ sup
P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq [a,b]
≤ c13M(Λn, p, q) .
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Theorem 2.11 Let

Λn := {λ0 < λ1 < · · · < λn}

be a set of real numbers. Let a, b ∈ R , a < b, 0 < q ≤ p ≤ ∞ , and

M(Λn, p, q) :=


n2 +

n∑

j=0

|λj |




1
q
− 1

p

.

There are constants c14 = c14(p, q, a, b) > 0 and c15 = c15(p, q, a, b)
depending only on p, q, a, and b such that

c14M(Λn, p, q) ≤ sup
P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq [a,b]
≤ c15M(Λn, p, q) ,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper

bound holds when p ≥ 1 and 0 < q ≤ p ≤ ∞ .

The lower bounds in these inequalities were shown by a method
in which the Pinkus-Smith Improvement Theorem plays a central
role. We formulate the useful lemmas applied in the proofs of these
lower bounds. To emphasize the power of the technique of inter-
polation, we present the short proofs of these lemmas. Then these
lemmas are used to establish the Chebyshev-type inequality below
for exponential sums.

Theorem 2.12 We have

|f(y)| ≤ exp(γ(|y| + δ))

(
2|y|
δ

)n

‖f‖[−δ,δ] , y ∈ R \ [−δ, δ] ,

for all f ∈ Ẽn of the form

f(t) = a0 +

N∑

j=1

Pmj
(t)eλj t ,

a0 ∈ R , λj ∈ [−γ, γ] , Pmj
∈ Pmj

,
N∑

j=1

(mj + 1) ≤ n ,

and for all γ > 0 .
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3 Lemmas

Our first lemma, which can be proved by a simple compactness ar-
gument, may be viewed as a simple exercise.

Lemma 3.1 Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real num-

bers. Let a, b, c ∈ R , a < b. Let w 6= 0 be a continuous function

defined on [a, b] . Let q ∈ (0,∞]. Then there exists a 0 6= T ∈ E(∆n)
such that

|T (c)|
‖Tw‖Lq [a,b]

= sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

,

and there exists a 0 6= S ∈ E(∆n) such that

|S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Our next result is an essential tool in proving our key lemmas,
Lemmas 3.3 and 3.4.

Lemma 3.2 Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real num-

bers. Let a, b, c ∈ R , a < b < c. Let q ∈ (0,∞]. Let T and S be

the same as in Lemma 3.1. Then T has exactly n zeros in [a, b] by
counting multiplicities. If δn ≥ 0 , then S also has exactly n zeros in

[a, b] by counting multiplicities.

The heart of the proof of our theorems is the following pair of
comparison lemmas. The proofs of these are based on basic proper-
ties of Descartes systems, in particular on Descartes’ Rule of Signs,
and on a technique used earlier by P.W. Smith and Pinkus. Lorentz
ascribes this result to Pinkus, although it was Smith [22] who pub-
lished it. I learned about the method of proofs of these lemmas from
Peter Borwein, who also ascribes it to Pinkus. This is the proof we
present here. Section 3.2 of [3], for instance, gives an introduction to
Descartes systems. Descartes’ Rule of Signs is stated and proved on
page 102 of [3].

Lemma 3.3 Let

∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn}
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be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n . Let
a, b, c ∈ R , a < b ≤ c. Let 0 6= w be a continuous function defined

on [a, b]. Let q ∈ (0,∞]. Then

sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

≤ sup
P∈E(Γn)

|P (c)|
‖Pw‖Lq [a,b]

.

Under the additional assumption δn ≥ 0, we also have

sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

≤ sup
P∈E(Γn)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Lemma 3.4 Let

∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn}

be sets of real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n . Let
a, b, c ∈ R , c ≤ a < b . Let 0 6= w be a continuous function defined

on [a, b]. Let q ∈ (0,∞]. Then

sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

≥ sup
P∈E(Γn)

|P (c)|
‖Pw‖Lq [a,b]

.

Under the additional assumption γ0 ≤ 0, we also have

sup
P∈E(∆n)

|Q′(c)|
‖Qw‖Lq [a,b]

≥ sup
P∈E(Γn)

|Q′(c)|
‖Qw‖Lq [a,b]

.

4 Proofs of the Lemmas

Proof of Lemma 3.1 Since ∆n is fixed, the proof is a standard
compactness argument. We omit the details. ✷

To prove Lemma 3.2 we need the following two facts: (a) Every
f ∈ E(∆n) has at most n real zeros by counting multiplicities. (b)
If t1 < t2 < · · · < tm are real numbers and k1, k2, . . . , km are positive
integers such that

∑m
j=1 kj = n, then there is a f ∈ E(∆n), f 6= 0

having a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m.
Proof of Lemma 3.2 We prove the statement for T first. Suppose
to the contrary that

t1 < t2 < · · · < tm
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are real numbers in [a, b] such that tj is a zero of T with multiplicity
kj for each j = 1, 2, . . . ,m, k :=

∑m
j=1 kj < n, and T has no other

zeros in [a, b] different from t1, t2, . . . , tm. Let tm+1 := c and km+1 :=
n − k ≥ 1. Choose an 0 6= R ∈ E(∆n) such that R has a zero at
tj with multiplicity kj for each j = 1, 2, . . . ,m + 1, and normalize
so that T (t) and R(t) have the same sign at every t ∈ [a, b]. Let
Tε := T − εR. Note that T and R are of the form

T (t) = T̃ (t)
m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both T̃ and R̃ are continuous functions on [a, b] having no zeros
on [a, b]. Hence, if ε > 0 is sufficiently small, then |Tε(t)| < |T (t)| at
every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Tεw‖Lq [a,b] < ‖Tw‖Lq [a,b] .

This, together with Tε(c) = T (c), contradicts the maximality of T .
Now we prove the statement for S. Without loss of generality we

may assume that S′(c) > 0. Suppose to the contrary that

t1 < t2 < · · · < tm

are real numbers in [a, b] such that tj is a zero of S with multiplicity
kj for each j = 1, 2, . . . ,m, k :=

∑m
j=1 kj < n, and S has no other

zeros in [a, b] different from t1, t2, . . . , tm. Choose a

0 6= Q ∈ span{eδn−kt, eδn−k+1t, . . . , eδnt} ⊂ E(∆n) ,

such that Q has a zero at tj with multiplicity kj for each j =
1, 2, . . . ,m, and normalize so that S(t) and Q(t) have the same sign
at every t ∈ [a, b]. Note that S and Q are of the form

S(t) = S̃(t)

m∏

j=1

(t− tj)
kj and Q(t) = Q̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and Q̃ are continuous functions on [a, b] having no
zeros on [a, b]. Let tm+1 := c and km+1 := 1. Choose an

0 6= R ∈ span{eδn−k−1t, eδn−kt, . . . , eδnt} ⊂ E(∆n)
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such that R has a zero at tj with multiplicity kj for each j =
1, 2, . . . ,m + 1, and normalize so that S(t) and R(t) have the same
sign at every t ∈ [a, b]. Note that S and R are of the form

S(t) = S̃(t)

m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no
zeros on [a, b]. Since δn ≥ 0, it is easy to see that Q′(c)R′(c) < 0,
so the sign of Q′(c) is different from the sign of R′(c). Let U := Q
if Q′(c) < 0, and let U := R if R′(c) < 0. Let Sε := S − εU .
Hence, if ε > 0 is sufficiently small, then |Sε(t)| < |T (t)| at every
t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq [a,b] < ‖Sw‖Lq [a,b] .

This, together with the inequalities S′
ε(c) > S′(c) > 0, contradicts

the maximality of S. ✷

Proof of Lemma 3.3 We begin with the first inequality. We may
assume that a < b < c. The general case when a < b ≤ c follows by
a standard continuity argument. Let k ∈ {0, 1, . . . , n} be fixed and
let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the
above cases since the general case follows from this by a finite number
of pairwise comparisons. By Lemmas 3.1 and 3.2, there is a 0 6= T ∈
E(∆n) such that

|T (c)|
‖Tw‖Lq [a,b]

= sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

,

where T has exactly n zeros in [a, b] by counting multiplicities. De-
note the distinct zeros of T in [a, b] by t1 < t2 < · · · < tm, where tj is a
zero of T with multiplicity kj for each j = 1, 2, . . . ,m, and

∑m
j=1 kj =

n. Then T has no other zeros in R different from t1, t2, . . . , tm. Let

T (t) =:

n∑

j=0

aje
δjt , aj ∈ R .
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Without loss of generality we may assume that T (c) > 0. We have
T (t) > 0 for every t > c; otherwise, in addition to its n zeros in [a, b]
(by counting multiplicities), T would have at least one more zero in
(c,∞), which is impossible. Hence

an := lim
t→∞

T (t)e−δnt ≥ 0 .

Since E(∆n) is the span of a Descartes system on (−∞,∞), it follows
from Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =
n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j =
1, 2, . . . ,m, and normalize so that R(c) = T (c)(> 0) (this R ∈ E(Γn)
is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0. Since
E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’
Rule of Signs yields

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(T −R)(t) = ake
δkt − bke

γkt +

n∑

j=0
j 6=k

(aj − bj)e
δjt .

Since T −R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c
(by counting multiplicities), it does not have any zero in R different
from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies
that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak,−bk, ak+1 − bk+1, . . . , an − bn)
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strictly alternates in sign. Since (−1)n−kak > 0, this implies that
an − bn < 0 if k < n, and −bn < 0 if k = n, so

(T −R)(t) < 0 , t > c .

Since each of T , R, and T−R has a zero at tj with multiplicity kj for
each j = 1, 2, . . . ,m;

∑m
j=1 kj = n, and T − R has a sign change (a

zero with multiplicity 1) at c, we can deduce that each of T , R, and
T −R has the same sign on each of the intervals (tj, tj+1) for every
j = 0, 1, . . . ,m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |T (t)|
holds for all t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different
from t1, t2, . . . , tm. Combining this with R(c) = T (c), we obtain

|R(c)|
‖Rw‖Lq [a,b]

≥ |T (c)|
‖Tw‖Lq [a,b]

= sup
P∈E(∆n)

|P (c)|
‖Pw‖Lq [a,b]

.

Since R ∈ E(Γn), the first conclusion of the lemma follows from this.
Now we start the proof of the second inequality of the lemma.

Although it is quite similar to that of the first inequality, we present
the details. We may assume that a < b < c and δn > 0. The general
case when a < b ≤ c and δn ≥ 0 follows by a standard continuity
argument. Let k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the
above cases since the general case follows from this by a finite number
of pairwise comparisons. By Lemmas 3.1 and 3.2, there is an 0 6=
S ∈ E(∆n) such that

|S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

,

where S has exactly n zeros in [a, b] by counting multiplicities. De-
note the distinct zeros of S in [a, b] by t1 < t2 < · · · < tm, where tj is a
zero of S with multiplicity kj for each j = 1, 2, . . . ,m, and

∑m
j=1 kj =

n. Then S has no other zeros in R different from t1, t2, . . . , tm. Let

S(t) =:

n∑

j=0

aje
δjt , aj ∈ R .
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Without loss of generality we may assume that S(c) > 0. Since
δn > 0, we have limt→∞ S(t) = ∞; otherwise, in addition to its n
zeros in (a, b), S would have at least one more zero in (c,∞), which
is impossible.

Because of the extremal property of S, we have S′(c) 6= 0. We
show that S′(c) > 0. To see this observe that Rolle’s Theorem implies
that S′ ∈ E(∆n) has at least n−1 zeros in [t1, tm]. If S′(c) < 0, then
S(tm) = 0 and limt→∞ S(t) = ∞ imply that S′ has at least 2 more
zeros in (tm,∞) (by counting multiplicities). Thus S′(c) < 0 would
imply that S′ has at least n+ 1 zeros in [a,∞), which is impossible.
Hence S′(c) > 0, indeed. Also an := limt→∞ S(t)e−δnt ≥ 0 . Since
E(∆n) is the span of a Descartes system on (−∞.∞), it follows from
Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ E(Γn) of the form

R(t) =

n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j =
1, 2, . . . ,m, and normalize so that R(c) = S(c)(> 0) (this R ∈ E(Γn)
is uniquely determined). Similarly to an ≥ 0 we have bn ≥ 0. Since
E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’
Rule of Signs implies that

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(S −R)(t) = ake
δkt − bke

γkt +
n∑

j=0
j 6=k

(aj − bj)e
δjt .

Since S−R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c
(by counting multiplicities), it does not have any zero in R different
from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)
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is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies
that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak,−bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that
an − bn < 0 if k < n and −bn < 0 if k = n, so

(S −R)(t) < 0 , t > c .

Since each of S, R, and S−R has a zero at tj with multiplicity kj for
each j = 1, 2, . . . ,m;

∑m
j=1 kj = n, and S − R has a sign change (a

zero with multiplicity 1) at c, we can deduce that each of S, R, and
S − R has the same sign on each of the intervals (tj , tj+1) for every
j = 0, 1, . . . ,m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |S(t)|
holds for all t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different
from t1, t2, . . . , tm. Combining this with 0 < S′(c) < R′(c) (recall
that R(c) = S(c) > 0), we obtain

|R′(c)|
‖Rw‖Lq [a,b]

≥ |S′(c)|
‖Sw‖Lq [a,b]

= sup
P∈E(∆n)

|P ′(c)|
‖Pw‖Lq [a,b]

.

Since R ∈ E(Γn), the second conclusion of the lemma follows from
this. ✷

Proof of Lemma 3.4 The lemma follows from Lemma 3.3 via the
substitution u = −t. ✷

5 Proof of the Theorem 2.12

Proof of Theorem 2.12 By a well-known and simple limiting
argument we may assume that

f(t) =

n∑

j=0

aje
λjt, −γ ≤ λ0 < λ1 < · · · < λn ≤ γ .

By reasons of symmetry it is sufficient to examine only the case y > δ.
By Lemmas 3.1 – 3.4 we may assume that

λj = γ − (n− j)ε , j = 0, 1, . . . , n ,
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for sufficiently small values of ε > 0, that is,

f(t) = eγtPn(e
−εt) , Pn ∈ Pn .

Now Chebyshev’s inequality [8, Proposition 2.3, p. 101] implies that

|f(y)| = eγy|Pn(e
−εy)| ≤ eγy

(
4e−εy

eεδ − e−εδ

)n

‖Pn(e
−εt)‖[−δ,δ]

≤ eγy
(

4e−εy

eεδ − e−εδ

)n

eδy‖f‖[−δ,δ]

≤ eγ(y+δ)

(
4e−εy

eεδ − e−εδ

)n

‖f‖[−δ,δ] ,

and by taking the limit when ε > 0 tends to 0, the theorem follows.
✷

6 Turán-type reverse Markov inequalities on

diamonds

Let ε ∈ [0, 1] and let Dε be the ellipse in the complex plane with
axes [−1, 1] and [−iε, iε]. Let Pc

n(Dε) denote the collection of all
polynomials of degree n with complex coefficients and with all their
zeros in Dε. Let

‖f‖A := sup
z∈A

|f(z)|

for complex-valued functions defined on A. Extending a result of
Turán [23], Erőd [14, III. tétel] claimed that there are absolute con-
stants c1 > 0 and c2 such that

c1(nε+
√
n) ≤ inf

p∈Pc
n(Dε)

‖p′‖Dε

‖p‖Dε

≤ c2(nε+
√
n) .

However, Erőd [14] presented a proof with only c1nε in the lower
bound. It was Levenberg and Poletcky [15] who first published a
correct proof of a result implying the lower bound claimed by Erőd.

Let ε ∈ [0, 1] and let Sε be the diamond in the complex plane
with diagonals [−1, 1] and [−iε, iε]. Let Pc

n(Sε) denote the collection
of all polynomials of degree n with complex coefficients and with all
their zeros in Sε.
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Theorem 6.1 There are absolute constants c1 > 0 and c2 such that

c1(nε+
√
n) ≤ inf

p

‖p′‖Sε

‖p‖Sε

≤ c2(nε+
√
n) ,

where the infimum is taken over all p ∈ Pc
n(Sε) with the property

|p(z)| = |p(−z)| , z ∈ C , (6.1)

or where the infimum is taken over all real p ∈ Pc
n(Sε).

It is an interesting question whether or not the lower bound in The-
orem 6.1 holds when the infimum is taken for all p ∈ Pc

n(ε). As our
next result shows this is the case at least when ε = 1.

Theorem 6.2 There are absolute constants c1 > 0 and c2 such that

c1n ≤ inf
p∈Pc

n(S1)

‖p′‖S1

‖p‖S1

≤ c2n .

The following lemma is the main tool we need for the proofs of the
theorems above.

Lemma 6.3 Let Γ(a, r) be the circle in the complex plane centered

at a with radius r. Let z0 ∈ Γ(a, r). Suppose p ∈ Pc
n has at least m

zeros in the disk D(a, r) bounded by Γ(a, r) and it has all its zeros

in the half-plane H(a, r, z0) containing a and bounded by the line

tangent to Γ(a, r) at z0. Then

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ ≥
m

2r
.

Proof. Let p ∈ Pc
n be of the form

p(z) = c

n∏

k=1

(z − zk) , c , zk ∈ C .

Then

r

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ =

∣∣∣∣
p′(z0)(z0 − a)

p(z0)

∣∣∣∣ =
∣∣∣∣∣

n∑

k=1

z0 − a

z0 − zk

∣∣∣∣∣
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=

∣∣∣∣∣

n∑

k=1

(
1− zk − a

z0 − a

)−1
∣∣∣∣∣

≥
∣∣∣∣∣Re

(
n∑

k=1

(
1− zk − a

z0 − a

)−1
)∣∣∣∣∣

≥
n∑

k=1

Re

((
1− zk − a

z0 − a

)−1
)

≥ m

2
,

since

Re

((
1− zk − a

z0 − a

)−1
)

≥ 1

2
, zk ∈ D(a, r) ,

and

Re

((
1− zk − a

z0 − a

)−1
)

= Re

(
z0 − zk
z0 − a

)
≥ 0 , zk ∈ H(a, r, z0) .

✷

Proof of Theorem 6.1 The upper bound can be obtained by
considering

pn(z) := (z2 − 1)⌊n/2⌋(z − 1)n−2⌊n/2⌋ .

We omit the simple calculation. To prove the lower bound we con-
sider three cases.
Case 1: Property (6.1) holds and ε ∈ [n−1/2, 1]. Choose a point z0
on the boundary of Sε such that

|p(z0)| = ‖p‖Sε . (6.2)

Property (6.1) implies that

|p(−z0)| = ‖p‖Sε . (6.3)

Without loss of generality we may assume that z0 ∈ [iε, 1]. A simple
calculation shows that there are disks D1 := D1(ε, c, z0) and D2 :=
D2(ε, c,−z0) in the complex plane such that D1 has radius r = cε−1
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and is tangent to [iε, 1] at z0, D2 has radius r = cε−1 and is tangent
to [−1,−iε] at −z0, and Sε ⊂ D1 ∪ D2 for every sufficiently large
absolute constant c > 0. Since p ∈ Pc

n has each of its zeros in Sε,
either p has at least n/2 zeros in D1 or p has at least n/2 zeros in
D2. In the first case Lemma 6.3 and (6.2) imply

‖p′‖Sε

‖p‖Sε

≥ |p′(z0)|
‖p‖Sε

=

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ ≥
n

4r
=

1

4c
nε .

In the other case Lemma 6.3 and (6.3) imply

‖p′‖Sε

‖p‖Sε

≥ |p′(−z0)|
‖p‖Sε

=

∣∣∣∣
p′(−z0)

p(−z0)

∣∣∣∣ ≥
n

4r
=

1

4c
nε .

Case 2: p ∈ Pc
n(ε) is real and ε ∈ [n−1/2, 1]. Choose a point z0 on

the boundary of Sε such that

|p(z0)| = ‖p‖Sε . (6.4)

Without loss of generality we may assume that z0 ∈ [iε, 1] . Since
p ∈ Pc

n(ε) is real, we have

|p(z0)| = ‖p‖Sε . (6.5)

Let D1 := D1(ε, c, z0) and D2 := D2(ε, c, z0) be disks of the complex
plane such that D1 has radius r = cε−1 and is tangent to [iε, 1] at z0
from below, D2 has radius r = cε−1 and is tangent to [−1,−iε] at z0
from above. Denote the boundary of D1 by Γ1 and the boundary of
D2 by Γ2. A simple calculation shows that if the absolute constant
c > 0 is sufficiently large, then Γ1 intersects the boundary of Sε only
at a1 ∈ [−1, iε] and b1 ∈ [−iε, 1], while Γ2 intersects the boundary
of Sε only at a2 ∈ [−1,−iε] and b2 ∈ [iε, 1]. Also, if the absolute
constant c > 0 is sufficiently large, then

|a1−iε| ≤ 1

64
, |a2+iε| ≤ 1

64
, |b1−1| ≤ 1

64
, |b2−1| ≤ 1

64
. (6.6)

In the sequel let the absolute constant c > 0 be so large that inequal-
ities (6.6) hold. If p ∈ Pc

n(ε) has at least αn zeros in D1, then by
using Lemma 6.3 and (6.4), we deduce

‖p′‖Sε

‖p‖Sε

≥ |p′(z0)|
‖p‖Sε

=

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ ≥
αn

2r
=

α

2c
nε .
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If p ∈ Pc
n(ε) has at least αn zeros in D2, then by using Lemma 6.3

and (6.5), we deduce

‖p′‖Sε

‖p‖Sε

≥ |p′(z0)|
‖p‖Sε

=

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ ≥
αn

2r
=

α

2c
nε .

Hence we may assume that p ∈ Pc
n(ε) has at least (1 − α)n zeros in

Sε \D1 and it has at least (1−α)n zeros in Sε \D2. Combining this
with (6.6), we obtain that p ∈ Pc

n(ε) has at least (1 − 2α)n zeros in
the disk centered at 1 with radius 1/32. However, we show that this
situation cannot occur if the absolute constant α > 0 is sufficiently
small. Indeed, let p ∈ Pc

n(ε) be of the form p = fg with

f(z) =

n1∏

j=1

(z − uj) and g(z) =

n2∏

j=1

(z − vj) ,

where

uj ∈ C , j = 1, 2, . . . , n1 , n1 ≤ 2αn , (6.7)

and

|vj − 1| ≤ 1

32
, j = 1, 2, . . . , n2 , n2 ≥ (1− 2α)n . (6.8)

Let I be the subinterval of [−1, iε] with endpoint −1 and length
1/32. Let y0 ∈ I be chosen so that |f(y0)| = ‖f‖I . We show that
|p(z0)| < |p(y0)|, a contradiction. Indeed, by Chebyshev’s inequality
[8, Theorem 6.1, p. 75] and (6.7) we have

|f(y0)| ≥
(

1

128

)n1

≥
(

1

128

)2αn

,

hence ∣∣∣∣
f(y0)

f(z0)

∣∣∣∣ ≥
(

1

256

)2αn

. (6.9)

Also, (6.8) implies

∣∣∣∣
g(y0)

g(z0)

∣∣∣∣ ≥
(
31
16

)n2

(√
2 + 1

32

)n2
≥
(
31

24

)(1−2α)n

. (6.10)
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By (6.9) and (6.10),

∣∣∣∣
p(y0)

p(z0)

∣∣∣∣ =
∣∣∣∣
f(y0)

f(z0)

∣∣∣∣
∣∣∣∣
g(y0)

g(z0)

∣∣∣∣ ≥
((

1

256

)2α(31

24

)(1−2α)
)n

> 1 ,

if α > 0 is a sufficiently small absolute constant. This finishes the
proof in this case.
Case 3: ε ∈ [0, n−1/2]. The lower bound of the theorem follows
now from a result of Erőd [14, III. tétel] proved by Levenberg and
Poletcky [15]. ✷

Proof of Theorem 6.2 Choose a point z0 ∈ S1 such that |p(z0)| =
‖p‖S1 . Without loss of generality we may assume that z0 ∈[
1, 12(1 + i)

]
. A simple calculation shows that there is an absolute

constant r > 0 such that the circle Γ := Γ(r, z0) with radius r that
is tangent to [1, i] at z0 and intersects the boundary of S1 only at
a ∈ [−1, i] and b ∈ [−i, 1]. Moreover, if the r > 0 is sufficiently large,
then

|a− i| ≤
√
2

64
and |b− 1| ≤

√
2

64
. (6.11)

We denote the disk with boundary Γ by D := D(r, z0). If p ∈ Pc
n(1)

has at least αn zeros in D, then by Lemma 6.3 we deduce

‖p′‖S1

‖p‖S1

≥ |p′(z0)|
‖p‖S1

=

∣∣∣∣
p′(z0)

p(z0)

∣∣∣∣ ≥
αn

2r
.

Hence we may assume that p ∈ Pc
n(1) has at most αn zeros in D,

and hence that p ∈ Pc
n(1) has at least (1 − α)n zeros in S1 \ D.

However, we show that this situation cannot occur if the absolute
constant α > 0 is sufficiently small. Indeed, let p ∈ Pc

n(1) be of the
form p = fg with

f(z) =

n1∏

j=1

(z − uj) and g(z) =

n2∏

j=1

(z − vj) ,

where
uj ∈ C , j = 1, 2, . . . , n1 , n1 ≤ αn , (6.12)

and

vj ∈ S1 \D , j = 1, 2, . . . , n2 , n2 ≥ (1− α)n . (6.13)
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Let I be the subinterval of [−1,−i] with endpoint −1 and length√
2/4. Let y0 ∈ I be chosen so that |f(y0)| = ‖f‖I . We show that

|p(z0)| < |p(y0)|, a contradiction. Indeed, by Chebyshev’s inequality
[8, Theorem 6.1, p. 75] and (6.12) we have

|f(y0)| ≥
(√

2

16

)n1

≥
(√

2

16

)αn

,

hence ∣∣∣∣
f(y0)

f(z0)

∣∣∣∣ ≥
(√

2

32

)αn

. (6.14)

Also, (6.11) and (6.13) imply

∣∣∣∣
g(y0)

g(z0)

∣∣∣∣ ≥

(√
2
((

1− 1
64

)2
+
(
1
4

)2)1/2
)n2

(√
2
(
1 +

(
1
64

)
2
)1/2)n2

≥
(
66

65

)n2/2

≥
(
66

65

)(1/2−α)n

. (6.15)

By (6.14) and (6.15)

∣∣∣∣
p(y0)

p(z0)

∣∣∣∣ =
∣∣∣∣
f(y0)

f(z0)

∣∣∣∣
∣∣∣∣
g(y0)

g(z0)

∣∣∣∣ ≥
((√

2

32

)α(
66

65

)(1/2−α)
)n

> 1

if α > 0 is a sufficiently small absolute constant. ✷

Motivated by the initial results in this section, Sz. Révész [20]
established the right order Turán -type converse Markov inequalities
on convex domains of the complex plane. His main theorem contains
the results in this section as special cases. Révész’s proof is also
elementary, but rather subtle. It is expected to appear in the Journal
of Approximation Theory soon.
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polynomials on positive intervals, J. Approx. Theory, 85 (1996),
132-139.
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